
In Journal of Sequential Planning and Inference 137 (2007), 2654–2665

Response Adaptive Designs that Incorporate Switching
Costs and Constraints

Janis P. Hardwick Quentin F. Stout

University of Michigan, Ann Arbor, MI 48109-2121 USA

Abstract

This paper examines the design and performance of sequential experiments where extensive
switching is undesirable. Given an objective function to optimize by sampling between Bernoulli
populations, two different models are considered. The constraint model restricts the maximum
number of switches possible, while the cost model introduces a charge for each switch. Optimal
allocation procedures and a new “hyperopic” procedure are discussed and their behavior exam-
ined. For the cost model, if one views the costs as control variables then the optimal allocation
procedures yield the optimal tradeoff of expected switches vs. expected value of the objective
function.

Our approach is quite general, applying to any objective function, and gives users flexibility
in incorporating practical considerations in the design of experiments. To illustrate the effects
of the switching restrictions, they are applied to the problems of minimizing failures and of
minimizing the Bayes risk in a nonlinear estimation problem. It is observed that when there are
no restrictions the expected number of switches in the optimal allocation grows approximately
as the square root of the sample size, for sample sizes up to a few hundred. It is also observed
that one can dramatically reduce the number of switches without substantially affecting the
expected value of the objective function. The adaptive hyperopic procedure is introduced and
it is seen to perform nearly as well as the optimal procedure. Thus one need sacrifice only a
small amount of statistical objective in order to achieve significant gains in practicality. We also
examine scenarios in which switching is desirable, even beyond that which would occur in the
optimal design, and show that similar computational approaches can be applied.

Keywords: response adaptive sampling, switching, bandit problem, hyperopic design, optimal
tradeoffs, sequential allocation, dynamic programming, experimental design

1 Introduction

In situations where data are collected over time, response adaptive sampling or allocation, in which
decisions are made based on accruing data, is more efficient than fixed sampling, where all decisions
are made in advance. Response adaptive sampling can reduce costs or time, or improve the results
for a given sample size. However, fully adaptive designs are rarely used, due to various concerns
over their design, analysis, and implementation.

In some settings, one concern is that many designs, such as randomized allocation, switch
repeatedly among the alternatives, a design attribute that may be costly or impossible [13]. Banks
and Sundaram note [3] “it is difficult to imagine a relevant economic decision problem in which the
decision-maker may costlessly move between alternatives”. For example, in an industrial setting,
one may need to reconfigure fixtures each time a switch occurs. In a clinical setting, similar setup or
training costs may be required to switch among treatment alternatives. More generally, important
scenarios that involve switching include:

1

i. You have an initial cost αi to change to population i, and incur incremental cost βi for each
observation as long as you stay on that population, where αi ≫ βi.

ii. You have to make up a treatment in batches, or need to set up fixtures to conduct several
identical tests at the same time, or sign a contract committing to purchasing a specific number
of units, so when you decide that the next m observations are on population i you incur a
cost αi + βim. Here m is specified in advance.

iii. You can switch at most S times. For example, you may need to use a special apparatus to
which you have only S accesses.

Note that these are not mutually exclusive. For example, both i) and iii) may be true in the same
situation.

Such cost and constraint concerns can be quite important, although they are rarely directly
incorporated in designs. One exception is in bandit theory where, in trying to minimize expected
failures, costs, or time, a few authors have investigated a cost structure as in i) [1, 3, 5]. However,
these results apply to the case in which an infinite number of geometrically discounted observations
are assumed. Another analysis of switching costs appears in [4], where the setting is quite specialized
with one of two populations having a known probability of success. Here again the objective is to
minimize the expected number of failures. Perhaps the most relevant work appears in [6], in which
the authors introduce an asymptotically optimal heuristic for a finite sample size bandit problem
with switching costs.

There appears to be no previous work that applies to more general sequential problems that may
involve arbitrary objective functions. In particular, none applies to nonlinear objective functions.
Further, earlier work addresses only concern i). Basic questions one might ask in any setting
include:

• How many switches occur in the optimal design which does not consider the relevant switching
concerns?

• How much do we lose by reducing the number of switches (perhaps dramatically)?

• How do we model this and can we optimize the problem?

• Are there other (simpler) designs that come close to the optimized switching designs?

