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Abstract

Isotonic regression is a shape-constrained nonparamegpiession in which the regression is an increasing
step function. For data points, the number of steps in the isotonic regresseybme as large as. As a
result, standard isotonic regression has been criticiseavarfitting the data or making the representation
too complicated. So-called “reduced” isotonic regressionstrains the outcome to be a specified number
of stepsb, b < n. However, because the previous algorithms for finding tldeiced L, regression took
O(n + bm?) time, wherem is the number of steps of the unconstrained isotonic reigresesearchers felt
that the algorithms were too slow and instead used apprdixinga Other researchers had results that were
approximations because they used a greedy top-down apprielace we give an algorithm to find an exact
solution in®(n + bm) time, and a simpler algorithm takirtg(n + bm log m) time. These algorithms also
determine optimak-means clustering of weighted 1-dimensional data.

Keywords: reduced isotonic regression, step function, v-optimstidgram, piecewise constant approxima-
tion, k-means clustering, nonparametric regression

1 Introduction

Isotonic regression is an important form of nonparametgression that allows researchers to relax para-
metric assumptions and replace them with a weaker shapéraions A real-valued functiory is isotonic
iff for all 21,z inits domain, ifx; < zo thenf(z1) < f(x2). In some settings isotonic functions are called
monotonic, while in others monotonic is used to indicatbezitnondecreasing or nonincreasing. Myriad
uses of isotonic regression can be found in citations to tineldmental books of Barlow et al.l[3] and
Robertson et al[ [14]. Nonparametric approaches are isicrglgt important as researchers encounter situ-
ations where parametric assumptions are dubious, and @stlafgic improvements make the calculations
practical.

Isotonic regression is useful for situations in which thdeipendent variable has an ordering but no
natural metric, such as& M < L < XL clothing sizes. Since the only important property of tloardhin is
its ordering, we assume that it is the integers. n for somen, and us€i:j], 1 <i < j < nto denote the
rangei . .. j. By weighted value$y, w) on[1:n], we mean value§y;, w;), i € [1:n], where they values
are arbitrary real numbers and thevalues (the weights) are nonnegative real numbers. Giveghtesl
values(y, w) and a real-valued functiofion [1:n], the L,, regression or approximation error ffis
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Figure 1. Stepwise regressions, size indicates weight

An L, isotonic regressioms an isotonic function that minimizes tlg, error among all isotonic functions.
Figure[1 a) gives an example of an isotonic regression. Becesearchers from varying fields often use
different expressions for a single concept, we use the tezgressionandapproximationinterchangeably.
We identify approximations that are not optimal regressiassub-optimalapproximations.

Isotonic regressions are step functions for which the nurnobeteps is determined by the data. In
certain cases there is criticism that such functions carfiotiee data[[12, 15, 16] or produce a result with
too many steps [5]. Consequently, some researchers usbitenic regressions that restrict the number of
steps. Schell and Singh_[116] have referred to such funcasnsducedisotonic regressions.

Restricting the number of steps is a central issue in apgratdn by step functions. It arises in settings
such as databases and variable width histogramming [6,]9s&@mentation of time series and genomic
data [8/ 10, 19], homogenization [4] and piecewise constpptoximations[[11].

A function f is anoptimal L, b-step approximationl < b < n, iff it minimizes the L, error over
all functions withb steps. Here we are primarily concerned with computingb-step reduced isotonic
regressions, where a functighis anoptimal L,, b-step reduced isotonic regression= 1,...,m < n,
iff it minimizes the L,, error over all isotonic functions having steps. Figuréll gives examples iof
step regression andstep reduced isotonic regression. Optitvatep approximations argdstep reduced
isotonic regressions are not always unique. For exampth,waiweighted values 1, 2, 3 ¢h: 3] andb = 2,
for any p the function which is 1.5 offil : 2] and 3 at 3 is optimal, as is the function which is 1 at 1 and 2.5
on[2:3].

