
BRAIN INSPIRED COMPUTING &MACHINE LEARNING APPLIED RESEARCH-

BISMLARE

Neural networks with block diagonal inner product layers: a look
at neural network architecture through the lens of random matrices

Amy Nesky1 • Quentin F. Stout1

Received: 5 January 2019 / Accepted: 5 October 2019 / Published online: 22 October 2019
� Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Two difficulties continue to burden deep learning researchers and users: (1) neural networks are cumbersome tools, and (2)

the activity of the fully connected (FC) layers remains mysterious. We make contributions to these two issues by

considering a modified version of the FC layer we call a block diagonal inner product (BDIP) layer. These modified layers

have weight matrices that are block diagonal, turning a single FC layer into a set of densely connected neuron groups; they

can be achieved by either initializing a purely block diagonal weight matrix or by iteratively pruning off-diagonal block

entries. This idea is a natural extension of group, or depthwise separable, convolutional layers. This method condenses

network storage and speeds up the run time without significant adverse effect on the testing accuracy, addressing the first

problem. Looking at the distribution of the weights through training when varying the number of blocks in a layer gives

insight into the second problem. We observe that, even after thousands of training iterations, inner product layers have

singular value distributions that resemble that of truly random matrices with iid entries and that each block in a BDIP layer

behaves like a smaller copy. For network architectures differing only by the number of blocks in one inner product layer,

the ratio of the variance of the weights remains approximately constant for thousands of iterations, that is, the relationship

in structure is preserved in the parameter distribution.

Keywords Neural networks � Block diagonal � Structured sparsity � Random matrices

1 Introduction

Fully connected (FC) layers are unwieldy and perplexing,

yet they continue to be present in the most successful

networks [16, 33, 40]. Ideally, efforts to reduce the mem-

ory requirements of neural networks would also lessen their

computational demand, but often these competing interests

force a trade-off. Our work addresses both memory and

computational efficiency without compromise. Focusing

our attention on the FC layers, we decrease network

memory footprint, improve network runtime and begin to

uncover the mechanism of inner product layers.

There are a variety of methods to condense large net-

works without much harm to their accuracy. One such

technique that has gained popularity is pruning [6, 7, 30],

but traditional pruning has disadvantages related to net-

work runtime. Most existing pruning processes slow down

network training, and the resulting condensed network is

usually significantly slower to execute [6]. Sparse format

operations require additional overhead that can greatly

slow down performance unless one prunes nearly all

weight entries, which can damage network accuracy.

Localized memory access patterns can be computed

faster than non-localized lookups. By implementing block

diagonal inner product (BDIP) layers in place of FC layers,

we condense neural networks in a structured manner that

speeds up the final runtime and does little harm to the final

accuracy. BDIP layers can be implemented by either

& Amy Nesky

anesky@umich.edu

Quentin F. Stout

qstout@umich.edu

1 University of Michigan, Ann Arbor, USA

123

Neural Computing and Applications (2020) 32:6755–6767
https://doi.org/10.1007/s00521-019-04531-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-3454-7210
http://orcid.org/0000-0002-8047-7348
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-019-04531-z&domain=pdf
https://doi.org/10.1007/s00521-019-04531-z

initializing a purely block diagonal weight matrix or by

initializing a fully connected layer and focusing pruning

efforts off the diagonal blocks to coax the dense weight

matrix into structured sparsity. The first method reduces the

gradient computation time and hence the overall training

time. The latter method retains higher accuracy and sup-

ports the robustness of networks to shaping, that is, pruning

can be used as a mapping between architectures — in

particular, a mapping to more convenient architectures.

Depending on how many iterations the pruning process

takes, this method may also speed up training.

We have converted a single fully connected layer into an

ensemble of smaller inner product learners whose com-

bined efforts form a stronger learner, in essence boosting

the layer. These methods also bring artificial neural net-

works closer to the architecture of biological mammalian

brains, which have more local connectivity [9].

Another link with our work and the mammalian brain is

the relationship to random matrix theory. In neuroscience,

synaptic connectivity is often represented by a matrix with

entries drawn randomly from an appropriate distribu-

tion [28, 29]. The distribution of the singular values of a

large, random matrix behaves predictably according to the

Marchenko–Pastur law [21]. We show that this distribution

also represents artificial neural activity matrices well after

thousands of training iterations. This relationship allows us

to compare the behavior of inner product layers in net-

works that have related structure, thereby uncovering a

piece of the inner product layer ‘‘black box.’’ Specifically,

we observe that when varying the number of blocks in a

layer, the initial ratio of the variance of the weights is

preserved to first order after thousands of training

iterations.