In Section 2, basic definitions are given. In Section 3.1 a constraint model is defined, corre-
sponding to concern iii) above. In Section 3.2 a cost model is defined, generalizing concern i).
For both models, algorithms are given that generate the optimal design for arbitrary objective
functions, and which can evaluate arbitrary designs with respect to these objectives. In Section 4
we introduce a new intuitive procedure based on an adaptive hyperopic approach. In Section 5 we
focus on the specific objective functions of (a) minimizing expected failures and (b) minimizing the
Bayes risk in a nonlinear estimation problem. We determine the optimal designs with and without
switching restrictions, and compare these to hyperopic designs. These comparisons include both
Bayesian and frequentist evaluations. In Section 6 we briefly examine quite different, although
related, situations in which switching is desirable. In the final section, we conclude with discussion
of generalizations and observations concerning the results. While no work will be done here on cost
model ii), note that it can be viewed as a staged allocation problem and hence can be optimized
by the techniques developed in [9].

2

2 Definitions

While a table of notation is presented in Figure 6, we also review notation here. Throughout,
we assume that the sample size N is fixed. This assumption merely simplifies our analyses and
examples, and the algorithms can easily be adapted to include stopping rules. If optional stopping is
desired (which may be quite natural in cost models), then N should be interpreted as the maximum
possible sample size.

There are K Bernoulli populations, and at any point the only decision required is to choose which
of these to observe. We use a Bayesian approach, where the success parameters of the populations
have independent prior distributions. However, while this approach is used to create the allocation
design, the design may have desirable frequentist properties as well; and for all designs we can
easily evaluate operating characteristics from either perspective. Suppose that at some point we
have observed si successes and fi failures on Population i. Then the vector (s1, f1, . . . , sK , fK) is a
sufficient statistic and forms a natural index for the state space describing the experiment. Note,
however, that it does not provide sufficient information to determine the expected or worst-case
number of switches.

There is an objective function R∗(v) which is the value of each final state v (i.e., states for which
|v| = N), and the goal is to minimize the expected value of R∗. The expected value of allocation

A, denoted RA, is the sum, over all final states v, of R∗(v) times the probability that A reaches
v. For a given restriction, as in Sections 3.1 and 3.2, let opt denote the optimal allocation. Within
the restriction, the efficiency of allocation procedure A is Ropt/RA. When there are no switch-
ing restrictions then opt can be determined exactly using straightforward dynamic programming.
However, when there are restrictions the situation becomes more complicated.

3 Models

3.1 Constraint Model

In the constraint model there is an upper bound S on the number of times one can switch among
the populations to be sampled (the initial observation is not counted as a switch). The goal is to
optimize the expected value of the objective function subject to this constraint. When S ≥ N − 1,
the problem is equivalent to the standard optimization problem without switching considerations.

A dynamic programming algorithm for determining the optimal allocation procedure under the
constraint model is described in detail in Figure 7 in the Appendix. It proceeds from the end of the
experiment towards the beginning, where at each state it evaluates the value of continuing with no
switching vs. the value of switching and then continuing with 1 fewer switch allowed. Note that the
algorithm actually finds the value of the optimal experiments corresponding to all constraints less
than or equal to S, not just the optimal experiment for S. This is quite useful, since it allows one
to examine the range of optimal tradeoffs of maximum switches vs. expected objective function all
from a single run. With straightforward changes, the algorithm can also be used to determine the
value and efficiency of an arbitrary allocation procedure.

3.2 Cost Model

In the cost model, if the last population sampled was i, and we now sample j, then we pay a cost
c(i, j) (if the first observation is on i then we pay c(i, i)). The goal is to minimize the expected

3

value of the terminal objective plus costs. This is a flexible model that includes cost concern i)
of Section 1 as a special case. As with the constraint model, a dynamic programming algorithm
for determining the optimal procedure for a given cost function is described in Figure 8 in the
Appendix, and here too the algorithm can easily be modified to evaluate arbitrary or suboptimal
allocation procedures.

A particularly important special case occurs when c(i, i) = 0 and c(i, j) = α, i 6= j, for then
the cost component is proportional to the number of switches. Let Rα

opt denote the optimal value
obtained using this cost function (where value is now the terminal objective plus cost), and let Cα

denote the expected cost of the allocation procedure achieving Rα
opt . Then Rα

opt −Cα is the optimal
expected value of the objective function under the constraint that the expected cost is no more than
Cα, i.e., under the constraint that the average number of switches is no more than Cα/α. Thus
this model achieves optimal tradeoffs of the objective function vs. expected number of switches,
but does so through the indirect control parameter α. To investigate a specific expected number
of switches, one must search through α. One can use the monotonic decreasing behavior of Cα/α
to greatly speed this search.