In 1958 Fisher([4] gave a simple algorithm for determiningoptimal b-step L, regression ir©(bn?)
time (this is shown in Algorithrh A). His algorithm can be dgsnodified to determine an optimélstepL,
reduced isotonic regression in the same time bounds. Hisitdg has been widely used and rediscovered,
and often falsely attributed to Bellman. However, for maggeaarchers the quadratic timesinmakes
it too slow for their applications [5,]6,! 8, 10,119]. Thus mesevious work utilizing reduced isotonic
regression used sub-optimal approximations, with the gae of an algorithm due to Haiminen, Gionis
and Laasoneri [5]. Their algorithm for the, metric takesO(n + bm?) time, wherem is the number of
pieces of the unrestricted isotonic regression. (To less@fusion, we use “pieces” to refer to the steps
of the unrestricted isotonic regression.) However, eveh this reduction in time they then developed an
approximation algorithm based on a greedy heuristic.



In Sectiori B we decrease the time to find the optibrstep L, reduced isotonic regression@in-+bm),
using an algorithm in Sectidn 2.2 for the special case in lvttie values are themselves isotonic. A simpler
algorithm, taking®(n + bm log m) time, is also given. These algorithms should be fast encwglirhinate
the need for approximations, even for very large data sets.

Since we are only looking for optimal approximations, wesafomit “optimal”.

2 Approximation by Step Functions

A real-valued functionf on [1:n] is ab-step functionl < b < n, iff there are indicegy =0 < j;... <
J» = n and real value€’y, k € [1:b], such thatf(z;) = Cy for i € [jiq +1:ji]. If f is isotonic then
C1 < (Cs... < Cyp. An approximation with fewer thab steps can be converted ta-&tep approximation
by merely subdividing steps, and thus we do not differeatitween ¢ steps” and “no more thamsteps”.
Let mean, (i, j) denote anL, mean of the weighted values @it j]. Forl < p < oo, an optimalL,,
step function has the property thaf, = mean,(ji_1 +1, jx). Since we are only concerned with optimal
approximations, whenever a function has a $teg), then its value on that steprisean,, (¢, j). Leterr? (i, j)
denote the'™ power of theL, error of the stefi: j]. Minimizing the sum of therr? values is the same as
minimizing theL,, approximation error and thus from now on only #e’ values will be used.

2.1 Arbitrary Data

Fisher’s [4] dynamic programming approach to determiningoptimal L,, b-step approximation fot <

p < oo is based on the observation thaffifs an optimalb-step approximation of the data, with a first step
of [1:], thenf is an optimal(b— 1)-step approximation of the data ¢jH-1: n]. This is obvious since if

it were not optimal then replacing it with an optim@l-1)-step approximation would reduce the error. Let
e(i, c) denote the sum of therr? values of the steps of an optimakstep approximation ofi : n], and let

e/ (4, j, ¢) denote the sums of ther? values of the steps ofastep approximation ofi: n] which is optimal
amongc-step approximations where the first steffitg]. Fisher’'s observation yields the equations:

eij,c) = er?(i,j) +e(j+1,c-1) (1)
e(i,c) = min{e'(i,j,¢):i<j<n—c+1} 2

By storing thej that minimize<(4, ¢) in jmin (i, ¢), iN ©(n) time one can generate the optimal approximation
after the dynamic programming has completed. This leadsgorahm[A. The time i$9(bn?) plus the time
to compute theé (n?) err? values. Foll.., € (i, j, c) = max{err™(i, ), e(j+1,c—1)}.

Fisher’s algorithm can be modified to determine &kstep reduced isotonic regression in the same time
bounds. The lines

fori=1ton—c+1
e(i,c) = min{€(i,j,c):i<j<n—-c+1}

should be replaced by

fori=1ton—1
e(i,c) = min{errp(i, n), min{e'(i,j,c) : i <j<n—1, meany(i,j) < meany(j+1, jmin(j+1,c—1)) }}
Including theerr? (i, n) term, and changing the upper boundipis necessary so that, say, for unweighted

data 3, 2, 1, thd., 2-step reduced isotonic regression is correctly detemniade 2, 2, 2. Using either 3,
or 3, 2, as the initial step would involve a second step thatlaaer, and hence the solution has only 1 step.
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fori=1ton

e(i,1) =errP(i,n); Jjmin(i,1) =i
forc=2tob

fori=1ton—c+1

e(i,c) = min{€(i,j,c): i <j<n—c+1} {€isdefinedin )}
{record minimizing j in jmin(i,c)}

end for i
end for ¢
generate the approximation using jmin and mean,

Algorithm A: Fisher’s algorithm for optimal,, b-step approximation of arbitrary data< p < co

Throughout, the values efandjmi, are stored in 2-dimensional arrays, whilés evaluated as a func-
tion, not stored as a 3-dimensional array. To evaleaté once the scan values);_, w;y;, >, w;y?,

andZé.:l w; have been determined for alE [1:n], eacherr? value can then be computed in unit time.