2 Related work

There is an assortment of criteria by which one may choose

which weights to prune. With any pruning method, the

result is a sparse network that takes less storage space than

its fully connected counterpart. Han et al. iteratively pruned

a network using the penalty method by adding a mask that

disregards pruned parameters for each weight tensor [7].

This means that the number of required floating point

operations decreases, but the number performed stays the

same. Furthermore, masking out updates takes additional

time. Han et al. reported the average time spent on a for-

ward propagation after pruning is completed and the

resulting sparse layers have been converted to CSR format;

for batch sizes larger than one, the sparse computations are

significantly slower than the dense calculations [6].

More recently, there has been momentum in the direction

of structured reduction in network architecture. Node

pruning preserves some structure, but drastic node pruning

can harm the network accuracy and requires additional

weight fine-tuning [8, 36]. Other approaches include storing

a low rank approximation for a layer’s weight matrix [31]

and training smaller models on outputs of larger models

(distillation) [10]. Group lasso expands the concept of node

pruning to convolutional filters [18, 38, 39], that is, group

lasso applies L1-norm regularization to entire filters.

Structured efficient linear layers form linear layers as a

composition of matrices [1, 3, 17, 24, 34]. Sidhawani et al.

proposed structured parameter matrices characterized by

low displacement rank that yield high compression rate as

well as fast forward and gradient evaluation [34]. Their

work focuses on Toeplitz-related transforms of the FC

layer weight matrix. However, speedup is generally only

seen for compression of large weight matrices. In [24],

Moczulski et al. formed efficient linear layers, called

ACDC layers, composed of diagonal matrices and the

discrete cosine transform matrix.

Group, or depthwise separable, convolutions have been

used in recent CNN architectures with great suc-

cess [4, 11, 41]. In group convolutions, a particular filter

does not see all of the channels of the previous layer. BDIP

layers apply this idea of separable neuron groups to the FC

layers. This method transforms a fully connected layer into

an ensemble of smaller fully connected neuron groups that

boost the layer.

There is less work considering the distribution of

weights in artificial neural networks. Initialization distri-

butions to combat vanishing gradients are supported by

theoretical variances for back propagation gradients under

the assumption that the weights are independent, which is

not valid beyond the first iteration [5, 37]. Random weights

have been looked at as good predictors of successful net-

work architecture [32]. More recently, Tishby [27] has

discussed the trend of the distribution of weight updates as

they relate to the mutual information plane. To the best of

our knowledge, the effects of architecture on the change in

distribution of the weights through training and the con-

nection between trained inner product layer weights and iid

random matrices have not been explored. In theoretical

neuroscience, random matrices are used to model synaptic

connections and to study brain plasticity [28, 29, 35].

Knowing that inner product layers in artificial neural net-

works are well modeled by random matrices opens the field

to a new range of analytical tools that may support a

specific network’s robustness or plasticity.

3 Methodology

We consider two methods for implementing BDIP

layers:

6756 Neural Computing and Applications (2020) 32:6755–6767

123

1. We initialize a layer with a purely block diagonal

weight matrix and keep the number of connections

constant throughout training.

2. We initialize a fully connected layer and iteratively

prune entries off the diagonal blocks to achieve a block

substructure.

When a BDIP layer is implemented using the second

method, we will add the prefix ‘‘IP,’’ written IP-BDIP, to

indicate it is an iteratively pruned BDIP layer. Within a

layer, all blocks have the same size.1 IP-BDIP layers are

accomplished in three phases: a dense phase, an iterative

pruning phase and a block diagonal phase. In the dense

phase, a fully connected layer is initialized and trained in

the standard way. During the iterative pruning phase,

focused pruning is applied to entries off the diagonal

blocks using the weight decay method with L1-norm, that

is, if W is the weight matrix for a fully connected layer we

wish to push toward block diagonal, we add

D ¼ a
X

i;j

j1i;jWi;jj ð1Þ

to the loss function during the iterative pruning phase,

where a is a tuning parameter, Wi;j is an entry in the layer’s

weight matrix and 1i;j is an indicator function such that

1i;j ¼ 0 when Wi;j is off the diagonal blocks and 1i;j ¼ 1

when Wi;j is in a diagonal block. When pruning is com-

pleted, to maximize speedup it is best to reformat the

weight matrix once such that the blocks are condensed and

adjacent in memory.2 Batched smaller dense calculations

for the blocks use cuBLAS strided batched multiplica-

tion [26]. There is a lot of flexibility when using IP-BDIP

layers that can be tuned for specific user needs. More

pruning iterations may increase the total training time but

can yield higher accuracy and reduce overfitting.