4 Adaptive Hyperopic Allocation

While the algorithms in the Appendix can be used to determine the optimal designs for the con-
straint and cost models, they are often viewed as being too difficult to compute for non-Bernoulli
distribution functions, or resulting in designs that are too complex and opaque. Hyperopic proce-
dures are often efficient ad hoc alternatives to optimal adaptive designs. A hyperopic procedure is
one that makes sampling decisions based only on the remaining trial length and the prior/posterior
distributions. For the cost model we use a simple adaptive hyperopic procedure based on 1-stage
allocation procedures. For simplicity, let us assume that we have only 2 populations. Then, for an
experiment with m observations remaining and given posteriors, let Rfix (i, j) be the value of the
fixed allocation rule that puts i observations on Population 1 and j observations on Population 2,
for i + j = m and 0 ≤ i, j ≤ m. If Rfix (m1,m2) = min{Rfix (i, j) | 0 ≤ i, j ≤ m, i + j = m }, then
the pair (m1,m2) is the best fixed allocation rule.

Using these simple allocation rules, one can create families of adaptive hyperopic rules as follows:

1. At each state v, having made N − m observations, find the optimal best fixed allocation
(m1,m2) based on the posteriors and the fact that there are m remaining observations.

2. Use (m1,m2) to decide which population to sample at v.

3. Update the posteriors and sample size remaining and repeat.

While the decision made at each state is based on a fixed sampling procedure, these hyperopic rules
are adaptive because they update the decision process after each observation.

Note that in step 2 there are many ways to utilize the latest best fixed allocation values (m1,m2).
For example, suppose we last sampled from Population 1.

Design ignoring costs:

a. Sample next from the population corresponding to max{m1,m2}, or

b. Use a biased coin with P(allocate to Population 1) = m1/m

4

Design incorporating switching and sampling costs:

Assuming that population 1 was just observed. For i + j = m, let S(i, j) be defined by

S(i, j) =

{

Rfix (m, 0) + m · c(1, 1) if i = m
Rfix (i, j) + i · c(1, 1) + c(1, 2) + (j−1) · c(2, 2) if i < m

That is, S(i, j) is the cost of staying on population 1 for i more observations and then
switching to population 2. Redefine (m1,m2) to be argmin{S(i, j) | 0 ≤ i, j ≤ m, i+ j = m },
and switch only if (m1,m2) = (0,m).

The specific hyperopic procedure we use, H, is the latter variation, incorporating both switching
and sampling costs.

The advantage of H over the optimal allocation is that one does not need dynamic programming
to determine what to do at each state, but can instead perform a simple calculation to make the
decision. The disadvantage, of course, is that it is not optimal. The important question is how
much efficiency is lost by using this simple procedure. These issues will be examined in Section 5.

While H is defined in terms of the cost model, it can also be used to produce designs for the
constraint model. The switching costs can be used as tuning variables, where a higher cost results
in a lower maximum number of switches. One could easily vary this approach by having the cost of
a switch increase as the number of switches increases. However, we have not evaluated such rules.

5 Examples

To show that the models of the previous sections are practical, they are applied to two objective
functions. For both we assume that K = 2 and that the priors are independent beta distributions.

The first is the problem of minimizing expected losses or failures during the experiment. This can
be modeled by the classical 2-armed bandit problem with finite horizon and uniform discounting.
We choose this example because it is well-known and has been widely studied in a variety of
scenarios, although we could find no prior work on the expected number of switches. As noted
in the introduction, there is interest in switching aspects of bandit models, but analytical results
seem to focus on models with infinite horizon and geometric discounting [1, 3, 4, 5]. Our work
can be considered as a compliment to such results, giving exact optimizations and evaluations for
experiments of finite duration.

The second example is a nonlinear estimation problem. Here the objective is to minimize the
Bayes risk of an estimate of the product of two population means using squared error loss. This
problem has also been studied by several authors [7, 11, 12], but we could find no prior work that
discussed switching aspects. Note that for the first example one would like all of the observations
to be from the better population, while for the second, extensive observations are needed from both
populations.

