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Abstract

We give an algorithm for determining an optimal step functapproximation of weighted data, where the
error is measured with respect to thg, norm. The algorithm take®(n + log n - b(1 + log n/b)) time and
©(n) space, wheré is the number of steps. Thus the timedén log n) in the worst case ané(n) when

b = O(n/lognloglogn). A minor change determines the optimal reduced isotoniessipn in the same
time and space bounds, and the algorithm also solvek-tieater problem for 1-dimensional data.
Keywords: step function approximation; reduced isotonic regregsiariable width histogram; k-center

1 Introduction

Step functions are a fundamental form of approximatiorsirgiin variable width histograms, databases,
segmentation, approximating sets of planar points, pisseaonstant approximations, etc. Here we are
interested inL., stepwise approximation of weighted data. By weighted dgtav) on1...n we mean
values(y;, w;), 1 < i < n, wherey; is an arbitrary real number and; (the weight) is a nonnegative real
number. For integers < j let [i : j|] denotei...j . A function f on [1 : n] is ab-step functionff there

are indicesj; = 1 < ji1 < ... < jpr1 = n+ 1 and real valueg’y, k € [1:b], such thatf, = C for

i € [jk: Jjke1—1]. fis anoptimal L., b-step approximation ofy, w) iff it minimizes the weighted’ .,
error,max{w; - | fi — yi| : @ € [1:n]}, among alb-step functions. Since a step can be split into smaller ones,
we do not differential betweerb‘steps” and “no more thamnsteps”.

Several authors have developed algorithmsgr b-step regression [2, 8] 4] 5, (7,[8,] 10/ 12, 13].
The fastest practical algorithm for weighted data takésnin{nlog? n, nlogn + b?log?n}) time and
©(nlogn) spacel[2]. There is &(nlogn) time algorithm [5)10], but it is decidedly impractical. As
Fournier and Vigneron noted|[5], “it would be interestinghave a practical (n log n)-time deterministic
algorithm”. We present such an algorithm, and improve ugpentime bound wheh = o(n). Further, it
uses onlyo(n) space.

With a small change the algorithm also produces a “reduagdnsc” b-step function. f is anisotonic
function iff f; < fo < ... < f,, and is anoptimal L, b-step reduced isotonic regression (gf, w) iff
it minimizes theL, error among all isotonié-step functions. Isotonic regression is an important form
of nonparametric regression that allows researchers taaeparametric assumptions with weaker shape
constraints[ll, 14]. Some researchers were concerned taat overfit the data and/or be too complicated [9,
[15,[16] and resorted to reduced isotonic regression. Hawthey used approximations because previous
exact algorithms were too slow.

2 L. b-Step Approximation

Algorithm[Alis similar to those in[Z,/4] where a tree struetis used to determine thie,, error of an optimal
step on a given interval. They also utilize a feasibilityttée., a decision procedure which is giveandb
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build an interval tree of bounded envelopes,

utilizing feasibility tests during the construction
use search in a sorted matrix to determine minimum feasible error e,

exploiting the fact that evaluations at one stage are related to those in the previous stage
use e to generate an optimal approximation

Algorithm A: Optimal L., stepwise approximation or reduced isotonic regression

and decides if there islastep approximation with error no more thanlf there is such an approximation
then the test produces it. We incorporate important imprea@s to this basic approach. Feasibility tests
are used to build the tree, not just during the search, andpleiethe fact that the values being determined
at one stage of the search are related to those determinadysly. We will show:

Theorem 1 Given weighted datdy, w) and number of stepl Algorithm[A finds an optimal.., b-step
approximation, or an optimal., b-step reduced isotonic regression,@tn + logn - b(1 + logn/b)) time
and©(n) space.

Given a se(y, w) of weighted values anél € [1 :n], the 1-dimensional weighteg-center problems
to find a setS = {sy,..., s} of real numbers that minimizesax{d(y;, S) : i € [1:n]}, whered(-,S)
is the weighted distance 8, i.e.,d(y;, S) = min{w; - |y; — s;| : j € [1:k]}. This can be determined by
finding an optimal-step approximation of the values in sorted order, usingtép values as the elements
of S. Thus AlgorithnTA also solves thie-center problem for sorted weighted data in the time indidat

From now on we generally omit mention olL5,” and “optimal” since they are implied. To simplify
exposition we assume thatis an integral power of 2.