4 Experiments: speedup and accuracy

Our goal is to reduce memory storage of the inner product

layers while maintaining or reducing the final execution

time of the network with minimal loss in accuracy. We will

also see reduction in the total training time in some cases.

All experiments are run on the Bridges’ NVIDIA P100

GPUs through the Pittsburgh Supercomputing Center.

For speedup analysis, we timed block diagonal multi-

plications using n� n matrices with varying dimension

sizes and varying numbers of blocks; we considered the

forward pass and gradient updates. We also calculate an

upper bound on the ratio of the number of pruning itera-

tions to the number of pure block iterations that will yield

speedup when using IP-BDIP layers.

For accuracy results, we ran experiments on three

standard image classification datasets: MNIST [20],

SVHN [25] and CIFAR10 [13]. MNIST and SVHN are

both digit classification datasets; MNIST is handwritten in

black and white, and SVHN contains colored pictures taken

from the street of house numbers. The CIFAR10 dataset

contains low resolution, colored images of objects in ten

classes. We ran experiments on the MNIST dataset using a

LeNet-5 [19] network, and the SVHN and CIFAR10

datasets using Krizhevsky’s cuda-convnet [14]. Cuda-

convnet does not produce state-of-the-art accuracies for

SVHN or CIFAR10, but demonstrates the performance

differences between our methods and others. We also ran a

few experiments on smaller, purely inner product layer

networks without convolutional or other types of layers.

With interest favoring deeper convolutional nets, we ded-

icate more space in this paper to exploring BDIP layers in

convolutional nets to demonstrate their compatibility with

modern networks. We implement our work in Caffe, which

provides these architectures; Caffe’s MNIST example uses

LeNet-5, and cuda-convnet can be found in Caffe’s

CIFAR10 ‘‘quick’’ example.

For ease of transcription, let ðb1; . . .; bnÞ-BDm denote a

network architecture with m layers, not including the input

layer, in which the last n layers are BDIP layers, where

bi ¼ j indicates that the ith BDIP layer has j blocks along

the diagonal. If bi ¼ 1, then the ith inner product layer is

fully connected. In all cases in this paper, if m[n, then the

first m� n layers are convolutional.

4.1 Speedup

Figure 1 shows the speedup when performing matrix

multiplication using an n� n weight matrix and batch size

100 when the weight matrix is purely block diagonal. In

this section, speedup is always relative to the unaltered,

fully connected calculation. The speedup when performing

only the forward-pass matrix product is shown in the top

pane, and the speedup when performing all gradient des-

cent products is shown in the bottom pane. As the number

of blocks increases, the overhead to perform cuBLAS

strided batched multiplication can become noticeable; this

library is not yet well optimized for performing many small

matrix products [22]. However, with specialized batched

multiplications for many small matrices, Jhurani et al.

attained up to sixfold speedup [12]. Using cuBLAS strided

batched multiplication, the maximum speedup is achieved

when the number of blocks is 2�7 times the matrix

1 In our work, we chose to implement all blocks with the same size,

but blocks do not need to have the same size in general.
2 When using BDIP layers, one should alter the output format of the

previous layer and the expected input format of the following layer

accordingly, in particular to row major ordering.

Neural Computing and Applications (2020) 32:6755–6767 6757

123

dimension. When only timing the forward pass, the

speedup is always greater than 1 when the number of

blocks is at most 2�5 times the matrix dimension. When

timing the forward and backward pass, the speedup is

always greater than 1 when the number of blocks is at most

2�6 times the matrix dimension.

On the other hand, using Toeplitz-related transforms, for

displacement rank higher than approximately 2�9:5 times

the matrix dimension the forward pass is slowed down, and

backward pass is slowed down for displacement rank

higher than approximately 2�10:4 times the matrix dimen-

sion [34]. From Fig. 3 in [34], speedup is generally only

seen for compression of large weight matrices. From Fig. 2

in [24], we can see that ACDC layers do consistently

provide speedup for multiple calls when compared to a

dense linear layer. They achieve a maximum speedup of

approximately 10 times for layers with dimension at most

8192, but in Fig. 1, we can see that BDIP layers exceed this

maximum speedup by a small but clear margin for layers

with dimension at most 8192.