We have evaluated the optimal and hyperopic procedures for a variety of priors and sample
sizes, but due to space considerations we only show results for a couple of scenarios. Other cases
examined exhibit similar behavior. Throughout we assume that there are no sampling costs, only
switching costs, i.e., that c(1, 1) = c(2, 2) = 0. Recall that we use a fixed sample size N to simplify
comparisons, but can easily modify the algorithms to use nonzero sampling costs and optional
stopping.

5

Log(Sample Size)

Lo
g(

E
xp

ec
te

d
N

um
be

r
S

w
itc

he
s)

0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

Population priors

+ Be(1,9), Be(1,9)
△ Be(1,1), Be(1,1)
∗ Be(1,1), Be(2,2)

Figure 1: Minimizing Failures, No Switching Considerations

5.1 Minimizing Failures

To begin, in Figure 1, the expected number of switches when using the optimal sequential solution
with no switching restrictions is plotted as a function of the sample size N . Three different prior
combinations are included to illustrate model variation. Regardless of prior, the number of switches
grows roughly as the square root of N for the range of N considered, although the rate appears to
slow as N increases. Note that for classical randomized designs this rate is even greater, growing
linearly with the sample size. The maximum number of switches is nearly N in all cases and is not
shown.

The data in Figure 2 arise from a sample size of 100 when uniform priors are used for each
population. In Figure 2 a), the optimal tradeoffs between the expected value of the objective
function and the expected number of switches are plotted, as are the tradeoffs obtained by using
the hyperopic procedure. The efficiency measure here is simply the ratio of the optimal rule with
no switching costs to the objective with varying switching costs. The reference lines highlight
the relative efficiencies when the expected number of switches is one. Figure 2 b) shows the
corresponding tradeoffs involving the maximum number of switches. The extremal points have
been omitted in order to present the regions of most interest. When the number of switches is
unlimited then the optimal design has 35.08 expected failures and an average of 5.49 switches.
The maximum number depends upon the method used to break ties. For example, suppose the
observations are always failures. While this has an extremely small probability, it will nonetheless
affect the maximum number of switches. If Population 1 is tried first then the optimal decision
is to next try Population 2. With a failure on it, the optimal rule could choose either. If it, say,
always breaks ties by trying Population 1, then, in the presence of repeated failures, 99 switches
will occur. On the other hand, if ties are broken by staying on the current population, then only
50 will occur.

With unrestricted switching the hyperopic procedure averages 36.20 failures with an average of
2.26 switches, and the worst case analysis is as for the optimal procedure. Thus, the hyperopic rule

6

0 1 2 3 4 5

a) Expected # of Switches

0.85

0.90

0.95

1.00

E
ffi

ci
en

cy

OOOOOOOO
O

O

O

O

O

O

HHHHHHHHHHH
H

H

H

O = Optimal
H = Hyperopic

0 1 2 3 4 5

b) Maximum # of Switches

0.85

0.90

0.95

1.00

E
ffi

ci
en

cy

OO
O

O

O

HH
H

H

H
O = Optimal
H = Hyperopic

N = 100, Uniform priors on both populations

Figure 2: Optimal Tradeoffs: Expected number of failures

is 97% efficient compared to the optimal when switching is not considered in the design. When
the number of switches is 0 then both populations have 50 expected failures, giving an efficiency of
0.70. However, with merely 1 switch on average, the efficiency jumps to 94.5% with the optimal rule
being 97.5% efficient. When the maximum number of switches is constrained then the performance
is somewhat worse, as Figure 2 makes clear, but it is still true that with only 1 switch the optimal
design is 90.7% efficient, and the hyperopic procedure is 88.5% efficient. In Figure 3 we give more
detailed information about these designs.

We determined the pointwise behavior (as opposed to integrated) for a number of operating
characteristics for the present objective and procedures. For example, for each procedure we gen-
erated statistics such as the variance and the maximum number of switches. We also have the
expected number of observations allocated to each population as well as the standard deviation
of this number. Such pointwise behavior is illustrated in Figure 4 where the expected number of
switches are plotted as a function of the success parameters. In this figure, the priors were Be(1,1)
and Be(1,1.25) and, on average, the procedure allowed only 1 switch. Note that while the proce-
dures were Bayesian, they nevertheless have reasonable behavior throughout the entire parameter
range, i.e., from a frequentist perspective.

