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ABSTRACT: We propose a delayed response model for a Bernoulli 2-
armed bandit. Patients arrive according to a Poisson process and their
response times are exponential. We develop optimal solutions, and compare
to previously suggested designs.
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1 Introduction

Adaptive designs are effective mechanisms for flexibly allocating experimen-
tal resources — particularly in clinical trials. Unfortunately, optimal fully
sequential designs require immediate responses and cannot be applied when
responses are delayed. In this paper, we seek to optimize an objective func-
tion for a problem in which there are two populations and the responses,
which may be delayed, are independent Bernoulli random variables.
Perhaps the simplest model to consider is one in which observations are de-
layed a fixed amount of time. Such models have been considered by several
researchers, including Bandyopadhyay and Biswas (1996), Douke (1994),
Ivanova and Rosenberger (2000), although the optimal design was only
recently obtained in Hardwick, Oehmke and Stout (2001). Far more com-
plex, however, is the problem in which the response times follow arbitrary
distributions. Such models are too difficult to optimize exactly.

Taking a less general approach, here we consider the model in which pa-
tients arrive via a Poisson process and their response times follow inde-
pendent exponential distributions. We assume that the arrival rate and the
mean response times are known, and the goal is to optimize total patient
successes during the experiment. We can model this problem as a 2-armed
bandit (2AB) with delayed response. Recall that the objective of a bandit
problem is to allocate resources to different experimental “arms” in such a
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way that the total return from the experiment is optimized.

There has been some work done on the related problem of maximizing
patient survival times in a 1-armed bandit (1AB) model. In the 1AB there
are actually two arms, but the attributes of one of them are completely
known. In Eick (1988), the author addresses the extent to which geometric
response delays affect standard behavioral characteristics of the 1AB, where
the survival rate of one arm is known and the goal is to maximize total
survival time by allocating patients to either the “known” or unknown
therapy. Some of these results have been extended in Wang (2000).

In the next section, we develop models for the delayed response bandit and
present the requisite dynamic programming equations. In Section 3, we
present a delayed version of the randomized play-the-winner rule (RPW).
In Section 4, we compare the delayed bandit and RPW rules with each
other and to the optimal non-delayed solution generated by the 2-armed
bandit algorithm. The last section, Section 5, is a discussion.

2  Models with Exponential Delay

Suppose that patients arrive according to a Poisson process with rate As.
As they arrive, they are assigned either to arm (treatment) 1 or 2. Patient
responses are Bernoulli with success rates m; and ms. Prior distributions
on the m; are Be(a;,b;), i = 1,2, respectively. The response time for a
patient on arm ¢ is exponential with mean \;, ¢ = 1,2. Response times
are independent among themselves and independent of arrival times and of
actual responses. The experiment will allocate a total of n patients.

If a patient arrival occurs at time ¢, the patient is allocated to arm 1
or 2 based on data up until £. This includes past arrival times, response
times and the responses, as well as the priors. A sufficient statistic is
(s1(t), f1(t),ur(t);s2(t), f2(t),u2(t)), where s;(t), fi(t) are the number of
successes and failures on arm ¢ and wu;(t) is the number outstanding on arm
i at time ¢, ¢+ = 1,2. Because the problem is stationary in time, we can
drop the time notation. Thus a policy is a function that depends on the
priors and n and maps (sq, f1,u1; 82, fo,u2) to {1,2}. Optimal solutions
are policies that are optimized for a given objective function. As noted, the
objective here is to maximize total patient successes during the experiment,
and the problem thus has the form of a two armed bandit with delay. We
call this optimization problem the delayed 2-armed bandit, D2AB. However,
our approach also works for general objective functions.

It is well-known that such optimization problems can be solved via dynamic
programming. However, computational space and time grow exponentially
in the number of arms, and the delay complicates this further. The state
space involves all possible variations of its components, as long as all are
nonnegative and their sum is no greater than n. L.e., the state space corre-
sponds to all possible sufficient statistics. There are ("'é'ﬁ) = O(nf) states
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in the D2AB, and the delayed k-arm bandit will have ("3*) states. This
is in contrast to the ©(n?) states in the standard 2AB, and (";k%) states
in the standard k-arm Bernoulli bandit.
To apply dynamic programming, one needs to know the value of each termi-
nal state, i.e., those states which can be directly evaluated without recourse
to recursion. These are the states for which s; + fi +s2+ fo = n. Ultimately,
the goal is to determine the value, V', of the initial state (0,0,0;0,0,0).
There are various ways to tackle this problem, but finding one that is com-
putationally feasible is a keystone of the solution. Perhaps the most natural
approach is the one in which time is marked by patient arrivals, because
these are the only times when action is taken and decisions are needed. Un-
fortunately, this formulation is too hard to solve computationally, taking
O(n'Y) time. For further details, see Hardwick et al. (2001).
A second approach marks time by events, where an event is either a subject
arrival or a response from one of the arms. Because we are using continuous
time, we can assume that only one event occurs at a time. Let P (u1,us),
Py(uy,us), Ps(ui,us) represent the probability that the next event is an
observation on arm 1, an observation on arm 2, or a subject arrival, respec-
tively. Fortunately, P;, P> and P, have a simple form:
As