2.1 Treeof Bounded Envelopes

For a weighted valuéy, w), the error of using: > y as its regression value is given by the ray in the
upper half-plane that starts @f, 0) with slopew. Given a set of weighted dats, w), its upward error
envelopds the topmost sequence of line segments corresponding $acd rays. For each, it gives the
maximum error of using as the regression value for all poiritg, w;) wherez > y;. Thedownward error
envelopeuses rays in the upper half-plane startingat0) with slope—w;, representing the error of using
a regression valug y;. The intersection of the downward and upward error envelgiees the regression
value minimizing the error over the entire set, i.e., theghi®@d L., mean, and its error.

An interval treehas a root which corresponds to the interMaln], its children correspond td : n/2]
and[n/2 + 1:n], their children represent intervals of lengtli4, etc. The leaves are the intervals of length
1,i.e., 1, 2,..n. The intervals represented in the tree will be cabbegic intervals

Several authors [2] 4] 8] used an interval tree where each cmatains the upward and downward error
envelopes of the data in its interval, but most of the raysuareecessary. Let be the (unknown) error of
an optimalb-piece approximation, and lef,,, < €* < epin. Thene* can be determined using only the rays
representing errors iftiow, enigh ). All others are discarded, and the remaining ones &@iaded envelope
See Figuréll. In our interval tree each node contains its igpard downward bounded envelopes.

Given a set of intervals that have been merged into a singf® sind givere € (ejqyw, €nigh], ONE can
quickly determine the error of the step relativectoLet U be the union of the segments in the intervals’
upward bounded envelopes abdhe union of the segments in their downward bounded enveldpa ray



a, b, andy are in bounded envelopes; x andz are discarded
Sinceb 1 (e1ow) <y L(e1ow), iNterval error< ey

Figure 1: Downward and upward bounded envelopes

r letr~!(y) denote ther such that- has erroy atz. Letu = min{r~'(¢) : » € U} andd = max{r—1(¢) :

r € D}. u andd are the points with erros on the upward and downward, respectively, envelopes of the

union of the intervals. Then the step has eror=, or > ¢ if u > d, u = d, oru < d, respectively. This

bounding testan be decided in time linear in the total number of rays iritikervals’ bounded envelopes.
The bounded envelopes are stored as a doubly-linked listlier @f slope. Whenever a node is visited,

rays with segments outside,., enign) are discarded. The time to perform this is charged to the, rayts

the search, and the time is linear in the number of rays discarWWhenever the number of remaining rays

is counted, the count is only of those that would not be dé@@given the curreriiioy, €nigh)-

2.2 Feadbility Tests

An arbitrary interval[i : j] can be decomposed int®(log(; — ¢ + 1)) basic intervals where the sizes
increase at each step and then decrease, with perhaps emealatof the same size in the middle. E.g.,
[2:13] = [2:2]U[3:4] U [5:8 U [9:12] U [13:13]. These can be generatedérflogn) time by a tree
traversal starting at, moving upward to the least common ancestoi ahd j, and then downward tg.
Suppose, givemande € (€ejoy, €nigh), We want to determine the maximujrsuch that the error of making
[i : j] a single step i< e. We do this by locating + 1. By incrementally updating andd used in the
bounding test, on the upward pass at each nodae can determine if + 1 is less than or equal to the
largest value ip’s subtree by using the bounded envelopeg'siright subtree to decide if adding the right
tree gives an error . On the downward pass one can decidgif 1 is in p’s right subtree by deciding
if adding the left subtree gives an errore. Not counting the queries of children’s envelopes, the sode
visited are the same as those in going froto j + 1 whenj + 1 is known.

Givenb ande € (10w, €nigh), afeasibility testdetermines if there is &-step function with regression
error < e. This can be accomplished by starting at 1 and determiniadatiyestj; for which the error of
making[i: j1] a single step is< ¢, then starting af; + 1 and determining the largegt for which the error of
making[j; + 1:j»] a single step i «, etc. If theb™ step is finished before is reached thenis infeasible
and the test stops. Otherwisges feasible and the steps have been identified.

