
Algorithmica (2013) 66:93–112
DOI 10.1007/s00453-012-9628-4

Isotonic Regression via Partitioning

Quentin F. Stout

Received: 27 February 2009 / Accepted: 20 February 2012 / Published online: 14 March 2012
© Springer Science+Business Media, LLC 2012

Abstract Algorithms are given for determining weighted isotonic regressions sat-
isfying order constraints specified via a directed acyclic graph (DAG). For the L1
metric a partitioning approach is used which exploits the fact that L1 regression val-
ues can always be chosen to be data values. Extending this approach, algorithms
for binary-valued L1 isotonic regression are used to find Lp isotonic regressions for
1 < p < ∞. Algorithms are given for trees, 2-dimensional and multidimensional or-
derings, and arbitrary DAGs. Algorithms are also given for Lp isotonic regression
with constrained data and weight values, L1 regression with unweighted data, and L1
regression for DAGs where there are multiple data values at the vertices.

Keywords Isotonic regression · Median regression · Monotonic · Nonparametric ·
Tree · DAG · Multidimensional

1 Introduction

A directed acyclic graph (DAG) G with n vertices V = {v1, v2, . . . , vn} and m edges
E defines a partial order over the vertices, where vi ≺ vj if and only if there is a path
from vi to vj . It is assumed that the DAG is connected, and hence m ≥ n − 1. If it
isn’t connected then the regression of each component is independent of the others.
For a real-valued function f over V , fi denotes f (vi). By weighted data on G we
mean a pair of real-valued functions (y,w) on V where y is the data values and w
is the non-negative weights. A function f on G is isotonic iff whenever vi ≺ vj , then

Q.F. Stout (!)
Computer Science and Engineering, University of Michigan, Ann Arbor, MI 48109-2121, USA
e-mail: qstout@umich.edu

Q.F. Stout
King Abdul-Aziz University, Jeddah, Saudi Arabia

Author's personal copy

94 Algorithmica (2013) 66:93–112

Table 1 Times of fastest
previously known isotonic
regression algorithms

* indicates that it is implied by
the result for arbitrary ordered
sets

Ordered
set

Metric

L1 L2 L∞

Linear !(n logn)
[1, 22]

!(n)
PAV

!(n logn)
*

Tree !(n2)
[5]

!(n logn)
[15]

!(n logn)
*

2-dim
grid

!(n2 logn)
*

!(n2)
[21]

!(n logn)
*

2-dim
arbitrary

!(n3)
*

!(n3)
[21]

!(n log2 n)
[24]

d ≥ 3 dim
grid

!(n2 logn)
*

!(n4)
*

!(n logn)
*

d ≥ 3 dim
arbitrary

!(n3)
*

!(n4)
*

!(n logd n)
[24]

Arbitrary !(nm + n2 logn)
[2]

!(n4)
[14]

!(m logn)
[24]

fi ≤ fj . An Lp isotonic regression of the data is a real-valued isotonic function z
over V that minimizes

(
n∑

i=1

wi |yi − zi |p
)1/p

1 ≤ p < ∞

n
max
i=1

wi |yi − zi | p = ∞

among all isotonic functions. The regression error is the value of this expression.
For a vertex vi ∈ V and isotonic regression z, the regression value of vi is zi . Isotonic
regressions partition the vertices into level sets which are connected regions where the
regression value is a constant. The regression value of a level set is the Lp weighted
mean of the data values.

Isotonic regression is an important alternative for standard parametric regression
when there is no confidence that the relationship between independent variables and
the dependent one is parametric, or when an independent variable is discrete. For
example, one may believe that average weight is an increasing function of height and
of S < M < L < XL shirt size. That is, if the shirt size is held constant the average
weight increases with height, and similarly the weight increases if the height is fixed
and the shirt size increases. However, there are no assumptions of what happens if
height increases but shirt size decreases. Barlow et al. [3] and Robertson et al. [20]
review work on isotonic regression dating back to the 1940’s. This includes use of the
L1, L2, and L∞ metrics and orderings including linear, tree, multidimensional, and
arbitrary DAGs. These books also give examples showing uses of isotonic regression
for optimization problems such as nonmetric multidimensional scaling.

Table 1 shows the fastest known isotonic regression algorithms for numerous com-
binations of metric and ordered set. “Dim” ordered sets have vertices that are points
in d-dimensional space with the natural ordering, i.e., (a1, . . . , ad) ≺ (b1, . . . , bd) iff
ai ≤ bi for 1 ≤ i ≤ d . For d = 2 this is also known as “matrix”, “row and column”, or

Author's personal copy

Algorithmica (2013) 66:93–112 95

“bimonotonic” ordering, and for general d is sometimes called “domination”. Here it
will be called multidimensional ordering. “Grid” sets are arranged in a d-dimensional
grid of extent ni in the ith dimension, where n = ∏d

i=1 ni , and “arbitrary” sets have
points in arbitrary locations.

For unweighted data the L∞ isotonic regression can be found in !(m) time us-
ing the well-known fact that the regression value at v ∈ V can be chosen to be
(minv'vj yj + maxvi'v yi)/2. For 1 < p < ∞, restricting to unweighted data does
not appear to help, but Sect. 5.4 shows that restricting both data and weight values
can reduce the time required. For L1, restricting to unweighted data can be useful for
dense DAGs, reducing the time to !(n2.5 logn). This is discussed in Sect. 7.

For linear orders, pair adjacent violators, PAV, has been repeatedly rediscovered.
Starting with the initial data as n level sets, whenever two consecutive level sets
violate the isotonic condition they are merged into a single level set. No matter what
order the sets are merged in, for any p the result is optimal. Simple left-right parsing
yields the L2 isotonic regression in !(n) time, L1 in !(n logn) time [1, 22], and L∞
in !(n logn) time [24]. Thompson’s extension of PAV to trees [27] is discussed in
Sect. 3.

For more general orderings PAV can give incorrect results. For arbitrary DAGs,
Maxwell and Muckstadt [14], with a small correction by Spouge et al. [21], gave
a !(n4) time algorithm for L2 isotonic regression; Angelov et al. [2] gave a
!(nm + n2 logn) time algorithm for L1; and Stout [24] gave a !(m logn) time
algorithm for L∞, based on a small modification of an algorithm of Kaufman and
Tamir [12].

For 1 < p < ∞ the Lp mean of a set is unique (see the Appendix), as is the
isotonic regression, but this is not always true for L1. The L1 mean of a set is a
weighted median, and L1 regression is often called median regression. A weighted
median of the set of data (y,w), with total weight W = ∑

wi , is any number z such
that

∑
yi≤z wi ≥ W/2 and

∑
yj ≥z wj ≥ W/2. Since the weighted median of a set can

always be chosen to be one of the values in the set, there is always an L1 isotonic
regression where all regression values are original data values. In Sect. 2 a parti-
tioning approach is introduced, one which repeatedly halves the number of possible
regression values at each vertex. Since there are at most n possible regression values
being considered, only a logarithmic number of iterations are needed. This approach
is applied to tree (Sect. 3) and 2-dimensional (Sect. 4) orderings.