Uz>\z
P, ) = d B ) = .
(U1 UZ) As +’LL1'>\1 +’LL2'>\2 an (U1 U2) >\s +’U,1'A1 +’U,2'A2

Let m;(s;, fi) denote the probability that an observation on arm ¢ will be
a success, given that s; successes and f; failures have been previously
observed on the arm. Also, let ¥ represent component y increased by
one and o + ¥ be state o with component y increased by one. Then the
dynamic programming equation for determining the value of state ¢ =
(81, f1,u1; 82, fo, uz) is:

V(o) =  Piur,us) x [msi, f1) V(o +5i — )
+(1=m(s, ) V(e + fi - )]
+P(ur,us) * [7r2(32,f2)-V(0 + 5 — Uz)

+(1=ma(sa, £2))-V(o + o — @)]
+Ps(u1,u2) x max{V(oc+uy), V(oc+uz)}

Here, the allocation choice is handled in the last term, where if there is a
subject arrival then we just determine to which arm we allocate. Initially
this just means that the arm has one more unobserved allocation. The
advantage of this approach is that it requires only ©(n%) time. While still
formidable, this can be achieved for useful sample sizes. For example, prob-
lems of size n = 200 have been optimized using a parallel computer. See
Oehmke, Hardwick and Stout (2001) for a discussion of the parallelization
process and optimizations to improve performance.
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3 A Randomized Play-the-Winner Rule

Exact evaluations of arbitrary, sub-optimal allocation designs are possible
via slight modifications to the algorithm in Oehmke et al. (2001). One
popular such rule is the randomized play the winner (RPW) rule which
first appeared in Wei and Durham (1978). In this urn model, there are
initial balls representing the treatment options. Patients are assigned to
arms according to the type of ball drawn at random from the urn. Sampling
is with replacement, and balls are added to the urn according to the last
patient’s response. Using RPW, the proportion of allocations to the better
arm converges to one.

One advantage of urn models like RPW is the natural way in which delayed
observations can be incorporated into the allocation process. When a de-
layed response eventually comes in, balls of the appropriate type are added
to the urn. Since sampling is with replacement, any delay pattern can be
accommodated. We call this design the delayed RPW rule (DRPW). The
same approach was used in Ivanova and Rosenberger (2000), in which re-
sponses occurred with a fixed delay. In Bandyopadhyay and Biswas (1996)
the authors consider a slightly altered version of this rule for a related best
selection problem.

4 Results of Comparisons

We have carried out exact analyses of the exponential delay model for both
the D2AB and DRPW. In these preliminary analyses, we take n = 100.
For the DRPW we initialize the urn with one ball for each treatment. If
a success is observed on treatment i then another ball of type i is added
to the urn, while if a failure is observed then another ball of type 3 — i is
added.

For comparative purposes, we look at base and best case scenarios. The
best fixed in advance allocation procedure is the base case, i.e., the optimal
solution when no responses will be available until after all n patients have
been allocated. To maximize successes one should allocate all patients to
the treatment with the higher expected success rate. We denote the ex-
pected number of successes in the base case by E;[S]. Here, we consider
only uniform priors on the treatment success rates m; and 72, in which
case any fixed allocation is best. For these priors, Ey[S] = n/2.

We encounter the best possible case when all responses are observed imme-
diately (full information). In this situation, DRPW is simply the regular
RPW and the D2AB is the regular 2-armed bandit. Recall that the regu-
lar 2-armed bandit optimizes the problem of allocating to maximize total
successes. Letting E,p:[S] represent expected successes in the best case, we
have E,:[S] = 64.9 for our example. Using the difference E,p[S] — Ep[S]
as a scale for improvement, we can think of the values on this scale, (0,
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)\1 )\2
4 0% 10°* 10% 1072 10! 10° 10*
1075 | 50.1

1074 | 51.2  51.2

1072 | 55.4 554  55.8

1072 | 59.3 594 599 61.5

10-* [ 60.9 61.0 61.6 63.1 64.1

10° 61.3 61.3 619 635 645 648

10* 61.3 61.3 62.0 635 646 648 64.9

TABLE 1.1. Bandit: E[S] as (A1, A2) vary, n = 100, As = 1, uniform priors

)\1 >\2
4 0% 10°* 10% 1072 10! 10° 10*
107> | 50.0

107* | 50.2 504

1072 | 51.6  51.7 52.6

1072 | 54.8 54.8 549 55.7

107t | 56.5 56.5 56.5 56.7 57.3

10° 56.9 56.9 56.9 571 576 578

10 7.0 57.0 57.0 572 576 578 579

TABLE 1.2. RPW: E[S] as (A1, \2) vary, n = 100, As = 1, uniform priors

14.9), as representing the “extra” successes over the best fixed allocation
of 100 observations. We take R(0) = (Es[S] — Es[S])/ (Eopt[S] — Es[S]) to
be the relative improvement over the base case for any allocation rule J.
While R(d) also depends on n and the prior parameters, these are omitted
from the notation.