2.2 |sotonic Data

Reducing the time of AlgorithfiJA requires reducing the numdifeerr? values referenced. It is not known
how to do this for arbitrary data, but isotonic data has sopezial properties. We give two algorithms:
Algorithm[Blis simpler than Algorithri IC, but, in O-notatiosiower by a logarithmic factor. It is likely that
many will prefer Algorithm{B over Algorithnh C. Algorithri B igiven in Sectio 2)3, and Algorithin] C is
in Sectior Z.4.

For isotonic data, the fact that values are nondecreasiaggsabne to make inferences concerning the
means of intervals. For example, thg mean of the weighted values ¢n j] is no larger than that of the
values orjit+1: j]. Further, foranyl < i < j < n,err?(i,j+1)—erP(i,j) > err?(i+1, j+1)—errP(i+1, ).
That is, if we consider the increase in error of addimg, 1, w;1) to the stef:: j], this is greater than the
increase when adding it to the stgpt 1: j]. This is true because the monotonicity insures that; is at
least as large as the mean[or- 1: j], which has a mean not more than thafiofj], and the total weight of
[i:7] is greater than the total weight pf+ 1:j]. When the values are not isotonic then this inequality may
not hold.

Letting M (i, j) = errP(i, j), this can be rewritten as

M@, j+1) + M(i+1,5) > M(4,5) + M(i+1,5+1) 3)

forall1 <i< j<nandl <p < oco. This is known as th&longe propertyandM is known as a Monge
matrix (typically the Monge property has the inequalitytie bpposite order and is applied to maximization,
not minimizing).

If jmin(i) denotes the smallegtsuch that)M (i, j) is a minimal value in rowi of M, then the Monge
property implies that for any < i/, jmin(¢) < jmin(?'), i.€., jmin iS isotonic. This property is typically
calledmonotonicity If we defineM (i, j) = oo whenj < i then M satisfies[(B) for ali and;. Iteratively
combining this inequality over adjacent elements shows ithaolds much more widely, in that for all
1<ii<ip<nandl <j <js <mn,

M (iy, jo) + M(i2, j1) > M(i1,71) + M (i2, j2) (4)



Optimal initial step, starting at indicated location

Dashed lines: range of potential endpoints of initial step

Figure 2: Possible endpoints of odd multiples of 1/8

Thus all submatricies of a Monge matrix are Monge, where ansditix can be formed from an arbitrary
set of rows and an arbitrary set of columns and the numbengs nreeed not equal the number of columns.
Since all submatricies are Monge, all are monotonic. Thigerty is calledotal monotonicity There are
monotonic matrices that are not totally monotonic and kptalonotonic matrices that aren’'t Monge.

The fact thatM is a Monge matrix implies that/¢ is a Monge matrix, foe > 1, whereM€(i,j) =
e/ (4, 4, c). This is because

ME(i, j+1) + MG +1,5) = M(i,j+1) +e(j+1,c—1) + M(i+1,5) + e(j+2,¢—1)
Me(i+1,541) + M°(i,5) = M(i+1,j4+1) +e(j+2,¢—1) + M(G,5) +e(j+1,c—1)

Algorithm[B, in Sectiori 213, exploits the monotonicity df¢ and Algorithm T, in Sectioh 214, exploits its
total monotonicity. We will show

Theorem 2.1 Givenn isotonic weighted value§y, w) and number of steps < n, Algorithm[B finds an
optimal L, b-step approximation (hence an optim@al b-step reduced isotonic regression),@{bn log n)
time, and Algorithni_C finds one i (bn) time.

2.3 Using Monotonicity

Let jmin (4, b) denote the smallegtsuch thae’ (i, j,b) = e(i,b). As notedjmin(+,b) is an isotonic function.
This fact can be used to efficiently compete b) andjmin (-, b) from the values o(-, b—1) andjmin (-, b—1).
Figure[2 shows an intermediate stage of the calculationa fingle stage. The optimal first step for each
multiple of 1/4 has been computed and now the first step fdr edd multiple of 1/8 needs to be determined.
For each of these, the possible values of the endpoint ofpitimal first step are the range indicated by the
dashed lines with the solid line indicating the part that apymal first step must include.

