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Abstract

Given an undirected grapy’ of n weighted edges, stored one edge per processor in a squaneoies
n processors, we show how to determine the connected comigoagd a minimal spanning forest in
©(y/n) time. More generally, we show how to solve these problem®(n'/¢) time when the mesh is

ad-dimensional cube, where the implied constants depend dpon
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1 Introduction

Note: these results were first announced by the author in [384nd were obtained contemporaneously
by John Reif. We intended to publish a joint paper, but newgragound to doing so. Since the results
have been utilized many times, and over the years I've exgetathe algorithm to several people, | thought
it useful to make this note available. | kept the title of thigyimal announcement despite the fact that very
few talk about algorithms for VLSI anymore.

We give algorithms for determining a minimal spanning foresd the connected components, of an
undirected graph stored on a mesh-connected computereBig) shows a 2-dimensional mesh-connected
computer. Each processor can directly communicate with itgighbors in unit time, and messages to
further away processors must be passed from neighbor thlmaig A fine-grained model is used, where
each processor has a fixed number of words of memory and dogarfiental operations in unit time. This
is a slight extension of cellular automata, where each aatomhas only a fixed number of bits of memory.

Meshes have long been used as a fundamental form of parattgduder, and were especially attractive
for VLSI design because very little area was wasted on cdiomec[6]. Meshes, though not as fine-grained,
are once again important for chip design. Recent interasioigvated by the fact that the distance signals
travel determines the time and energy needed. Energy cgigunms becoming a dominant constraint
of chip design, and chips with large numbers of simple premesconnected as a mesh are becoming
available [5] (see Figurld 1 b)). Several proposed desigpsoaessing chips for exascale computers assume
there will be many RISC cores connected as a 2-d mesh [1, 2].

The input for our problems is the edges of an undirected wethigraphG = (V, E) with n edges,
stored one per processor on/& x /n mesh. Each edge:,v) has an associated weighi(u,v) > 0,
where for an unweighted graph(u, v) = 1 is implied. Whenever edges are being moved their weight goes
with them. We assume there is an ordering on the labels ofdtiegs. To simplify exposition, assume that
each edge is represented twice, so that an edge betweereserindv is stored agu,v) and as(v, u).
Further, for every vertex there is a self-loop, i.e., an edge of the fofmv). This guarantees that every
vertex is represented. We will show:
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Figure 1: Abstract and Implemented Meshes

Theorem 1 Given an undirected weighted gragh= (V, E') with n edges, stored one edge per processor
on any/n x y/n mesh computer, i®(,/n) time one can find a minimal spanning forest and label the
connected components.

The algorithm to find a minimal spanning forest (MSF) usescainsgve approach originally used by
Borukva and which has been rediscovered by many otherkdimg Prim). For each vertex an edge is
selected, forming a forest but not necessarily a spannimgfoThe edges selected become part of the MSF,
and the trees are supervertices used as the vertices irdtigenation. For example, for the graph in Figlte 2
a), the edges selected are shown in b). This is knowsoassening The edge between superverti¢égnd
V' is one having minimal weight among the edges connecting tewén U with one inV/. Ties can be
broken arbitrarily. The result is shown in ¢). If a superggris not connected to any other others then it
is finished. After a coarsening step the number of unfinishgervertices is at most 1/2 the number of
vertices since each such supervertex contains at leastdxtioes.

Throughout, all sorting is into a space-filling curve ordgrisuch as the Hilbert ordering illustrated in
Figured a). Sorting in /7 x v/n mesh can be done i@(/n) time [4].

Minimal Spanning Forest Algorithm:
1) Do coarsening 5 times, leaving at mag2 remaining supervertices.

2) In each quadrant of the mesh, recursively solve the MSBl@no for the supervertices, using only
the edges in the quadrant. The number of edges in a quadk&gEsis no more than the number of
supervertices, so for all of the quadrants combined the eunmibedges is at modt- (n/32) = n/8.

3) Move these edges to a submesh of siZ& and recursively solve the MSF problem in this submesh.
This uses the fact that a MSF of the union of the MSFs of thersyihg is a MSF of the entire graph.