Partitioning is extended to general Lp isotonic regression in Sect. 5, where each
stage involves a binary-valued L1 regression. Algorithms are developed for “semi-
exact” regressions where the answers are as accurate as the ability to compute the Lp

mean, for approximations to within a specified accuracy, and for exact regressions
when the data values and weights are constrained.

Section 6 considers L1 isotonic regression when there are multiple values at each
vertex, and Sect. 7 contains final remarks, including an observation concerning L1
isotonic regression on unweighted data.

For data (y,w), let err(vi, z) = wi |yi − z|, i.e., it is the error of using z as the
regression value at vi .

Author's personal copy

96 Algorithmica (2013) 66:93–112

2 Partitioning

For a closed set S of real numbers, an S-valued isotonic regression is an isotonic
regression where the regression values are elements of S, having minimal regression
error among all isotonic S-valued functions. Rounding x to {a, b}, where a < b and
x (∈ (a, b), results in a if x ≤ a and b if x ≥ b.

Lemma 2.1 For a DAG G and data (y,w), let S = {a, b}, a < b, be such that there is
an L1 isotonic regression with no values in (a, b). Let zs be an S-valued L1 isotonic
regression. Then there is an unrestricted L1 isotonic regression z such that z has no
values in (a, b) and zs is z rounded to S.

Proof Let z̃ be an optimal regression with no values in (a, b). If there is no vertex
vi where z̃i ≤ a and zs

i = b, nor any vertex vj where z̃j ≥ b and zs
j = a, then zs is z̃

rounded to S. Otherwise the two cases are similar, so assume the former holds. Let y

be the largest value such that there is a vertex vi where z̃i = y ≤ a and zs
i = b, and let

U be the subset of V where zs
i = b and z̃i = y.

Let [c, d] be the range of weighted medians of the data on U . If c > a then the
function which equals z̃ on V \ U and min{c, b} on U is isotonic and has L1 error
strictly less than that of z̃, contradicting the assumption that it is optimal. If c ≤ a

and d < b, then the function which is zs on V \U and a on U is an isotonic S-valued
function with error strictly less than that of zs, contracting the assumption that is
optimal. Therefore [a, b] ⊆ [c, d], so the isotonic function which is z̃ on V \U and b

on U has the same error as z̃, i.e., is optimal, and has more vertices where it rounds
to zs than z̃ has. In a finite number of iterations one obtains an unrestricted regression
which rounds to zs everywhere. !

The L1 algorithms herein have an initial sort of the data values. Given data (y,w),
let ý1 < · · · < ýn′ be the distinct data values in sorted order, where n′ is the number
of distinct values, and let ý[k,"] denote {ýk, . . . , ý"}. L1 partitioning proceeds by
identifying, for each vertex, subintervals of ý[1, n′] in which the final regression value
lies. Let V [a, b] denote the vertices with interval ý[a, b] and let Int(vi) denote the
interval that vi is currently assigned to. Initially Int(vi) = ý[1, n′] for all vi ∈ V .

Lemma 2.1 shows that by finding an optimal {ý", ý"+1}-valued isotonic regres-
sion zs, the vertices where zs = ý" can be assigned to V [1,"], and those where
zs = ý"+1 can be assigned to V [" + 1, n′]. The level sets of V [1,"] are independent
of those of V ["+ 1, n′], and hence an optimal regression can be found by recursively
finding an optimal regression on V [1,"] using only regression values in ý[1,"], and
an optimal regression on V [" + 1, n′] using only regression values in ý[" + 1, n′].
Keeping track of a vertex’s interval merely requires keeping track of k and " (in fact,
" does not need to be stored with the vertex since at each stage, vertices with the
same lower bound have the same upper bound). When determining the new interval
for a vertex one only uses vertices with the same interval. At each stage the assign-
ment is isotonic in that if vi ≺ vj then either Int(vi) = Int(vj) or the intervals have
no overlap and the upper limit of Int(vi) is less than the lower limit of Int(vj). Each
stage halves the size of each interval, so eventually they are a single value, i.e., the

Author's personal copy

Algorithmica (2013) 66:93–112 97

Fig. 1 Partitioning in Theorem 3.1: size is weight, bars are the interval regression value will be in

regression value has been determined. Thus there are +lgn′, stages. Figure 1 shows
the partitioning intervals that are produced by the algorithm in Theorem 3.1.

An aspect that one needs to be careful about is that after partitioning has identified
the vertices with regression values in a given interval, then the next partitioning step
on that subgraph does not necessarily use the median of the data values in the sub-
graph. For example, suppose the values and weights on a linear ordering are (4,1),
(3,10), (1,1), (2,1). The first partitioning involves values 2 and 3, and results in
all vertices being assigned to the interval [3,4]. Since the subgraph is the original
graph, using the median of the data values in the subgraph results in an infinite loop.
Instead, the next stage uses partitioning values 3 and 4, quartiles from the original set
of values. One can use the median of the subgraph if when the subgraph corresponds
to the range of values [a, b] then only data values in [a, b] are used to determine
the median. Also note that it is the median of the values, not their weighted me-
dian.

While having some similarities, Ahuja and Orlin’s scaling for L1 regression [1] is
quite different from partitioning. In their approach, all vertices are initially in their
own level set, and whenever two vertices are placed in the same level set then they
remain in the same level set. In partitioning, all vertices are initially in the same level
set, and whenever two are placed in different level sets they stay in different level sets.
An important partitioning approach is “minimum lower sets”, first used by Brunk in
the 1950’s [4].

Author's personal copy

98 Algorithmica (2013) 66:93–112

3 Trees

Throughout, all trees are rooted, with each vertex except the root pointing to its par-
ent. Star ordering, where all nodes except the root have the root as their parent, is of-
ten called tree ordering in statistical literature concerning tests of hypotheses, where
several hypotheses are compared to the null hypothesis.

Thompson [27] showed that PAV can be extended to tree orderings by using a
bottom-up process. A level set S is merged with a violating level set T containing
a child of a vertex in S iff T ’s mean is the largest among all level sets containing
a child of a vertex in S. At each step, every level set is a subtree. Using this, for
an arbitrary tree the regression can be found in !(n logn) time for the L2 [15] and
L∞ [24] metrics. These times can be reduced to !(n) when the tree is a star [15, 24].

For L1, Chakravarti [5] used linear programming in an algorithm taking !(n2)
time, while Qian [18] used PAV but no details were given. While PAV can be used
to determine L1 isotonic regression in !(n logn) time, a partitioning approach is
simpler and is used in the extensions to Lp isotonic regression in Sect. 5. Figure 1
illustrates the stages of the following theorem for a linear ordering.

Theorem 3.1 For a tree of n vertices and data (y,w), an L1 isotonic regression can
be determined in !(n logn) time.