This observation forms the basis of Algoritifith B. Compare#igher’s algorithm, for fixed, the order
in whiche(i, ¢) values are determined is changed, as is the rangealies used to compute each value.

Proposition 2.2 Givenn isotonic weighted value/, w) and number of steps< n, Algorithm[B finds an
optimal b-step Lo approximation in®(bn log n) time.



jstart...j_end : range of possible endpoints

fori=1tondo
e(i,1) =errP(i,n); jmin(i,1) =n
forc =2tobdo
for level = |log,(n—c+1) | downto 0 do
for i = 2'¢¢' to n — c 4 1 by 2'eveH do
if i = 2'*v¢l then j_start = j
else j_start = max{i, jmin(i — 2¥,¢)}
ifi+2ee >n_—c+1lthenjend=n—c+1
else j_end = jimin(i + 2'*¢' ¢)
e(i,c) = min{€/(i,j,c) : jstart < j < jend}
{store largest minimizing j in jmin(i,c)}
end for i
end for level
end for c
generate the approximation using jmin and mean,

Algorithm B: b-stepL,, approximation of isotonic data, using monotonicity

Proof: Suppose thad(-, c) andjmin (-, ¢) have been determined for < is... < ix. Letd,... ¢, be such
thatly < i1 < 01 < ig... < ix < l. To determinee(-,c) andjmin(+, ) for the ¢ values, note that
Sincejmin('> C) is isotonic therjmin(g(]a C) € [EO :jmin(ily C)], jmin(gly C) € [max{glyjmin(ily C)} *Jmin (i2> C)],
ooy @Ndjin Uk, ¢) € [max{lk, jmin(ix,c)} :n—c+1]. Thus, to determine(¢y, c) andjmin(fo, c) we only
need to evaluate'(¢y, j,c) for j € [{o : jmin(i1,c)]; to determinee(¢1, ¢) andjmin(¢1,c) we only need to
evaluatee’(¢1, j, ¢) for j € [max{¢1,jmin(i1,¢)} :jmin iz, b)]; @and so forth; i.e., we need at mast+ k total
evaluations. In Figurgl 2, this corresponds to the fact thediashed lines can overlap only at endpoints. In
1+ |log, n] iterations all values oé(-, ¢) andjmin(+, ¢) can be determined. This gives Algoritimh B.

To complete the proof we need to show that each iterationeoffdr level” loop can be completed in
©(n) time. Thej_start andj_end values that control the number pfvalues examined guarantee that, over
all 7 values in in ‘for level” loop, a given; value is used at most twic€]

2.4 Using Total Monotonicity

The fact thatV/¢ is totally mononotonic can be used to further reduce thé motaber ofj values examined.
Algorithm[d replaces

e(i,c) = min{€/(i,],c) : j_start <j < j_end}

in Algorithm[B with a while loop over a smaller set givalues, reducing the worst-case total number used
at levelk fromn — 2% 4- 1 to [n/2*|. Thesej values are determined in Algorithim D. The approach used
is known as the SMAWK algorithm, an anagram of the initialshef authors of[[1]. It is likely that most
readers are unfamiliar with SMAWK, and some might prefeusi yiew Algorithn D) as a black box having
the properties that for every

o for any levelk and any: for which jmin(7) is determined at leved, jvalues(k, -) containgjmin(7),

e the total number of values returned over all levels(n),
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Move f from J to K
Proceed to next row,
E<F continue as A<B case

Move a from J to K
Proceed to row g,

A<B compare E and F
a B v Delete B from J
E>F Move a from K back to J
5|A|B|C Go back to row §,
eID|E|F compare A and C

Delete a from J
Go back to row above,
continue as in E>F case

A>B

Currently at rows, comparing A and B.
«, 3, v are the first 3 columns remaining iy 9, € are consecutive rows in the submatrix

Figure 3: An intermediate step of the SMAWK algorithm

e determine_jvalues takesO(n) time.

The pseudo-code given in Algorithiml D is quite explicit, abie for efficient implementation in any lan-
guage. It converts the recursive list-based descriptiofi]iio an iterative array-based one. Mention of
eliminating columns, creating submatrices, etc., is nyesgmbolic since there aren’t any real matrices:
they are just conceptual representations of calculatifigj, ¢) values. The only arrays being used are to
storej values.