When minimizing failures, the hyperopic rule H simplifies to merely comparing staying on the
current arm for the rest of the trial vs. immediately switching to the other arm and staying with
it (S(m, 0) vs. S(0,m) in the notation of Section 4). This is because the linearity of the objective
function implies that if some observations were planned on each arm, then it would be better to
just make all of them on the arm perceived to have the higher success rate. Note that if there are
no switching costs then the hyperopic rule is the same as the standard myopic rule, always choosing
the arm with the highest posterior probability of success. In general, of course, the hyperopic and
myopic rules are not the same.

With regard to the general results for the hyperopic rule, it may be surprising to note that, for
this objective, the asymptotic efficiency of H is less than 1. For example, for uniform priors, if the

7

Optimal Hyperopic
E(fail) SD(fail) E(swit) SD(swit) E(fail) SD(fail) E(swit) SD(swit)

Unrestricted 35.08 24.40 5.49 6.72 36.12 24.26 2.70 4.87

E(swit) = 1 35.96 24.15 1.00 0.82 37.10 24.93 1.00 0.94

Max(swit) = 1 38.67 25.96 0.55 0.50 39.63 26.02 0.44 0.50

Figure 3: N = 100, Uniform priors on both populations, Minimizing Failures

a) Optimal Allocation b) Hyperopic Allocation

Figure 4: E(Switches) = 1, N = 100, P1 ∼ Be(1, 1); P2 ∼ Be(1, 1.25)

first observation is from Population 1 and results in a failure then H, and the optimal design, will
switch to Population 2. There is a nonzero probability that the posterior estimate for Population
2 is always greater than 1/3 no matter how many observations occur, in which case H will never
decide it is worthwhile to switch back to the first population, even if the switching costs are zero,
despite the fact that there is a nonzero probability that Population 1 is actually the better one. The
optimal procedure, however, will continue to occasionally sample Population 1. One can guarantee
asymptotic efficiency of 1 by more sophisticated hyperopic designs where at each step one uses the
best 2-stage design, rather than the best 1-stage design, to guide the sampling decision. However,
these analytical results say little about the behavior for useful sample sizes, and the examples make
it clear that this extra complication is unnecessary.

5.2 Bayes Risk

The problem of estimating the product of two success probabilities arises in reliability settings, and,
as noted, it has been studied several times. The objective function is the Bayes risk of the squared
error loss of the terminal estimate of P1 · P2, where Pi is the success probability of population i.
In Figure 5 the optimal tradeoffs of objective function vs. expected number of switches are shown.
Notice that, for this nonlinear objective, the hyperopic strategy performs significantly better than
it did for the linear objective. If we restrict the procedure to having only one switch on average, the
optimal and hyperopic rules are respectively 97% and 96% efficient. With an average of only 1.7
switches, the optimal rule is 99.7% efficient. That is, it is essentially fully efficient at 1.7 expected
switches. With no switching costs at all, the optimal and hyperopic rules max out at 6.6 and 1.3

8

0.0 0.5 1.0 1.5 2.0

Expected # of Switches

0.70

0.75

0.80

0.85

0.90

0.95

1.00

E
ffi

ci
en

cy

O
OOOOO

O

O

O

O

HHH
HHH

H

H

H

O = Optimal
H = Hyperopic

N = 100, priors are Be(1,2) and Be(2,1)

Figure 5: Optimal tradeoffs: Bayes risk for product of means

average switches respectively. Note how few switches are used by the no-cost hyperopic rule as
compared to the no-cost optimal rule.

With a nonlinear objective function such as is encountered here, the hyperopic rule does not
simplify as it did for the problem of minimizing failures. That is, the optimal fixed allocation rule
may allocate some observations to each population, reducing the uncertainty about Pi for each.
One could use the simpler hyperopic rule which only compares staying on the current arm vs.
switching immediately and staying with the other arm, but our experimental results indicated that
this is markedly inferior to the hyperopic rule H described in Section 4. One can view each step
of H as asking if the best fixed allocation would take a few more observations on the current arm
before switching to the other arm, and switching only if the answer is no.

We examined many other behaviors for this estimation problem. However, for space consid-
erations, we don’t include more results here. The basic operating characteristics observed for the
bandit problem are quite similar to those seen to occur for this problem.

6 Desirable Switching

In some situations there are experiments for which the switching concerns are quite the opposite
of those just analyzed. For example, it may be that the success probabilities of populations are
likely to change over time, and thus each needs to be periodically reexamined. Continuing the list
of potential design requirements from the Introduction, it may be the case that

iv. No population can remain unobserved for more than m observations.

v. Each population must be observed at least r times.

vi. At least S switches must occur.