Proof Initially each vertex has interval ý[1, n′]. At each partitioning stage, suppose
vertex vi has interval ý[k,"]. If k = " then the regression value at vi is ýk . Otherwise,
let j = -(k + ")/2.. Define Z(vi,0) to be the minimal possible error in the subtree
rooted at vi with vertices in V [k,"], given that the regression at vi is ýj , and similarly
for Z(vi,1) and ýj+1. Then Z satisfies the recursive equations:

Z(vi,0) = err(vi, ýj) +
∑{

Z(u,0) : u child of vi and Int(vi) = Int(u)
}

Z(vi,1) = err(vi, ýj+1)

+
∑{

min
{
Z(u,0),Z(u,1)

}
: u child of vi and Int(vi) = Int(u)

}

which can be computed using a bottom-up postorder traversal.
To recover the optimal solution for this stage and to determine the subintervals for

each vertex, a top-down preorder traversal is used. For the root r , its new interval is
ý[k, j] or ý[j + 1,"] depending on which of Z(r,0) and Z(r,1) is smallest, respec-
tively. Ties can be broken arbitrarily. For a node p, if its parent initially had the same
interval and the parent’s new interval is ý[k, j], then that is p’s new interval as well.
If the parent’s new interval is ý[j + 1,"], or had an initial interval different than p’s,
then p’s new interval is determined using the same procedure as was used for the
root. The traversals for computing Z and updating the intervals can all be done in
!(n) time per stage. !

A faster algorithm, using neither partitioning nor sorting, is possible when the tree
is star and, more generally, when the graph is a complete directed bipartite DAG,
i.e., the vertices are partitioned into V1 and V2, there is a directed edge from every
vertex in V1 to every vertex in V2, and no additional edges exist. A star corresponds
to |V2| = 1.

Author's personal copy

Algorithmica (2013) 66:93–112 99

Fig. 2 The complete directed
bipartite DAG K4,5 given via
2-dimensional ordering

Proposition 3.2 For a complete directed bipartite DAG of n vertices, given data
(y,w), an L1 isotonic regression can be determined in !(n) time.

Proof Let V1 and V2 be the bipartite partition of the vertices. Note that there is an
optimal regression z of the form zi = min{yi, c} for vi ∈ V1 and zj = max{yj , c} for
vj ∈ V2, for some data value c. Let a be the largest data value such that

∑

vi∈V1, yi≥a

wi ≥
∑

vj ∈V2, yj ≤a

wj

and let b be the smallest data value > a. Then there is an optimal L1 isotonic regres-
sion where either c = a or c = b. In linear time one can determine a, b, and c. !

Punera and Ghosh [17] consider regression on a tree with the monotonicity con-
straint that ẑi = max{ẑj : vj a child of vi} whenever vi is not a leaf node. This can
easily be computed by modifying the definition of Z(vi,1) to require that for at least
one child Z(u,1) is used (even if it is not smaller than Z(u,0)), and recording this
child so that the proper intervals can be determined. The time remains !(n logn),
which improves upon their !(n2 logn) time algorithm.

4 Multidimensional Orderings

Isotonic regression involving more than one independent variable has often been
studied (see the numerous references in [3, 20]). A problem with d indepen-
dent ordered variables naturally maps to a DAG where the vertices are points in
a d-dimensional space and the edges are implied by domination ordering, i.e.,
(a1, . . . , ad) ≺ (b1, . . . , bd) iff ai ≤ bi for 1 ≤ i ≤ d . In statistics, when the obser-
vations are over a grid it is sometimes called a complete layout, and when they are
arbitrarily distributed it is an incomplete layout.

A d-dimensional grid has !(dn) grid edges, and thus the general algorithm in [2]
shows that the L1 isotonic regression can be found in !(n2 logn) time. However for
vertices in arbitrary positions !(n2) edges may be needed, as is shown in Fig. 2,
which would result in !(n3) time. The following theorem shows that for points in
general position the time can be reduced to !̃(n) for d = 2 and !̃(n2) for d ≥ 3.

Theorem 4.1 For a set of n vertices in d-dimensional space, given data (y,w), an
L1 isotonic regression can be determined in

(a) !(n logn) time if the vertices form a grid, d = 2,
(b) !(n log2 n) time if the vertices are in arbitrary locations, d = 2,

Author's personal copy

100 Algorithmica (2013) 66:93–112

(c) !(n2 logn) time if the vertices form a grid, d ≥ 3,
(d) !(n2 logd n) time if the vertices are in arbitrary locations, d ≥ 3,

where the implied constants depend on d .

The proof will be broken into parts, with part (a) in Sect. 4.1 and part (b) in
Sect. 4.2. Part (c) was discussed above.

For (d), let V be the set of vertices. In [25] it is shown that in !(n logd−1 n) time
one can construct a DAG G′ = (V ′,E′) where V ⊆ V ′, |V ′| = |E′| = !(n logd−1 n),
and for all vi, vj ∈ V , vi ≺ vj in domination ordering iff vi ≺ vj in G′. One obtains
(d) by placing arbitrary values with weight 0 on V ′ \ V and applying the general
algorithm in [2], noting that the number of stages is linear in the number of vertices.

4.1 2-Dimensional Grids

Our algorithm for Theorem 4.1(a) is similar to that of Spouge, Wan and Wilbur [21]
for L2 regression.

Suppose the vertices are a 2-dimensional grid with rows 1, . . . , r and columns
1, . . . , c, where n = r ·c. Let err((g,h), z) denote the error of using z as the regression
value at grid location (g,h). For the initial round of partitioning, let " = +n′/2, and
S = {ý", ý"+1}. To determine an optimal S-valued regression, let Z(g,h) denote the
optimal S-valued regression error on the subgrid [1, . . . , g]× [1, . . . , c] subject to the
constraint that the regression value at (g,h) is ý"+1 (and hence the regression values
in row g, columns [h + 1, . . . , c], are also ý"+1), and that this is the leftmost ý"+1
value in this row (hence all regression values in [1, . . . , g] × [1, . . . , h − 1] are ý").
Define Z(g, c + 1) to be the optimal regression error when all of the values on row g

are ý".
For g ∈ [1, . . . , r] and h ∈ [1, . . . , c + 1] let

R(g,h) =
h−1∑

k=1

err
(
(g, k), ý"

)
+

c∑

k=h

err
(
(g, k), ý"+1

)

Z satisfies a simple recurrence which can be computed in increasing row order:

Z(g,h) =
{

R(g,h) + min{Z(g − 1, k) : k ∈ [h, . . . , c + 1]} g > 1

R(g,h) g = 1
(1)

i.e., if the leftmost ý"+1 value in row g is at column h, then the optimal S-valued
regression on [1, . . . , g] × [1, . . . , c] given this constraint will contain the optimal
regression on [1, . . . , g − 1]× [1, . . . , c] that on row g − 1 has its leftmost ý"+1 value
no further left than h. For any row, the R and Z values can be easily computed in
!(c) time, and thus for all entries they can be computed in !(n) time. The minimal
regression error is the minimum of Z(r,h) for h ∈ [1, . . . , c+1]. As usual, by storing
the value of k that minimizes (1), the optimal regression values and new intervals can
be recovered in linear time.

For subsequent partitions the calculation of R(g,h) is modified to include only
values corresponding to grid points in the same level set, i.e., those with the same

Author's personal copy

Algorithmica (2013) 66:93–112 101

interval as (g,h). To determine Z(g,h), if Int((g,h)) = Int((g − 1, h)) then the min-
imum is taken over values at grid points with the same interval (these grid points
are consecutive), while if Int((g,h)) (= Int((g − 1, h)) then Z(g,h) = R(g,h). This
completes the proof of Theorem 4.1(a).