Step 1) reduces the number of vertices, then step 2) redieesimber of edges. Without 2), even though
the graph has fewer vertices at the end of 1), the number @saahgy not have been reduced much, so step
3) would not have been in a small submesh.



A e
3
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Figure 2: Coarsening

Coar sening:

a) For every vertex: select the edgéu, v) of minimal weight among all incident edges, where if there

are ties select the one whardas minimal label. This is an edge in the MSF. If a vertex hasdges
then it is removed from further consideration and alreadyitsaabel.

b) The selection rule insures that no cycles are created emcklthe edges selected form a forest. Label

the trees, creating the supervertices.

c) For every pair of superverticdg, /', choose one of the edges of minimal weight among those with

one endpoint iV and one inV. Ties can be broken arbitrarily. This is the edge betwéeandV in
the coarsened graph. See Fidure 2 c).

While the trees created during coarsening are undirecee|ihg them involves creating directed subtrees,
with each edge pointing towards the root of its subtree.Heurbore, weights are ignored.

Labeling Trees:

i) Using only the tree edges selected in coarsening, for eathxu determine the neighboring vertex
with the smallest label and create the directed gdge), where the edge i&:, u) if v’s label is less
than all of its neighbors’. This directed edge represenits the following steps. The edges selected
from each tree form directed subtrees, as shown in F[gure 3.

i) Sort the directed edges by the label of the vertex beirigtpd at. Because sorting is in space-filling

curve order, vertices in any quadrant can only point to gestin the same quadrant or a quadrant of
smaller index.

iii) For every vertex, find the label of the root of its subtréghis is done in a bottom-up fashion, using

2 x 2 meshes, the®? x 22 meshes, etc. For vertexlet M (u, i) be the2! x 2¢ mesh containing, and

let A(u, ) be its greatest ancestor (node closest to the root on thdrpath: to the root) represented
in M(u,i). Thus ifz is A(u,)’s parent then edgeA(u, i), x) is in M (u, i) while z’s representative

is not in M (u, ). Initially A(u,0) = v, wherew is the neighbor selected in step i). To determine
A(u,i+1), note that if the parent of(u, 7) is in M (u,i+41) then it must be in a quadrant of smaller
index since its label is smaller thatiw, 7)’s. Thus by 3 iterations of every quadrant af(u,i+1)
searching in the quadrant precedingAt,u, i+ 1) can be determined. This is not a recursive call,
merely a merging operation, thus this step can be complatéd.y/n) total time.
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Figure 3: Forming Directed Subtrees

iv) In the preceding step we don't actually keep track,djut rather just keep updating a valdéu). At
the end, for each vertex for which A(u) = v and no neighbors point te, if « has neighbors in the
graph (such as vertex 5 in the example), choose an arbiteagploory and setd(u) = A(v) If it has
no neighbors them’s label isw and it is finished. The number of unfinished subtrees is at h@st
the number of vertices since each unfinished subtree reypsesleast 2 vertices.

V) The subtrees are now supervertices for this tree labebntjne, and for any pair of supervertices
either they are not adjacent in the original tree or there imigue edge in the original tree that
connects them. Move the the edges connecting supervetticsubmesh and recursively call the
routine starting at step ii).

To analyze the time léysr (1), Tooarse (1), TLabel () denote the time for finding the minimal spanning
forest, coarsening, and labeling the trees, respectigalgn,/n x /n mesh.

TLabel(n) = TLabel(n/2) + @(\/ﬁ)

S
TCoarse(n) = TLabcl(n)"i_@(\/ﬁ)
— o(v/n)
Tusr(n) = 5Tcoarse(n) + Tusr(n/4) + Tusr(n/8) + ©(vn)
— (/)

For component labeling, at the end of the MSF algorithm omedeetree labeling on the edges selected
to determine the component labels.

Finally, all of the above can be extendeditdimensional meshes in a straightforward manner, the only
difference being thad + 1 vertex reductions are needed in step 1). This gives

Theorem 2 Given an undirected weighted gragh= (V, E') with n edges, stored one edge per processor
on a cubicald-dimensional mesh computer, ®(n!/?) time one can find a minimal spanning forest and
label the connected components, where the implied cosstipend upod. [
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