A feasibility test forb-step reduced isotonic regression is essentially the sarhe.regression value
used for the first step is the smallest possible with efrer i.e.,d. Denoting this agl;, in the search for the
second step itd value is initialized tad;, not —oo, and then the search continues as before, always using
the final value ofl, to initialize dj ;. For both tests the time is linear in the number of rays enisved.

Let W be the set of nodes visited in a feasibility test. The testsvesach node ofl” at most twice, once
on an upward phase and once on a downward phase. Thus at ahgtlevost) nodes are visited. The top



|lg b| levels have a total dB(b) nodes. There arBgn| — [lgb] = ©(logn/b) levels below this, so in total
©(b(1 + logn/b)) nodes are visited. Feasibility tests during tree constmdtave a slight change in that
when levelk is being constructed, at levglthe search goes sideways, not upwards, from one node to the
next at the same level. Thus the number of nodes visiteddsegeby at most/2".

2.3 Constructing the Tree

A straightforward generation of bounded envelopes firsstoots standard error envelopes wittn log n)
total segments and then eliminates rays. To reduce the apddane we interleave constructing the interval
tree of bounded envelopes with continually narrowing the etweerr,,, andey,;,. At the end of the
construction (€jow, €nigh| Will be so small that each bounded envelope is a single ray.

First a feasibility test witke = 0 is performed using only the base level. If it passes then lderithm
is done. Otherwise, set,, = 0, enigh = oo. At level 0 each interval is a singleton, with single rays
in its upward and downward envelopes for a totalafrays. At the next level envelopes from below are
merged, forming< 2n segments (some rays may be completely covered and hencealiatelg discarded),
and there are< n segment endpoints (e.g., the endpointacAnd b in Fig.[d). Put the errors of these
endpoints in a multise® and move up to level 2. Throughout,is an unordered multiset of endpoint errors
in (€10w, €nigh), Where|R| is the total number of rays in envelopes in all of the envedopeated so far,
minus the 1 per envelope required and minus those that willid@arded when their node is visited. For
any feasibility test the time is at worst linear in the timeviuld take if there were only 1 ray per envelope
(analyzed in Section 2.2) plus the sizerf

To describe the procedure for levelletm = n/2%. Atthe start|R| < 4m. There arelm envelopes
at levelk — 1, each requiring one ray, and all of the entriegimight correspond to additional rays at that
level, so when the envelopes are merged to forn2theenvelopes at levet there may b&m — 2m = 6m
segment endpoints. Add those endpoint errors which afedq, enign) to R, which may now have size
10m. Take the median error iR and do a feasibility test of it. Depending on the outcome, @ng,,, and
enigh IS adjusted, and at least 1/2 the entriestinan be eliminated. Doing this 3 times resultgft} < 2m,
completing the procedure for levkl

When the top is reachdd| < 4 and by using feasibility tests all the endpoint errors caellminated,
i.e., (€10w, €nigh) has been narrowed so that at every node of the interval teeegtvard and downward
bounded envelopes have only one ray. Go through the treeeandve all rays with segments outside
(€1ow> €nigh ), taking©(n) time. This completes the tree construction. There@(leg n) feasibility tests,
each involving time added by moving sideways at |eetather than up and down in the tree. The total
sideways time i®(n), so the time to construct the tree@§n + logn - b(1 4 logn/b)).

2.4 Search for Minimal Feasible Error

The L., error of a stepwise approximation is the maximum of the errors of its steps. Thus there is an
interval [i : j] such that the error of an optimaistep approximation is the error of using the weighted
mean as the step value @nj|. A search on such errors, coupled with a feasibility test,foad the minimal
feasible error. “Parametric search” was used in [5, 10]histis only of theoretical interest since parametric
search is completely impractical, involving very completalstructures and quite large constants.