To see how the SMAWK algorithm works, |ét/ denote an arbitrary totally monotonic matrix. The
algorithm starts with a list of columns$ (jvalues), and a subset of them are movedioand kept, with the
remaining ones deleted. The final set of value&imill be the ones returned byetermine_jvalues. When
a columnm is deleted fromJ and not put intoK it is guaranteed that for all rows m # jmin(7). The
guarantees come about by exploiting two facts implied bygeseeral Monge property](4): for thex 2
submatrix with columns < 8 and rowsd < e,

a) if 8 is the minimal location in row, i.e., M (6, «) > M (4, 3), then it is the minimal location in row
€, and hence in/ « is not the minimal location in any row ¢

b) if « is the minimal location in row, i.e., M (e, ) < M (e, 3), then it is the minimal location in row
4, and hence in/ (5 is not the minimal location in any row. e

At any step in the algorithm two adjacent entries\éfare being compared, where they are in the same
row and the first two columng (values) remaining irv. For every row above the current row, one column
has been moved int&’. Suppose the algorithm is comparidgand B in Figure[3. If A < B then it might
be thata = jmin(d), and hencex is moved from.J to K. Note thata might also bg,, for some rows
above and below. Relative to rows, column/ does not need to be kept. Further, for any row abhfyve
Monge property b) shows thatis not needed there either. However, it might be needed feerlaows,



so the algorithm proceeds to the next rewand compares E and F. B < F' then$ is moved toK and
the algorithm proceeds to the next row. HoweverEif> F' theng is not needed for row, and Monge
property a) shows that it is not needed for any row below. @loee 5 can be deleted frond, which in
the implementation is done by merely incrementiregt_j_index. Deleting s condenses the submatrix in
Figure[3 to the entries A, C, D, and F. It might be tiat- C, so the algorithm moves from K back to.J
and goes back to ro&, comparingA andC'. If A < C thena is put back inK and the algorithm goes to
the next row ¢), otherwise it is removed froni and the algorithm backs up another row, etc. ¥ ko, i.e.,

8 < ¢, then we treat it as E F even if F= oc.

If eis the last row, ifE < F then~ can be deleted frond since there are no lower rows for whigh
might need to be kept. Combining this with the rule thak'it> F' theng is deleted and the algorithm goes
back a row shows that if the last row is reached then all of éneaining columns are examined. Whether
it occurs in the last row or earlier, eventually there is oblgolumn left, which should be kept. Any row
results in one column being moved ko, or is a row after the row in which the last column is reached, a
hence| K | is no more than the number of rows. Further, the time requ&éx{(|.J|).

To initialize, for level 0, which corresponds to all rows|, @lumns are kept, i.ejyalues(0, k) = k for
1 < k < n. One could apply the above reduction for level O, but it isafjuired for the time analysis nor
correctness, and it slightly simplifies the implementatiéihany levelm above 0, the process is applied to
the submatrix consisting of every second row of the submated for leveln — 1, i.e., to rows that are
multiples of2™. The initial .J for levelm is jvalues(m—1, 1 : num_jvalues(m—1)).

Proposition 2.3 Givenn isotonic weighted valueg/, w) and number of stegs< n, Algorithm[Q finds an
optimal b-step Lo approximation inA(bn) time.

Proof: Since each level halves the number of rows and the numbepoj kelues is no more than the num-
ber of rows, the total number gfvalues kept over all levels i9(n) and the total time ofletermine_jvalues
is ©(n). The time for Algorithn_C is linear in the total number p¥alues considered, so it too@n). O.

3 Reduced | sotonic Regression

For arbitrary data, isotonic regressions are somewhatre@mstompute than are general approximations by
step functions. One can use a simple left-right scan whete leaation is initially a step and then adjacent
steps are merged whenever they violate the isotonic condifihis is known as “pool adjacent violators”,
PAV, and first appeared in 1955 in Ayer et al. [2]. Horit can easily be computed in on§(n) time.