Note that R(D2AB) — 1 and R(DRPW) — 1 as n — oo. However, this
asymptotic behavior gives little information about the values for practical
sample sizes. Hence, their behavior must be determined computationally.
Tables 1.1 and 1.2 contain the expected successes for the D2AB and the
DRPW rules, respectively. Patient response rates, A; and \», vary over a
grid of values between 10~> and 10', and the patient arrival rate is fixed
at 1. Note that, for both rules, when A\; = Xy = 1075, E[S] ~ 50. When
A1 = A2 = 10, the delayed bandit rule gives E[S]=64.9 as one would expect.
Note that in the best case scenario for the DRPW, E[S] = 57.9, which gives
an R of 0.53. With the RPW, we can expect to gain only 7.9 successes as
compared to the 14.9 for the optimal bandit.

Moving away from the extreme points, consider the case when A1, Ay and A4
are all the same order of magnitude. The D2AB rule is virtually unaffected,
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FIGURE 1. Expected successes for D2AB and DRPW, A1 = A2 =1

with an R value of 0.99. This is true because, on average, there is only one
patient unobserved (but allocated) throughout the trial. For the DRPW,
also, R(IDRPW) is only slightly smaller than R(RPW) = 0.52. Both rules
seem quite robust to mild to moderate delays in adaptation. It is only
when both response rates are at least three orders of magnitude below the
arrival rate that results begin to degrade seriously. When A\; = Ay = 1073,
for example, R(D2AB) is only 0.40, and R(DRPW) is a dismal 0.17. It is

also interesting to note that even when the response rate is only 1/100th
the arrival rate, the D2AB does better than the RPW with immediate
responses. Figure 1 illustrates R(D2AB) and R(DRPW) when the response
rates are both one but the arrival rate varies between 10~° and 10°.
When we consider scenarios in which only one treatment arm supplies
information to the system, we see an interesting result. For example, using
uniform priors, when A\; = A\; = 1 but A» = 10~?, the relative improvement
is 0.76 for the D2AB and 0.47 for the DRPW. This is an intriguing result
for the DRPW since its R-value is 89% of the best possible RPW value.
Still, one clearly prefers the D2AB since we only get a 24% loss over the
optimal solution while excluding half the information.

One way to view this problem independently from the allocation rules is to
examine the expected number of allocated but unobserved patients when a
new patient allocation decision must be made. As noted, when the response
delay rate is 1, at any point in time one expects only a single observation
to be delayed, and the impact on performance is minimal. When A = 0.1,
once approximately 20 patients have been allocated there is a consistent
lag of about 10 patients. Connecting this value to the results in Tables 1.1
and 1.2, one finds that a loss of roughly 10% of the total information at the
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time of allocation of the last patient (and a significantly higher loss rate
for earlier decisions), corresponds to a loss of only about 5% in terms of
the improvement available from each rule.

When the response rate is about 100 times slower that the arrival rate,
asymptotically there will be approximately 100 unobserved patients at any
point in time. Fortunately, for a sample size of 100, one is quite far from this
asymptotic behavior, and approximately 37% of the responses have been
observed by the time the last allocation decision must be made. This allows
the D2AB to achieve 77% of the relative improvement possible, while the
DRPW rule attains only 38%.

While for space reasons this paper has only analyzed problems in which
both treatments have uniform priors, similar results hold for more general
priors.

5  Conclusions

Because there has been scant research addressing optimal adaptive de-
signs with delayed responses, there are numerous outstanding problems in
the area. One might argue that fully optimal designs aren’t necessary in
practice if good ad hoc options are available. However, without a basis
of comparison it is difficult to know how good an ad hoc option is, since
asymptotic analyses give only vague information about their behavior for
practical sample sizes. Examining the properties of optimal designs can also
lead to the development and selection of superior sub-optimal alternatives.
An important concern is the design’s robustness. For example, one can
evaluate robustness with respect to departures from prior specifications
and from the assumption of exponential response times. One way to im-
prove robustness might be to use prior distributions on the response rate
parameters. We are also interested in operating characteristics such as the
distribution of the objective function, number of allocations to each arm,
how the allocations vary with increasingly delay, etc. Some of these issues
are examined in Hardwick et al. (2001).

Recall that the goal of this paper is to develop exactly optimal delayed
response designs that allow for the use of any objective function, not just
the bandit objective of maximizing reward (successes). The algorithm pre-
sented in Oehmke et al. (2001) has this capability, and in future work we
will examine its performance for other objectives. For example, some re-
searchers have considered two-stage models in which the first stage is adap-
tive and in the second stage all patients are assigned to the arm judged to
be best at the end of the first stage. In this situation, the optimal first
stage allocation will be nudged closer to equal allocation to insure a better
decision for the second stage.

To summarize our findings, we have developed optimal designs for a clinical
trial model with Bernoulli observations and exponentially delayed response
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and patient arrival times. We found that under fairly broad circumstances,
the delayed response design performed extremely well compared with the
optimal non-delayed algorithm. We also found that the most commonly
proposed ad hoc rule for such problems, the DRPW rule, performed signif-
icantly less well than the optimal delayed design, which suggests that there
is need for better ad hoc strategies.
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