4.2 2-Dimension Data, Arbitrary Position

To prove Theorem 4.1(b), since the coordinates in each dimension are only used
for ordering, their specific values are not important. Assume the first coordinates
have values 1, . . . , r , and second coordinates have values 1, . . . , c. One can view the
vertices as being in an r × c grid where some of the grid points have no data. It is
possible that r · c = !(n2) and hence a naive use of Theorem 4.1(a) would require
!(n2 logn) time. However, one can exploit the fact that most of the grid points have
no data.

Suppose that the points have been sorted in increasing row order, breaking ties by
sorting in increasing column order. Thus if u 0 v then u occurs after v in the order-
ing. Relabel the vertices so that vi is the ith point in this ordering, with coordinates
(ri , ci). For g ∈ [0, . . . , n] and h ∈ [1, . . . , c + 1], when solving the S = {ý", ý"+1}
partitioning problem let Z(g,h) be the minimal regression error for an S-valued re-
gression on the first g points such that the leftmost ý"+1 value is in column h. (If
none of {z1, . . . , zg} are in column h then Z(g,h) = Z(g,h + 1).) Define Z(0, h) to
be 0 for h ∈ [1, . . . , c + 1].

For g ∈ [1, . . . , n] and h ∈ [1, . . . , c + 1], one has

Z(g,h) =






err(vg, ý") + Z(g − 1, h) if h > cg

err(vg, ý"+1) + min{Z(g − 1, k) : k ∈ [h, . . . , c + 1]} if h = cg

err(vg, ý"+1) + Z(g − 1, h) if h < cg

This can be efficiently computed in a bottom-up manner by means of operations
on a balanced binary search tree with nodes 1, . . . , c + 1, where at the gth step the
information about the gth point is added.

Ignoring the case of equality, the other cases add err(vg, ý") to the interval of
columns cg + 1, . . . , c + 1 and err(vg, ý"+1) to the interval of columns 1, . . . , cg − 1,
where the value of Z(g,h) is the sum of the values added to column h by vertices
v1 through vg . It is well-known how to create a balanced tree where the addition of
a value to an interval of keys, and determining the sum of the intervals covering an
index, can be computed in !(logn) time. Further, it can be augmented to also perform
the minimum calculation needed for the equality case in the same time bound. The
final modification needed is in the equality case to insure that for points above the
gth one, when the intervals covering cg are summed they give the correct value. To
do this, to the degenerate index interval [cg, cg] add the value which is the correct
value of V (g, cg) minus V (g − 1, cg). This makes the sum of the intervals covering
column cg equal to the correct value.

The optimal S-valued regression error is min{Z(n,h) : h ∈ [1, . . . , c + 1]}, and
the S-valued recurrence values can be determined in reverse order, as for trees. For
subsequent rounds one can partition the vertices into two subsets containing the two
new level sets. Each round of partitioning can be completed in !(n logn) time, com-
pleting the proof of Theorem 4.1(b). Thus Theorem 4.1 is proven.

Author's personal copy

102 Algorithmica (2013) 66:93–112

5 Lp Isotonic Regression, 1 < p < ∞

In this section we consider Lp isotonic regression for 1 < p < ∞. While it has been
mentioned in the literature, few concrete algorithms have appeared for p (= 2. The
only ones we are aware of involve linear orders [1, 7, 26], with the fastest being Ahuja
and Orlin’s algorithm [1] which takes !(n logU) time, where U is the maximum
difference of any two data values and the results are restricted to integers.

The approach used here builds on the results for L1. Section 5.1 introduces “ε-
partitioning”, which plays the same role as partitioning did for L1. In Sect. 5.2 we
find “semi-exact” isotonic regressions which are as exact as the capability to compute
the Lp mean. E.g., they are exact for L2. In Sect. 5.3 we find approximate solutions
to within a given error, and in Sect. 5.4 it is shown that these can be made to be exact,
not just semi-exact, in restricted circumstances.

Runtime of the Lp Algorithms Lp isotonic regression will be determined via parti-
tioning using L1 binary-valued isotonic regression at each stage. The running time of
an Lp algorithm will be the number of stages multiplied by the time to determine the
regression values used for the binary regression and then solve it. For a given DAG
the time to solve the binary regression at each stage is:

• tree: !(n), from Sect. 3,
• 2-dimensional grid: !(n), from Sect. 4.1,
• 2-dimensional arbitrary: !(n logn), from Sect. 4.2,
• d-dimensional grid, d ≥ 3: !(n2 logn), from Theorem 4.1(c),
• d-dimensional arbitrary, d ≥ 3: !(n2 logd n), from Theorem 4.1(d).
• arbitrary: !(nm + n2 logn), from Angelov et al. [2].

The number of stages will not necessarily be !(logn) since the regression values
might not be data values, and determining the values used for the binary regression
may take a nonnegligible amount of time.

5.1 ε-Partitioning

We introduce a partitioning method which generalizes the partitioning step used for
L1 regression.

Minimizing the weighted L1 error in (2) below is the same as minimizing the
weighted Lp error for {C,D}-partitioning since the new weights reflect the increase
in the Lp error between rounding to the closer of C,D and rounding to the further.
The proof directly follows that of Lemma 2.1, with the added simplification that
the Lp mean of a set is unique when p > 1 (i.e., in the proof there, c = d). That
proof shows that g is unique as well, from which one infers that it has no values
in (0,1).

Lemma 5.1 Given 1 < p < ∞, a DAG G, and data (y,w), let f be the Lp isotonic
regression. Let C < D be such that no data value nor level set value of f is in (C,D),
and let g be an L1 isotonic regression on G with data (y′,w′), where

Author's personal copy

Algorithmica (2013) 66:93–112 103

(
y′
i ,w

′
i

)
=

{
(0, wi · [(D − yi)

p − (C − yi)
p]) if yi ≤ C

(1, wi · [(yi − C)p − (yi − D)p]) otherwise
(2)

Then g is unique, {0,1}-valued, and gi = 0 iff fi ≤ C.

Let C and ε > 0 be arbitrary. To apply the above lemma with D = C + ε, since
there are only finitely many regression and data values there is an ε sufficiently small
so that none are in (C,C + ε). However, since we don’t know the regression, we
don’t a priori know how small ε needs to be, so we treat it as an infinitesimal. For
yi ≤ C the weight for the binary regression is the amount the weighted Lp distance
will increase from C to C + ε. Since ε is an infinitesimal, this is merely ε times
the derivative wip(C − yi)

p−1. Similarly, for yi > C the weight is ε · wip(yi −
C)p−1. Since all weights have factors of ε and p they are removed, i.e., the binary
L1 regression problem being solved is on data of the form

(
y′
i ,w

′
i

)
=

{
(0, wi(C − yi)

p−1) if yi ≤ C

(1, wi(yi − C)p−1) otherwise
(3)

We call this ε-partitioning.
Let f be the Lp isotonic regression of the original data. For a level set with mean

<C the sum of the regression errors is a strictly increasing function of its distance
from C, as it is if the mean is >C. Thus, if g is an isotonic regression for the ε-
partitioning, to minimize L1 error it must be 0 on all level sets of f with mean <C

and 1 on all level sets with mean >C. For level sets of f with mean C, g might be
any value in [0,1]. We partition G by putting all vertices with g ∈ [0,1) into one
subgraph, and those with g = 1 into the other. Regression values in the former will
be in (−∞,C], and those in the latter will be in [C,∞).