9

Note that these design goals do not necessarily preclude the simultaneous incorporation of the
earlier conditions. Also, the present concerns can also apply in scenarios in which the success
probabilities do not change. For example, stipulation v) can arise when a design has good Bayesian
properties but the frequentist behavior is poor at some regions of the parameter space. Note that
restriction v) only weakly implies switching, in that it can be achieved with a single switch.

Switching requirements may also arise when a heuristic design is being used to minimize failures
and one wishes to avoid premature convergence to an inferior population. Premature convergence is
an extremely general problem in the area of optimization, and so “exploration rules” are introduced
to prevent it. For example, hill-climbing approaches which find a local maximum are occasionally
restarted at different regions in that hope that eventually one will get closer to a global maximum.
In simulated annealing the temperature parameter controls the exploration, while in evolution-
ary algorithms it is the mutation rate or introduction of new random individuals that is used to
achieve this. Some of the failure minimization designs examined in [14] have such exploration
characteristics.

Optimal designs that address the issues in v) and vi) have the property that they satisfy
the constraints as soon as possible. That is, there is no advantage in postponing the required
observations since they might in fact help improve later sampling decisions. However, using large
values of r or S can also degrade the expected value of the objective function since they force
observations of inferior populations.

It is concern iv) that most appropriately addresses situations where the population success
probabilities might change over time. One can satisfy iv) by specifying that at every multiple of m
one samples once from each population, and then returns to the standard design rules. When the
goal is to minimize failures the condition might be relaxed somewhat and be modified to do such
switching at logarithmically increasing intervals. It is known that for static success probabilities
the optimal design samples each population at least a logarithmic number of times [10], and so such
prespecified switching need not significantly increase the number of failures even when the popula-
tion means are unchanging. There are more sophisticated heuristics that sample each population
at least a logarithmic number of times and achieve slightly better performance [2, 10].

One way to address a more sophisticated version of iv) is to introduce a cost function r(i, ℓ)
which is the cost of not having sampled from population i for the last ℓ observations. If one sets
r(i, ℓ) = ∞ for ℓ ≥ m then iv) will be satisfied. However, by using a gradually increasing function,
instead of a step function, one can model more appropriate tradeoffs between insuring repeated
sampling on all populations vs. the cost of doing so. That is, if switching causes little change in
the expected value of the objective function then it would occur more frequently than if it caused
a large change.

To determine the optimal design and evaluate an arbitrary design for such a cost function, the
notion of state has to be extended to indicate how long it has been since each population has been
sampled, and then straightforward changes to the algorithm in Figure 8 can optimize the design.
One complication is that the number of states increases by a factor of NK−1, making it difficult to
compute when the sample size and number of populations are large.

7 Final Remarks

Practical considerations are important in the conduct of experiments, so it is useful to offer inves-
tigators ways to directly address such considerations in the design of their experiments. One such

10

consideration is the extensive switching that commonly occurs with many experimental designs.
This paper has addressed this concern by examining allocation methods that examine objective
function vs. switching consideration tradeoffs. Given an arbitrary objective function, and given
either switching costs or switching constraints, the algorithms provided determine the optimal se-
quential experiment for the resulting model. In some cases an investigator may not utilize the
sequential allocation procedure that optimizes a tradeoff, but may want to use it as a benchmark
against which suboptimal designs are evaluated. This was illustrated through the introduction of
the adaptive hyperopic design, which achieved nearly optimal performance for both linear and non-
linear objective functions. For a nonlinear objective the hyperopic design achieves its performance
by being more subtle then just comparing switching now vs. never switching.

The cost model can easily be extended to depend on the number of observations so far, and on
the outcome of the observation. This would allow one to optimize interesting cases such as bandit
problems with non-uniform weights. One can also merge the algorithms to optimize the expected
objective function plus switching costs, under a constraint on the maximal number of switches
allowed. We also examined scenarios for which switching was desirable, showing that they fit into
the same optimization and evaluation framework with relatively simple changes.

As illustrative examples we examined the problem of minimizing failures and a nonlinear esti-
mation problem with the goal of minimizing the Bayes risk. It was observed that sequential designs
optimized without regard for switching considerations tend to have extensive switches, but that the
number of switches can be dramatically reduced with only minor loss of efficiency in the objective
function.