Isotonic regression is a very flexible nonparametric apgrda many problems. However it does have
its detractors due to results with impractically many stepsverfitting. Some researchers have instead
used approximations with a specified number of steps [5, T®}educe overfitting, Schell and Sindh [16]
used the approach of repeatedly merging pairs of adjaceps sthose difference had the least statistical
significance. Haiminen et al.[[5] used an approach that tedgacombines the adjacent steps that cause
a minimum increase in the error. These greedy (aka myopjgjoaghes repeatedly make the choice that
seems to be the best at the moment, but may not produce anabptiduced isotonic regression. For
example, for allL,, 1 < p < oo, given the unweighted values 0, 2, 4, 6, 8, 10, the uniquenabtB-step
isotonic regression is 1, 1, 5, 5, 9, 9, and the unique optRretep isotonic regression is 2, 2, 2, 8, 8, 8.
Thus the 2-step isotonic regression cannot be obtained byimgesteps of the 3-step isotonic regression.

The fastest previous algorithm for optima) reduced isotonic regression is due to Haiminen ef al. [5],
taking ©(n + bm?) time, wherem is the number of pieces in the unconstrained isotonic regres As



integer array jvalues(0:|log,],1:n), num_jvalues(0: [log, n])

fori=1tondo
e(i,1) =errP(i,n); jmin(i,1) =n
forc =2tobdo
determine_jvalues(jvalues, num_jvalues, c) {see Algorithm [DI}
for level = |log,(n—c+1)| downto 0 do
for i = 2'¢v¢l to n — c 4 1 by 2'eveH do
if i = 2'*v¢! then j_start = i; j_index =1
else j_start = max{i, jmin(i — 2'*"¢, ¢)}
ifi+2e >n—c+1lthenjend=n—c+1
else j_end = jimin(i + 2! ¢)
e(i,c) = o0
while (j_index < num_jvalues(level)) A (jvalues(level, j_index) < j_end) do
j = jvalues(level, j_index)
if (j > j-start) A (¢/(i,]j,c) < e(i,c)) then
e(i,c) = €(i,J,¢); jmin(i,c) =]
j-index = j_index + 1
end while
j-index = j_index — 1
end for i
end for level
end for c
generate the approximation using jmin and mean,

Algorithm C: b-stepL,, approximation of isotonic data, using total monotoniciy determine_jvalues




procedure determine_jvalues(jvalues, num_jvalues, c)

num_jvalues(0) = n
for k = 1 to n do jvalues(0,k) = k
for level = 1 to |logy(n—c+1)]
j = jvalues(level—1,1); next_j_index = 2; k.index=0
| — 2Ieve|
while next_j_index < num_jvalues(level —1) do
next_j = jvalues(level—1, next_j_index)
if j>1)A(€(i,j,c) <€(i,next_j,c)) then
if i + 2! > n — ¢ + 1 then {at last row, eliminate next_j}
next_j_index = next_j_index + 1
else {keep this j, increment i, j}
k_index = k_index + 1; jvalues(level, k_index) = j
j = next_j; next_j_index = next_j_index + 1
=i+ 2Ieve|
end if
else {€/(i,]j,c) > €(i, next_j, c), eliminate current j, go back to previous i, j}
if i > 2/°vel then
i =i—2level. = jvalues(level, k_index); k_index = k_index — 1
else {at first row}
j = next_j; next_j_index = next_j_index + 1
endif
end if
end while
k_index = k_index 4+ 1; jvalues(level, k_index) = j
num_jvalues(level) = k_index
end for level
end determine_jvalues

Algorithm D: Reducing the number of relevantalues using SMAWK
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a reminder, we use “pieces” to refer to the steps of an umctsdrisotonic regression and “steps” to refer
to the steps of a reduced isotonic regression. Even though of < n, Haiminen et al. felt that this
may be too slow so they developed the greedy heuristic mediabove. Our exact algorithms should be
sufficiently fast even for very large problems.

One cannot directly find-step reduced isotonic regression of arbitrary data byguisie approaches in
Algorithms[B and_C since it does not have the required mornofamperties. For example, for unweighted
values 7, 8, 0, 6, 9, 10, the optimal, 2-step reduced isotonic regression has its first step omteeval
[1:4], while the optimal first step for the data starting at positias the interva[3:3], i.e.,4 = jmin(1,2) £
jmin(3,2) = 3. Howevever, a critical observation in Haiminen et al. [5that, given the pieces of ah,
unrestricted isotonic regression, the steps of an optitaaleduced isotonic regression can be formed by
merging the pieces. Each piece becomes a weighted pointewhe value of the point is the mean of the
piece and the weight of the point is the total weight of theeieln the above example, the data would be
represented by the 4 weighted points (5,3), (6,1), (9,D,101 and the first step of a 2-step reduced isotonic
regression uses the first two pieces.