5.2 Semi-exact Isotonic Regression

We call the below semi-exact since it is as exact as one wishes to compute the Lp

mean of a set.
The values of C used for ε-partitioning are based on the “minimum lower sets”

approach [4]. At the first step C is the Lp mean of the entire DAG. If there is more
than one level set in the isotonic regression there is at least one with mean <C and at
least one with mean >C and hence ε-partitioning produces a non-trivial partitioning.
Thus if it produces a trivial partition the Lp regression is the constant function C and
the algorithm is finished, while otherwise the two pieces of the partition are further
refined. There is the possibility that the Lp regression is constant but ε-partitioning
produces a non-trivial partitioning, where each piece again has Lp mean C. For an-
alyzing worst-case time complexity this is no worse than the partitioning when the
isotonic regression is not constant. An alternative approach is to check if one piece
has Lp mean C, in which case both do and the regression value is C.

Lp isotonic regression may require !(n) stages. For example, if partitioning is
used for a linear order, the L2 metric, and unweighted data 1, 4, 27, . . . , nn, then at
each stage only the largest remaining value is determined to be a level set. Another

Author's personal copy

104 Algorithmica (2013) 66:93–112

complication is that one cannot, in general, determine the Lp mean exactly, and gen-
erating a sufficiently accurate approximation may entail significant time. For a DAG
of n vertices with data (y,w), the time to determine all of the means utilized through-
out the algorithm will involve a part that is independent of the data, taking !(n2)

time, and a data-dependent part, Tp(n,y,w), that depends upon the accuracy desired.
This assumes the bracketing data values have been determined, where, if the mean is
C, then the bracketing data values are ýi , ýi+1 such that ýi ≤ C ≤ ýi+1. The signifi-
cance of the bracketing values is discussed in the Appendix. They can be determined
by first using O(logn) stages of ε-partitioning on the data values and then continuing
with ε-partitioning based on the means.

Combining the time to determine the Lp means with the fact that there may
be !(n) stages, each using an ε-partitioning taking time given at the beginning of
Sect. 5, results in the following:

Theorem 5.2 Let 1 < p < ∞. Given a DAG G and data (y,w), one can determine
the semi-exact Lp isotonic regression in the following time:

• tree: !(n2 + Tp(n,y,w)),
• 2-dim grid: !(n2 + Tp(n,y,w)),
• 2-dim arb: !(n2 logn + Tp(n,y,w)),
• d-dim grid, d ≥ 3: !(n3 logn + Tp(n,y,w)),
• d-dim arb, d ≥ 3: !(n3 logd n + Tp(n,y,w)),
• arbitrary: !(n2m + n3 logn + Tp(n,y,w)),

where the implied constants for d-dimensional DAGs are functions of d . Further, for
p = 2, 3, 4, and 5 the regressions are exact and Tp(n,y,w) = 0.

Proof Beyond the timing analysis discussed above, the only additional proof needed
is the exactness claim. That follows from the fact that polynomials of degree ≤ 4 can
be solved exactly (see the Appendix). !

The results for L2 improve upon Spouge, Wan, and Wilbur’s !(n3) time algo-
rithm [21] for arbitrary points in 2-dimensional space; for m = o(n2) improve upon
the !(n4) algorithm of Maxwell and Muckstadt [14] for arbitrary DAGs; and im-
prove upon using their algorithm for d-dimensional data, both grids and arbitrary, for
d ≥ 3.

By using PAV one can improve the result for trees when p is an integer:

Proposition 5.3 Let p be an integer ≥ 2. Given a tree G and data (y,w), one can
determine the semi-exact Lp isotonic regression in the following time:

• G linear: !(n+ Tp(n,y,w)) if p is even and !(n logn+ Tp(n,y,w)) if p is odd,
• G arbitrary tree: !(n logn + Tp(n,y,w)).

Further, for p = 2,3,4, and 5 the regressions are exact and Tp(n,y,w) = 0.

Proof For PAV algorithms there are two components to time: the time to keep track of
which level sets to merge, and the time to merge the sets and compute their mean. For

Author's personal copy

Algorithmica (2013) 66:93–112 105

a linear order the time to keep track of the level sets is !(n), while for a tree order it
can be done in !(n logn) time [15]. In the Appendix it is shown that for even positive
integers the time to merge the sets and compute their means is !(n + Tp(n,y,w)),
and for p = 2 and 4 each root can be found exactly in constant time. For odd positive
integers, merging the sets and finding their means takes !(n logn + Tp(n,y,w))
time, and for p = 3 and 5 each root can be found exactly in constant time. !

5.3 Approximation to Within δ

To find an approximation where the value at each vertex is at most δ from the optimal
regression value one need only use regression values of the form kδ + minn

i=1 yi , for
0 ≤ k ≤ -(maxn

i=1 yi − minn
i=1 yi)/δ.. Just as for L1, one can do binary search on the

possible regression values. Using the remarks at the beginning of Sect. 5 concerning
running time gives:

Theorem 5.4 Let 1 ≤ p < ∞. Given a DAG G, data (y,w), and δ > 0, the time to
determine the Lp isotonic regression to within δ is:

• tree: !(n logK),
• 2-dim: !(n logK) for a grid, and !(n logn logK) for arbitrary points,
• d-dim, d ≥ 3: !(n2 logn logK) for a grid, and !(n2 logd n logK) for arbitrary

points,
• arbitrary: !((nm + n2 logn) logK),

where K = (maxn
i=1 yi − minn

i=1 yi)/δ and the implied constants for d-dimensional
DAGs depend on d .

There has been extensive work on approximations, e.g., [3, 9, 10, 20]. A problem
related to the one solved here is to be given a constant C > 0 and find an approxima-
tion with regression error at most C times that of the optimal error. However, to date
there is none with a running time which depends on C but is independent of the data.

5.4 Constrained Data Values

In certain situations one can use approximate solutions to achieve exact solutions.
We first give a bound on how close different level set values can be for unweighted
binary data.

Lemma 5.5 For 1 < p < ∞ there are constants α(p),β(p) > 0 such that if S1 and
S2 are sets of no more than n binary values then either their Lp means are the same
or they differ by at least α(p)/nβ(p).

Proof Let M(i, j) denote the Lp mean of i 0’s and j 1’s. Simple calculus shows that

M(i, j) = jq

iq + jq
(4)

where q = 1/(p − 1). The difference between means, M(i1, j1) − M(i2, j2), is
J1I2 − J2I1

(I1 + J1) · (I2 + J2)
(5)

Author's personal copy

106 Algorithmica (2013) 66:93–112

where I1 = i
q
i , J1 = j

q
1 , I2 = i

q
2 , and J2 = j

q
2 . We will obtain a lower bound for this.