Search in a sorted matriprovides a practical approach (seé [6]). Eete then x n matrix where
E(i,7) is the error of using thé.., mean oni: j] if i < j, and is 0 ifi > j. E is not actually created, but
rather serves as a conceptual guide. Its rows are nondegeasd the columns are nonincreasing, so for



any submatrix its largest entry is in the upper right and thalkest is in the lower left. The algorithm has
staged...lgn —1, where at the start of stagehere is a collection of disjoint square submatrices of size
n/2¢. Note that the minimal feasible error is one of the entrie® of

Stage O starts with all df'. At each stage, divide all of the matrices into quadrantd |et#; be a median
of the lower left entries of the quadrants, i.e., a mediarheirtsmallest values, and let be a median of
the upper right entries. I§; is feasible then any quadrant with smallest valvec; is eliminated and
€high = min{epign, €1}, While if €; is not feasible then any quadrant with largest vatue; is eliminated
and e, = max{epy,€1}. Similar eliminations are done based on the feasibility0f The remaining
guadrants are the matrices that start of the next stager #hftdast stage, when the remaining matrices are
1 x 1, a standard binary search on these values is used to loeateitimal feasible error.

This search use®(log n) feasibility tests, and, as proven if [6], ory(n) entries ofE' are evaluated.

25 Evaluating £

Forintervalsl, J C [1:n| let E(I, J) denote the submatri&F (i, j) : i € I,j € J}, i.e., the submatrix of
all intervals starting at somec I and ending at somg € J. Search in a sorted matrix has the property
that at the start of stagethere is a collection of submatrices of the fodit/, J) for basic intervals/, .J
of sizen/2%. EitherI = J, or I is to the left of J and there is a (perhaps empty) intervalbetween
them with length an integral multiple of/2°. During stages, I andJ are cut in half intol;, 1> and.Jj,
Ja, respectively, and the smallest and largest values(ih, J1), E(I1, J2), E(I2,J1), and E(Iy, J2) are
determined. Let) denote the smallest index ih andi/ its largest index, and lef;, ;i be the smallest
and largest, respectively, indices ja. Then the smallest value iB (I3, J;), i.e., E(i/,j}), is the error
of making the interval/ U I, K U j; a single step, and the largest valueBf/y, J;), E(i, j{), is the
error of the intervall; I, K .J;. Similarly the smallest and largest values in eacl¢f,, J>), E(I2, J;) and
E(I, J) are the errors of intervals which are the union of conseewlements of I, I, K, J1, J2 }, with
perhaps additional singleton indices at the start or en@. ufiward and downward envelopes fo(:/, j/)
have single rays for,, i, andjj, so the time to determine their intersection, or decide @utside of
(€10w; €nigh ), IS linear in a constant plus the size of the bounded envslfipds. Similar results hold for all
of the other values needed at this stage.

Associate the bounded envelopes fowith E(1, J), and if, say,E(11, J;) is kept for stages + 1 then
the envelopes fof, K are associated with it, and similarly for each of the othéldoen of E(7, .J). Just as
for the upward construction of the tree, as the search intadonatrix is proceeding top-down, in addition
to the feasibility tests for the basic search we reduce timebeu of rays by interleaving tests based on the
endpoints of the segments. Each bounded envelope can Eebpimes, and each child may add up to 2
rays, so by using 2 additional tests at each step the totabauof rays in the bounded envelopes at stage
is ©(2°). Since the time to evaluate an entryfis linear in the number of rays involved, the total time for
the evaluation of entries af over all steps of the algorithm 3(n), and the total time for the feasibility
tests is©(logn - b(1 + logn/b)).

3 Final Comments

Step function approximation arises in a variety of guised eontexts, as does isotonic regression (see
the myriad citations to |1, 14]). For weighted data, Alganit[A finds anL., b-step approximation, an
L, b-step reduced isotonic regression, or solves the 1-diroeakk-center problem for sorted data, in
O©(n+logn-b(1+logn/b)) time. Previous algorithms had slower worst-case timel[4,[3,/8/11[ 1P, 13]



or, as their authors noted, were highly impracti¢al[[5, 1jd these too were slower whén= o(n)).
Further, they all usef(nlogn) space, while Algorithmi“A uses only(n). The algorithm even improves
upon the previous fastest algorithm for unweighted dataghvtakeso (n + b2 log® n) time [8].
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