Their observation gives a simple algorithm: find the uniet&d isotonic regression, convert the pieces
to weighted points, and then findbastep approximation of these isotonic points. Haiminenletised
Fisher's algorithm to determine the optimiaktep reduced isotonic regression@in + bm?) time, but
Algorithms[B and_C provide faster solutions.

Theorem 3.1 Givenn weighted value$y, w) and number of steds an optimalL, b-step reduced isotonic
regression can be found i (n + bm log m) time via AlgorithniB, and i (n + bm ) time via Algorithni.C,
wherem is the number of pieces in the unconstrainegdisotonic regression’]

Unfortunately, forp # 2 the optimal reduced isotonic regression might not be forfnet pieces of
the unrestricted isotonic regression. For example, foraighted values -10, -10, -10, 0, 0, 0, -10, -1, 7, 7,
7, 7, the uniquel; unrestricted isotonic regression has pieges3], [4 : 8], and[9 : 12], with values -10,

0, 7, respectively. The unique optimal 2-step reduced iBotegression has steps: 7] and [8 : 12], with
values -10 and 7, which requires cleaving the middle pieasvéver, one can determine an approximation
by constructing an optimakstep isotonic regression among those restricted to useket pieces of the
unrestricted isotonic regression. By doing so, the proklkenow similar to isotonic regression on isotonic
data. An algorithm using this approach to approximateaeduced isotonic regression appears_in [7]. It is
more complicated than thi, case since to determine medians one needs to retain the valine original
pieces, rather than combining them into a single weightéaevas can be done fdr,.

For L, an optimalb-step reduced isotonic regression, and an optibretep approximation with no
isotonic restrictions, can be found®(n +log n - b(1 +1log n/b)) time [17]. The approaches used there are
quite different, unrelated to dynamic programming.

4 Final Comments

The thousands of citations to the books by Barlow et/ al. [2] Robertson et al[ [14] shows a significant
interest in isotonic regression. Further, this interegr@ving as researchers seek to remove parametric
assumptions from their modeling. Similarly, step functiamith a constraint on the number of steps arise
in a wide range of applications and guises[4,16,/8, 9/ 10, 3119]. For reduced isotonic regression both
aspects are important/[5,/15, 16], using a reduced numbeegs $0 simplify the regression and/or prevent
overfitting.
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However, researchers used approximations, rather thaoptimal answer, due to the slowness of the
available algorithms. The fastest previous algorithm fatiroal L, b-step reduced isotonic regression takes
O(n+bm?) time [5], wherem is the number of pieces in the unconstrained isotonic regnesAlgorithniB
reduces this t® (n + bmlog m) time, and the somewhat more complicated Algorithm C furthduces this
to O(n + bm). Note that the minimal time for optimatstep approximation, with no isotonic restrictions,
is a long-standing open question.

Fisher [4] called the>-step approximations “restricted homogenization”, anfingel another form of
approximation that he called “unrestricted homogenizdtigivenn weighted valuesy, w) andb € [1:n],
partition the values intd subsets?;, i € [1:b] and assign a valu€; to eachP; so as to minimize

b
> wly - Gif?

i=1 jEeP;

among all such patrtitions. This is now known/asneans clusteringf 1-dimensional data, fak = 5. He
noted it could be solved by sorting the values and then fintliegoptimalb-step approximation, i.e., the
optimal b-step isotonic regression of the sorted data. Thus for Jedsional data AlgorithrilB solves the
k-means clustering problem @ (kn logn) time, and for sorted data Algorithirl C reduces thi®tdn).

Finally, an interesting problem is that of selecting the tussirable number of steps. For reduced iso-
tonic regression, Schell and Singh[16], Strobl et(all [18] &laiminen et al[[5] start with an unconstrained
isotonic regression and then repeatedly merge piecesthatil criteria are met. However, Haiminen et
al. showed that the regression error of their greedy appration can be nearly twice that of the optimal
reduced isotonic regression with the same number of stepsy believe that 2 is an upper bound on the
relative error of their approximation, but that has not bgeven, nor have bounds been proven for other ap-
proximation schemes. Féfstep approximation, many researchers chéaspriori based on considerations
such as storage or access time requirements. This seemsgpdaally true in the database community,
whereL, b-step approximations are known as “v-optimal histograms”.