When i1 + j1 ≤ n and i2 + j2 ≤ n, the denominator is no more than 4n2q . Letting
A = j1i2 and B = j2i1, the numerator is Aq − Bq , where A and B are integers with
0 ≤ A,B ≤ n2. Either A = B , in which case the level sets have the same value, or
else they differ by at least 1. If q ≤ 1, by concavity and evaluating the derivative
of xq at n2, |Aq − Bq | ≥ qn2q−2. Thus the absolute value of (5) is either 0 or at
least 2qn2q−2/4n2q = α(p)/nβ(p) for constants α(p) and β(p). A similar results
holds when q > 1, using the fact that xq is convex and the numerator is at least
1q − 0q = 1. !

To convert an approximate isotonic regression into an exact one, suppose level set
values of the exact isotonic regression f are in the range a to b and differ by at least
δ. Let S = {s1 < s2 < · · · < sk} be such that s1 ≤ a, sk ≥ b, and si+1 ≤ si + δ/2 for
1 ≤ i < k. Let h be an S-valued isotonic regression of the data. Since consecutive
values of S are sufficiently close, no two level sets of f of different mean will round
to the same value of S, even if one rounds up and the other rounds down. Therefore
for each vertex v of G, f (v) is the Lp-mean of the level set of h containing v.

Theorem 5.6 For 1 < p < ∞, if data values are in {0,1} and weights are in
{1, . . . ,W }, then for a DAG G of n vertices the exact Lp isotonic regression can
be found in the time given in Theorem 5.4, where logK is replaced by lognW . The
implied constants depend on p.

Further, if data values are in {0, . . . ,D} and weights are in {1, . . . ,W }, then the
exact L2 isotonic regression can be found in the same time, where logK is replaced
by lognDW .

Proof Sets with ≤ n binary values with weights in {1, . . . ,W } have an Lp mean
contained in the Lp means of sets with ≤ nW binary values. Therefore means of
such sets differ by at least α(p)/(nW)β(p). If S is multiples of half of this, from 0 to
1, an optimal S-valued isotonic regression will be a sufficiently close approximation
so that the true Lp mean of its level sets is the desired regression. The number of
elements in S is !((nW)β(p)), so only !(lognW) rounds of ε-scaling are needed to
identify the level sets of the exact regression. Replacing their approximate value with
the exact mean (4) finishes the calculation.

Extending the range of data values for Lp is complicated by the non-analytic form
of the Lp mean. However, for L2, if data values are in {0, . . . ,D} and weights are
in {1, . . . ,W }, then, by the same analysis as above, the means of unequal level sets
differ by at least 1/(nW)2, independent of D, and their means are in the interval
[0,D]. Thus at most !(lognDW) iterations are required. !

6 Multiple Values per Vertex

Several authors have considered the extension where there are multiple values at each
vertex, i.e., at vertex vi there is a set of weighted values {(yi,j ,wi,j) : 1 ≤ j ≤ ni} for
some ni ≥ 1, and the Lp isotonic regression problem, 1 ≤ p < ∞, is to find the

Author's personal copy

Algorithmica (2013) 66:93–112 107

Fig. 3 Converting a DAG with multiple values per vertex into one with a single value per vertex

isotonic function z that minimizes
(

n∑

i=1

ni∑

j=1

wi,j |yi,j − zi |p
)1/p

(6)

among all isotonic functions. For L2 this simplifies to single-valued isotonic regres-
sion where at each vertex the value is the weighted mean of the values and the weight
is the sum of the weights, but this is no longer true when p (= 2. Let N = ∑n

i=1 ni .
Robertson and Wright [19] studied the statistical properties of L1 isotonic regres-

sion with multiple values and two independent variables, but no algorithm for finding
it was given. Chakravarti [5] gave a !(Nn) time algorithm for L1 isotonic regres-
sion for a tree, and for a linear order Pardalos, Xue and Yong [16] gave one taking
!(N log2 N) time, and asked if !(N logN) was possible.

A simple approach to this problem is to transform it into one where there is a
single value per vertex. Given a DAG G with multiple values per vertex, create a new
DAG G′ with one value per vertex as follows: if vertex vi ∈ G has k weighted values
(yi,j ,wi,j), 1 ≤ j ≤ k, then in G′ represent vi with vertices vi,j , 1 ≤ j ≤ k; represent
edge (vi, v") in G with edge (vi,k, v",1) in G′; and add edges (vi,j , vi,j+1) to G′ for
1 ≤ j < k. Vertex vi,j has the weighted value (y′

i,j ,w
′
i,j), where y′

i,j is the j th data
value at vi in decreasing order and w′

i,j is its corresponding weight. See Fig. 3. G′ has
N vertices and m + N − n edges. An optimal isotonic regression on G′ will have the
same value for vi,1, . . . , vi,k , and this is the value for vi ∈ G in an optimal solution
to (6). The initial sorting at the vertices takes !(N logN) time.

An advantage of this approach is that one can invoke whatever algorithm is desired
on the resulting DAG. When the initial DAG was a tree the new DAG is as well,
and thus the L1 regression can be determined in !(N logN) time. This answers the
question of Pardalos et al. and improves upon Chakravarti’s result.

For L1 partitioning algorithms another approach is to merely use all N values for
the partitioning, resulting in running times that are the same as in Theorem 5.4 where
logK is replaced with logN and an N logN term is added, representing the initial
sorting of the values and the evaluation of regression error throughout the algorithm.
For large N , to reduce the time yet further this approach will be refined.

Author's personal copy

108 Algorithmica (2013) 66:93–112

Theorem 6.1 Given a DAG G with multiple weighted values per vertex, with N

total values, an L1 isotonic regression can be found in the same running time as
in Theorem 5.4, where logK is replaced by logN and an (N + n logN) log logN

term is added.
Further, if G is fixed and only N varies then the regression can be found in !(N)

time.

Proof It will be shown that O(logN) stages are needed and that the total time to
initialize data structures, find the values used for the binary regressions, and evaluate
the regression error, is O((N + n logN) log logN). This, plus the time to solve the
binary regressions on the DAG, yields the results claimed.

For V [a, b], a and b now refer to regression values a and b, rather than their ranks
as in Sect. 2, since their global rank will not be known. The values in (a, b) at the
vertices in V [a, b] will be called active values. Rather than finding a median z of all
values in (a, b), it suffices to choose an approximate median among the active values.
This can be achieved by determining at each vertex in V [a, b] the unweighted median
of its active values and weighting this by the number of active values it has. Let z be
the weighted median of these medians, breaking ties by choosing the smaller value,
and let z′ be the next largest value at vertices in V [a, b] (if z is b then set z′ to be b

and z the next smallest value). No more than 3/4 of the active values in V [a, b] can
be in (a, z) and no more than 3/4 are in (z′, b). Hence, no matter how the vertices are
partitioned into V [a, z] and V [z′, b], in each of them the number of active values is
no more than 3/4 of those in V [a, b], and thus there are at most !(logN) iterations
until there are no active values. A final partitioning step determines which vertices
should have regression value a and which should be b.

Initially the values at vertex vi are partially sorted into lgN “bags” of size ni/ lgN ,
where the values in each bag are smaller than the values in the next. For each bag the
smallest value, number of values, and sum of weights in the bag are determined. The
bags are organized into a binary tree using their lowest value as the key. At each node
of the tree is kept the sum of the weights and the number of values in the bags below.
This can all be done in !(ni log logN) time at vi , and !(N log logN) time overall.