For both problems it was observed that the expected number of switches for unrestricted optimal
sequential designs grows fairly rapidly, roughly on the order of the square root of the sample size,
for sample sizes of a few hundred. Near the upper end of this region the growth seems to be slowing,
which leads us to believe that the asymptotic rate is far slower. Thus it is expected that purely
asymptotic results would poorly predict the observed behavior. Because asymptotics often give
weak guidance for the design of specific experiments, we believe that computational insight and
optimization fills an important role. However, to better fill that role, it helps to have computational
approaches that model all of the factors that are relevant to the investigator. This work is just a
small piece in a larger project to develop such models and programs.

Acknowledgements This research was supported by in part by National Science Foundation grant
DMS–0072910.

References

[1] Assawa, M. and Teneketzis, D. (1996), “Multi-armed bandits with switching penalties”, IEEE

Trans. Auto. Control 41: 328–348.

[2] Auer, P., Cesa-Bianchi, N. and Fischer, P. (2002), “Finite-time analysis of the multi-armed
bandit problem”, Machine Learning 47: 235–256.

[3] Banks, J.S. and Sundaram, R.K. (1994), “Switching costs and the Gittins index”, Econometrica

62: 687–694.

11

[4] Benzing, H., Kalin, D., and Theodorescu, R. (1987), “Optimal policies for sequential Bernoulli
experiments with switching costs”, J. Inform. Process. Cybernet. 23: 599–607.

[5] Bergemann, D. and Välimäki, J. (2001), “Stationary multi-choice bandit problems”, J. Eco-

nomic Dynamics & Control 25: 1585–1594.

[6] Brezzi, M. and Lai, T.Z. (2002), “Optimal learning and experimentation in bandit problems”,
J. Economic Dynamics & Control 27 : 87–108.

[7] Hardwick, J. and Stout, Q.F. (1993), “Optimal allocation for estimating the product of two
means”, Computing Science and Stat. 24: 592–596.

[8] Hardwick, J. and Stout, Q.F. (1996), “Sequential allocation with minimal switching”, Comput-

ing Science and Stat. 28: 567–572.

[9] Hardwick, J. and Stout, Q.F. (2002), “Optimal few-stage designs”, J. Stat. Plan. and Infer.

104: 121–145.

[10] Lai, T.L. and Robbins, H. (1985), “Asymptotically efficient adaptive allocation rules”, Ad-

vances in Applied Math. 6: 4–22.

[11] Page, C. (1987), “Sequential designs for estimating products of parameters”, Seq. Anal. 6:
351–371.

[12] Rekab, K. (1993), “A sampling scheme for estimating the reliability of a series system”, IEEE

Trans. Reliability 42: 287-290.

[13] Schmitz, N. (1993), Optimal Sequentially Planned Decision Procedures, Springer-Verlag Lec-
ture Notes.

[14] Wang, Y.-G. (1991), “Gittins indices and constrained allocation in clinical trials”, Biometrika

78: 101–111.

12

Appendix: Algorithms for Determining Optimal Allocation

The following algorithms first appeared in [8]. They find the optimal design given the options
available. However, they can also be used to evaluate an arbitrary design. This is done by replacing
the minimum operations, which choose the best population to sample from, by the choice that the
design would make.

In Figure 7, a dynamic programming algorithm is given for determining the optimal allocation
design when there can be no more than S switches. As is usual, it proceeds from the end of the
experiment towards the beginning. The critical observation is embedded in the equations at the
innermost level of the loops. At each state v and number of switches remaining σ, one evaluates
the value of staying on the current population vs. switching to a different population, where there
is one fewer switch available for the remainder of the experiment. The option giving the minimum
value is then chosen.

In Figure 8 a dynamic programming algorithm is given for minimizing the sum of objective
function and sampling costs. Similarly to the previous algorithm, the critical recursive equations
are at the innermost level, where the choice is made by taking the minimum of the cost of staying
on the current population and continuing optimally vs. switching and paying a switching cost and
then continuing optimally. As the calculations proceed one keeps track of both the sum of objective
plus switching costs, which is the quantity being minimized, and the switching costs. At the very
end the switching costs are subtracted to determine the expected value of the objective function
for each initial population to be sampled, and the minimum of these is chosen.

The algorithms in Figures 7 and 8 can be modified to evaluate an arbitrary design B. To do so,
one merely needs to replace the minimization operation with the choice that B would make.