In contrast, the dynamic programming approach generatémalph-step reduced isotonic regressions
for each value ob asb increases. One can stop when a criterion is met and alwaysdrmawptimal result.
However, appropriate stopping criteria for a given appiicamay be somewhat subtle since they would be
applied repeatedly.

Acknowledgements

Research partially supported by NSF grant CDI-1027192 aD& Qrant DE-FC52-08NA28616. Some of
these results were announced[ih [7].

References

[1] Aggarwal, A, Klawe, MA, Moran, S, Shor, P and Wilber, R 88, “Geometric applications of a
matrix-searching algorithm’Algorithmica2, pp. 195-208.

[2] Ayer, M, Brunk, HD, Ewing, GM, Reid, WT, and Silverman, B955), “An empirical distribution
function for sampling with incomplete informationAnnals of Math. Stab, pp. 641-647.

[3] Barlow, RE, Bartholomew, DJ, Bremner, JM, and Brunk, HD72),Statistical Inference Under Order
Restrictions: The Theory and Application of Isotonic Regien John Wiley.

12



[4]
[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

Fisher, WD (1958), “On grouping for maximum homogeng&ity. Amer. Stat. Asso83, pp. 789-798.

Haiminen, N, Gionis, A, and Laasonen, K (2008), “Algants for unimodal segmentation with appli-
cations to unimodality detectionKnowl. Info. Sysl14, pp. 39-57.

Halim, F, Karras, P, and Yap, RHC (2009), “Fast and effechistogram construction®roc. Conf.
Info. and Knowl. Manag.pp. 1167-1176.

Hardwick, J and Stout, QF (2012), “Optimal reduced isitaeduction”,Proc. Interface 2012May
2012.

Himberg, J, Korpiaho, K, Mannila, H, Tikanmaki, J and Wi@nen, H (2001), “Time series segmenta-
tion for context recognition in mobile devicedht’l. Conf. Data Mining pp. 203-210.

loannidis, YE (1993), “Universality of serial histogre”, Proc. 19th VLDB Conf.pp. 256—-267.

Jacob, E, Nair, KNR, and Sasikumar, R (2009), “A fuzzixein genetic algorithm for sequence seg-
mentation applied to genomic sequencégiplied Soft Computing, pp. 488-496.

Mayster, Y and Lopez, MA (2006), “Approximating a sefaaints by a step functionJ. Vis. Commun.
Image R17, pp. 1178-1189.

Niculescu-Mizil, A, and Caruana, R (2005), “Predicfigood probabilities with supervised learning”,
Proc. Int'l. Conf. Machine Learnin@2, pp. 625-632.

Poosala, V, loannidis, Y, Haas, P, and Shekita, E (1,99)proved histograms for selectivity estima-
tion of range predicatesRroc. SIGMOD pp. 294-305.

Robertson, T, Wright, FT, and Dykstra, RL (1988)der Restricted Statistical Inferencé/iley.

Salanti, G and Ulm, K (2003), “A nonparametric changaponodel for stratifying continuous vari-
ables under order restrictions and binary outconsdt. Methods Med. ReE2, pp. 351-367.

Schell, MJ and Singh, B (1997), “The reduced monotoeigression method’J. Amer. Stat. Assoc.
92, pp. 128-135.

Stout, QF (2014), “An algorithm fof. ., approximation by a step function”, arXiv 1412.2379

Strobl, R, Salanti, F, and Ulm, K (2003), “Extension oART using multiple splits under order
restrictions”, Discussion paper, Sonderforschungsbler&886 der Ludwig-Maximilians-Universitat
Munchen, No. 364

Terzi, E and Tsaparas, P (2006), “Efficient algorithras $equence segmentatior’roc. 6th SIAM
Conf. Data Mining

13



	1 Introduction
	2 Approximation by Step Functions
	2.1 Arbitrary Data
	2.2 Isotonic Data
	2.3 Using Monotonicity
	2.4 Using Total Monotonicity

	3 Reduced Isotonic Regression
	4 Final Comments