Finding the median of the vertex’s active values, the next largest value above z,
and the relative error of using z vs. z′, can each be determined by a traversal through
the tree and a linear time operation on at most two bags (e.g., to find the relative error
of using z vs. z′ one needs to determine it for values inside the bag where z would
go, and then use the tree to determine it for values outside the bag). Thus the time
at vi at each stage is !(ni/ logN + log logN), and !(N/ logN + n log logN) over
all vertices. Since the number of stages is !(logN), this proves the statement at the
beginning of the proof.

To prove the claim concerning a fixed DAG and varying N no bags are used. Each
stage involves multiple iterations, n per stage, where for each vertex the unweighted
median of its active values is used for one of the iterations. After each stage the
number of active values at a node is no more than half of what it was to begin with,
and thus stage k takes !(n(T (G) + N/2k)) time, where T (G) is the time to solve a
binary-valued L1 isotonic regression on G. Thus the total time is !(n(T (G) logN +
N)), which is !(N) since G and n are fixed. !

Author's personal copy

Algorithmica (2013) 66:93–112 109

Table 2 Times of fastest known isotonic regression algorithms “semi-exact” is exact for p = 2, 3, 4, 5,
and T2 = T3 = T4 = T5 = 0

Ordered
set

Metric

L1 Lp , 1< p < ∞, semi-exact Lp , 1 < p < ∞, δ approx L∞

Linear !(n logn)
[1, 22]

!(n + Tp), p even
!(n logn + Tp), p odd
!(n2 + Tp), p arb
PAV, +

!(n logK)
[1]

!(n logn)
*

Tree !(n logn)
+

!(n logn + Tp), p integer
!(n2 + Tp), p arb
[15] (p = 2), +

!(n logK)
+

!(n logn)
*

2-dim
grid

!(n logn)
+

!(n2 + Tp)
[21] (p = 2), +

!(n logK)
+

!(n logn)
*

2-dim
arbitrary

!(n log2 n)
+

!(n2 logn + Tp)
+

!(n logn logK)
+

!(n log2 n)
[24]

d ≥ 3 dim
grid

!(n2 logn)
*

!(n3 logn + Tp)
*

!(n2 logn logK)
*

!(n logn)
*

d ≥ 3 dim
arbitrary

!(n2 logd n)
+

!(n3 logd n + Tp)
+

!(n2 logd n logK)
+

!(n logd n)
[24]

Arbitrary !(nm+n2 logn)
[2]

!(n2m + n3 logn + Tp)
+

!((nm + n2 logn) logK)
+

!(m logn)
[24]

+ Shown here

* Implied by the result for arbitrary ordered sets

K = (maxn
i=1 yi − minn

i=1 yi)/δ

Tp Total data-dependent time to determine Lp means

7 Final Comments

Table 2 is an update of Table 1, incorporating the results in this paper. Results for Lp

were not included in Table 1 since polynomial time algorithms had only appeared for
linear orderings [1, 7, 26]. The semi-exact algorithms, and the exact L2 algorithms
in [14, 21], have a worst-case behavior where each partitioning stage results in one
piece having only a single vertex. Partitioning using the mean probably works well
in practice, but a natural question is whether the worst-case time can be reduced by a
factor of !̃(n).

Partitioning can also improve the time for L1 isotonic regression for unweighted
data on an arbitrary DAG G = (V ,E). Partitioning on values a < b is equivalent to
finding a minimum vertex cover on the directed bipartite graph H = (V ,E′) with
vertex partition V1,V2, where V1 is those vertices with data ≤ a and V2 is the ver-
tices with data ≥ b. There is an edge (v1, v2) ∈ E′, with v1 ∈ V1 and v2 ∈ V2, iff
v2 ≺ v1 in G, i.e., iff they violate the isotonic constraint. Vertices in the minimum
cover correspond to those where the value of the {a, b}-valued regression is the fur-
ther of a or b, instead of the closer. A simple analysis using the fact that the cover is
minimal shows that no new violating pairs are introduced. For unweighted bipartite
graphs the maximum matching algorithm of Hopcroft and Karp takes !(E

√
V) time,

Author's personal copy

110 Algorithmica (2013) 66:93–112

from which a minimum vertex cover can be constructed in linear time. H can be con-
structed in linear time from the transitive closure of G, and since the transitive closure
can be found in O(n2.376) time (albeit with infeasible constants), the total time over
all !(logn) partitioning stages is !(n2.5 logn). For multidimensional DAGs this can
be reduced to !̃(n1.5) [25]. However, this approach does not help for Lp regression
since the binary L1 regression problems generated are weighted even when the data
is unweighted.

The L1 median, and hence L1 isotonic regression, is not always unique, and a
natural question is whether there is a “best” one. A similar situation occurs for L∞
isotonic regression. Algorithms have been developed for strict L∞ isotonic regres-
sion [23, 25], which is the limit, as p → ∞, of Lp isotonic regression. This is also
known as “best best” L∞ regression [13]. Analogously one can define strict L1 iso-
tonic regression to be the limit, as p → 1+, of Lp isotonic regression. It can be shown
to be well defined, and it is straightforward to derive the appropriate median for a level
set [11]. However, like Lp means, this median cannot always be computed exactly.
Apparently no algorithms have yet been developed for strict L1 isotonic regression,
though PAV is still applicable for linear orders and trees.

One can view Proposition 3.2, concerning complete bipartite graphs, and Sect. 6,
concerning multiple values per vertex, as being related. The complete bipartite graph
partitions the vertices into sets P1 and P2. Viewing P1 and P2 as two nodes in a DAG
with an edge from P1 to P2, then the isotonic requirement in Proposition 3.2 is that no
element in P1 has a regression value greater than the regression value of any element
of P2, but there are no constraints among elements of P1 nor among elements of P2.
In contrast, the model in Sect. 6 corresponds to requiring that every element in P1
has the same regression value, and similarly for P2. The interpretation of multiple
values per vertex as partitioning elements, with no constraints among elements in
the same partition, can be extended to arbitrary DAGs, resulting in each node of the
DAG having an interval of regression values, rather than a single one. A technique
similar to that in Sect. 6 can be used to convert this problem into a standard isotonic
regression with one value per vertex, but the special structure can likely be exploited
to produce faster algorithms.

Finally, the classification problem called isotonic separation [6] or isotonic mini-
mal reassignment [8] is an isotonic regression problem. In the simplest case, suppose
there are two types of objects, red and blue, and at each vertex there is an observation
of a red or blue object. There is a penalty for misclassifying a red object as blue, and
a perhaps different penalty for the opposite error. The goal is to minimize the sum
of the misclassification penalties given that red < blue and the classification must
be isotonic. This is a straightforward binary-valued L1 isotonic regression problem.
In the general case with k ordered categories there is a penalty for misclassifying an
object of type i as being of type j . Unfortunately, penalties as simple as 0–1 cor-
rect/incorrect do not satisfy the partitioning property in Lemma 2.1. However, for
trees, the dynamic programming approach used in Sect. 3 can be modified to find an
optimal isotonic separation in a single pass taking !(kn) time. The time required for
arbitrary DAGs is unknown.

Acknowledgements The author thanks the referees for their helpful suggestions.