As for the computational resource requirements: for creating the optimal allocation design
with no switching constraints, using standard dynamic programming, Ropt can be determined in
Θ(KN2K/(2K)!) time since there are Θ(N2K/(2K)!) states, each requiring the evaluation of K
alternatives. Here the Θ notation from computer science is used to indicate that it is simultaneously
an upper and lower bound, to within a multiplicative constant. We assume that R∗ can be computed
for all terminal states in time proportional to the number of terminal states, and since it is only
computed Θ(KN2K−1/(2K−1)!) times it is not the dominant factor. Similarly, to calculate the
posterior probabilities of success for every population one needs only determine Θ(KN2) values
which can be stored in a table, and hence they too are not the dominant factor. For our examples
only beta distributions were used, and hence the posterior calculations were trivial. When more
complex distributions are used the calculations may be far more complicated, using techniques such
as particle filtering, but the number of such calculations is small compared to the number of states.

For the cost model the number of states, and time per state, is the same as for the unconstrained
optimization. When constraining switches there are Θ(S ·N2K/(2K)!) states, corresponding to the
usual states coupled with the various number of switches that have occurred to reach that state.
Each requires the evaluation of K alternatives, so the total time is Θ(SKN2K/(2K)!).

The algorithms, as given, only determine the value of the optimal design. If one also records the
option taken at each state, then the design itself can be recovered, starting at the initial state and
following the chosen options. The storage to retain this information is proportional to the number
of states, as is the storage of the algorithms as presented. However, if one only wants to determine
the value, then one can use the well-known technique of overwriting the arrays as the value of m
decreases. This saves a factor of N in the space required.

13

N : sample size

K: number of populations

S: maximum number of switches possible (constraint model)

R∗: terminal objective function

RA: expected value of R for allocation A

R(v): expected value of R∗, starting at state v and proceeding optimally (no switching consider-
ations)

Ropt : expected value of R for optimal sequential allocation (i.e., R(0))

Rc
i (v): expected value of objective + switching costs obtained by starting at state v, sampling

from population i, and proceeding optimally (cost model)

Rσ
i (v): expected objective obtained by starting at state v, sampling from pop. i, and proceeding

optimally using no more than σ switches (constraint model)

c(i, j): the cost of switching from pop. i to pop. j

Ci(v): expected value of total switching costs obtained by starting at state v, sampling from
population i, and proceeding optimally (cost model)

v: a state, that is, a vector denoting number of successes and failures observed on each population

|v| : the total number of observations at state v

si, fi: vectors denoting 1 success or failure on pop. i

pi(v): probability of success on next observation of population i, when experiment is in state v

Figure 6: Notation

14

for all terminal states v (i.e., states where |v| = N)
for all populations i ∈ {1, . . . ,K}
for all switches σ ∈ {0, . . . , S}

initialize Rσ
i (v) = R∗(v)

for m = n − 1 downto 0
for all states v with |v| = m
for all switches σ ∈ {0, . . . , S}
for all populations i ∈ {1, . . . ,K}

rsuc = Rσ
i (v + si)

rfail = Rσ
i (v + fi)

if σ > 0 then
rsuc = min{rsuc ,min{Rσ−1

j (v + si) : j 6= i}}

rfail = min{rfail ,min{Rσ−1

j (v + fi) : j 6= i}}
Rσ

i (v) = pi(v) · rsuc + (1 − pi(v)) · rfail

Ropt = min{RS
i (0) : i ∈ {1, . . . ,K}}

Figure 7: Optimal Experimental Design for Constraint Model

for all terminal states v (i.e., states where |v| = N)
for all populations i ∈ {1, . . . ,K}

initialize Rc
i (v) = R∗(v)

initialize Ci(v) = 0

for all m = n − 1 downto 0
for all states v with |v| = m
for all populations i ∈ {1, . . . ,K}

jsuc = argmin{c(i, j) + Rc
j(v + si) : j ∈ {1, . . . ,K}}

jfail = argmin{c(i, j) + Rc
j(v + fi) : j ∈ {1, . . . ,K}}

Rc
i (v) = pi(v) · [c(i, jsuc) + Rc

jsuc(v + si)] +
(1 − pi(v)) · [c(i, jfail) + Rc

jfail (v + fi)]
Ci(v) = pi(v) · [c(i, jsuc) + Cjsuc(v + si)] +

(1 − pi(v)) · [c(i, jfail) + Cjfail (v + fi)]

Ropt = min{Rc
i (0) − Ci(0) : i ∈ {1, . . . ,K}}

Figure 8: Optimal Experimental Design for Cost Model

15