Author's personal copy

Algorithmica (2013) 66:93–112 111

Appendix: Computing the Lp Mean

The computation of the Lp-mean of a level set for general p is more complicated
than for p = 1,2, or ∞. We are interested in identifying those aspects which might
be more than linear in the time of the remainder of the algorithm. We assume that the
data values have been presorted.

Simple calculus [11] shows that the Lp mean of the data (y,w) is the unique C

such that
∑

yi>C

wi(yi − C)p−1 =
∑

yj <C

wj (C − yj)
p−1 (7)

which does not, in general, have an analytic solution. An important aspect is to de-
termine the data values that bracket the Lp mean, i.e., to determine which are in the
RHS and which are on the LHS of (7).

Given the bracketing values, the time to find the mean to desired accuracy may de-
pend upon the data and we make no assumptions concerning it. Given p, n, and data
(y,w), the total time to find all Lp means used in the algorithm is decomposed into
a part independent of the data and the remaining portion, denoted Tp(n,y,w), that is
data dependent. For general p the data independent portion requires evaluating (7) for
each set at least once per partitioning stage, and thus !(n) time per stage. Since there
can be !(n) stages in each of the algorithms in Sect. 5, the data independent time for
finding means is !(n2) once the bracketing values are known. By first partitioning
on data values, all of the partitioning algorithms can determine the bracketing values
in time no more than the remaining time of the algorithm.

If p is an even integer, (7) reduces to finding the unique solution of
∑

i=1,n wi(yi −
C)p−1 = 0, i.e., no bracketing values nor presorting are required. This is a sum of
(p − 1)st degree polynomials, and hence can be determined by summing up, over the
data values, the coefficients of each term and then evaluating the result. For p an odd
integer once again the terms are polynomials so, given the bracketing values, one can
use sums of coefficients to evaluate the summations in (7). Since roots of polynomials
of degree ≤4 can be found exactly in constant time, T2 = T3 = T4 = T5 = 0.

For PAV sets are merged rather than partitioned. This does not change the data
independent time for general p, but for p an even integer each set is reduced to p + 1
coefficients and merging sets merely requires adding coefficients. Hence the data in-
dependent time is !(n). For p odd the situation is a bit more complex since the
bracketing values are needed. One can construct a balanced search tree where data
values are keys and at each node, for each term there is the sum of the coefficients
beneath it. The only change from being on the LHS vs. the RHS of (7) is whether the
term has a plus or minus sign, and hence, given this tree, one can descend through the
tree and determine the bracketing data values in logarithmic time. Merging sets cor-
responds to merging their trees, including maintaining the information about sums of
coefficients in subtrees. With careful merging this can be accomplished in !(n logn)

total time.

Author's personal copy

112 Algorithmica (2013) 66:93–112

References

1. Ahuja, R.K., Orlin, J.B.: A fast scaling algorithm for minimizing separable convex functions subject
to chain constraints. Oper. Res. 49, 784–789 (2001)

2. Angelov, S., Harb, B., Kannan, S., Wang, L.-S.: Weighted isotonic regression under the L1 norm. In:
Symposium on Discrete Algorithms (SODA), pp. 783–791 (2006)

3. Barlow, R.E., Bartholomew, D.J., Bremner, J.M., Brunk, H.D.: Statistical Inference Under Order
Restrictions. Wiley, New York (1972)

4. Brunk, H.D.: Maximum likelihood estimates of monotone parameters. Ann. Math. Stat. 26, 607–616
(1955)

5. Chakravarti, N.: Isotonic median regression for orders represented by rooted trees. Nav. Res. Logist.
39, 599–611 (1992)

6. Chandrasekaran, R., Rhy, Y.U., Jacob, V.S., Hong, S.: Isotonic separation. INFORMS J. Comput. 17,
462–474 (2005)

7. Chepoi, V., Cogneau, D., Fichet, B.: Polynomial algorithms for isotonic regression. In: L1 Statistical
Procedures and Related Topics. Lecture Notes—Monograph Series, vol. 31, pp. 147–160 (1967).
Institute of Mathematical Statistics

8. Dembczynski, K., Greco, S., Kotlowski, W., Slowinski, R.: Statistical model for rough set approach to
multicriteria classification. In: PKDD 2007: 11th European Conference on Principles and Practice of
Knowledge Discovery in Databases. Springer Lecture Notes in Computer Science, vol. 4702, pp. 164–
175 (2007)

9. Dykstra, R.L., Robertson, T.: An algorithm for isotonic regression of two or more independent vari-
ables. Ann. Stat. 10, 708–716 (1982)

10. Gebhardt, F.: An algorithm for monotone regression with one or more independent variables.
Biometrika 57, 263–271 (1970)

11. Jackson, D.: Note on the median of a set of numbers. Bull. Am. Math. Soc. 27, 160–164 (1921)
12. Kaufman, Y., Tamir, A.: Locating service centers with precedence constraints. Discrete Appl. Math.

47, 251–261 (1993)
13. Legg, D., Townsend, D.: Best monotone approximation in L∞[0,1]. J. Approx. Theory 42, 30–35

(1984)
14. Maxwell, W.L., Muckstadt, J.A.: Establishing consistent and realistic reorder intervals in production-

distribution systems. Oper. Res. 33, 1316–1341 (1985)
15. Pardalos, P.M., Xue, G.: Algorithms for a class of isotonic regression problems. Algorithmica 23,

211–222 (1999)
16. Pardalos, P.M., Xue, G.-L., Yong, L.: Efficient computation of an isotonic median regression. Appl.

Math. Lett. 8, 67–70 (1995)
17. Punera, K., Ghosh, J.: Enhanced hierarchical classification via isotonic smoothing. In: Proceedings of

the International Conference on the World Wide Web 2008, pp. 151–160 (2008)
18. Qian, S.: An algorithm for tree-ordered isotonic median regression. Stat. Probab. Lett. 27, 195–199

(1996)
19. Robertson, T., Wright, F.T.: Multiple isotonic median regression. Ann. Stat. 1, 422–432 (1973)
20. Robertson, T., Wright, F.T., Dykstra, R.L.: Order Restricted Statistical Inference. Wiley, New York

(1988)
21. Spouge, J., Wan, H., Wilbur, W.J.: Least squares isotonic regression in two dimensions. J. Optim.

Theory Appl. 117, 585–605 (2003)
22. Stout, Q.F.: Unimodal regression via prefix isotonic regression. Comput. Stat. Data Anal. 53, 289–297

(2008). A preliminary version appeared in “Optimal algorithms for unimodal regression”. Comput.
Stat. 32 (2000)

23. Stout, Q.F.: Strict L∞ isotonic regression. J. Optim. Theory Appl. 152, 121–135 (2012)
24. Stout, Q.F.: Weighted L∞ isotonic regression (2012, submitted)
25. Stout, Q.F.: Isotonic regression for multiple independent variables (2012, submitted)
26. Strömberg, U.: An algorithm for isotonic regression with arbitrary convex distance function. Comput.

Stat. Data Anal. 11, 205–219 (1991)
27. Thompson, W.A. Jr.: The problem of negative estimates of variance components. Ann. Math. Stat. 33,

273–289 (1962)

Author's personal copy