For a given inner product layer, using IP-BDIP layers

we would see speedup in that layer’s training time if

TðFCÞ � TðBlockÞ
TðPruneÞ [

y

x
ð2Þ

where Tð�Þ is the combined time to perform the forward

and backward passes of an inner product layer in the input

state, x is the number of pure block iterations and y is the

number of pruning iterations. TðPruneÞ is the time to reg-

ularize and apply a mask to the off-diagonal block layer

weights, which happens once in a training iteration. Fig-

ure 2 plots the upper bound in ratio 2 against the number of

blocks for a layer with an n� n weight matrix and batch

size 100.

Figure 3 shows timing results for the inner product

layers in LeNet-5 (top) and cuda-convnet (bottom), which

both have two inner product layers. We plot the forward

runtime speedup per inner product layer when the layers

are purely block diagonal, the combined forward and

backward runtime speedup to do the three matrix products

involved in gradient descent training when the layers are

purely block diagonal, and the runtime speedup of sparse

matrix multiplication with random entries in CSR format

using cuSPARSE [26]. The points at which the forward

sparse and forward block curves meet in each plot in Fig. 3

indicate the FC dense forward runtime speedups for each

layer; these are made clearer with dotted, black, vertical

lines. Note that the block forward and combined forward/

backward curves almost perfectly overlap in Fig. 3

(bottom).

In LeNet-5, the first inner product layer, ip1, has a

500� 800 weight matrix, and the second inner product

layer, ip2, has a 10� 500 weight matrix, so the ðb1; b2Þ-
BD4 LeNet-5 architecture has ð800� 500Þ=b1 þ ð500�
10Þ=b2 nonzero weights across both inner product layers.

Figure 3 (top) shows there is greater than 1.4 times

speedup for greater than or equal to 8000 nonzero entries in

ip1, which happens for b1� 50, when timing both forward

0 2 4 6 8 10 12 14
Number of Blocks

10-2

10-1

100

101

102
Sp

ee
du

p

 20 22 24 26 28 210 212 214

n=128
n=256
n=512

n=1024
n=2048
n=4096

n=8192
n=16384
n=32768

0 2 4 6 8 10 12 14
Number of Blocks

10-2

10-1

100

101

102

Sp
ee

du
p

 20 22 24 26 28 210 212 214

n=128
n=256
n=512

n=1024
n=2048
n=4096

n=8192
n=16384
n=32768

Fig. 1 Speedup when performing matrix multiplication using an n�
n weight matrix and batch size 100. (Top) Speedup when performing

only one forward matrix product. (Bottom) Speedup when performing

all three matrix products involved in the forward and backward pass

in gradient descent

0 2 4 6 8 10 12 14

Number of Blocks

0

1

2

3

4

5

6

U
pp

er
 B

ou
nd

 in
 (

2)

 20 22 24 26 28 210 212 214

n=27

n=28

n=29

n=210

n=211

n=212

n=213

n=214

n=215

Fig. 2 Using batch size 100, upper bound on the ratio of the number

of pruning iterations to the number of pure block iterations that will

result in an overall training speedup when using IP-BDIP layers

6758 Neural Computing and Applications (2020) 32:6755–6767

123

and backward matrix products in ðb1; b2Þ-BD4 LeNet-5,

and 1.6 times speedup when b1 ¼ 100, or 4000 nonzero

entries, when only timing the forward matrix product in

ðb1; b2Þ-BD4 LeNet-5.

In cuda-convnet, the first inner product layer, ip1, has a

64� 1024 weight matrix, and the second inner product

layer, ip2, has a 10� 64 weight matrix. The ðb1; b2Þ-BD5

cuda-convnet architecture has ð1024� 64Þ=b1 þ ð64�
10Þ=b2 nonzero entries across both inner product layers.

Figure 3 (bottom) shows there is greater than 1.26 times

speedup for greater than or equal to 2048 nonzero entries in

ip1, which happens for b1� 32, when timing both forward

and backward matrix products in ðb1; b2Þ-BD5 cuda-con-

vnet, and 1.65 times speedup for greater than or equal to

1024 nonzero entries in ip1, which happens for b1� 64,

when only timing the forward matrix product in ðb1; b2Þ-
BD5 cuda-convnet.

In both plots of Fig. 3, we see sparse format performs

poorly. Sparse format can be more than 8 times slower than

dense calculations.

4.2 Accuracy results

All hyperparameters and initialization distributions pro-

vided by Caffe’s example architectures are left unchanged.

Training is carried out with batched gradient descent using

the cross-entropy loss function on the softmax of the output

layer. In our experiments, we performed only manual

tuning of the new hyperparameter introduced by IP-BDIP

layers (see Eq. 1).

In ShuffleNet, Zhang et al. noted that when multiple

group convolutions are stacked together, this can block

information flow between channel groups and weaken

representation [41]. To correct for this, they suggest

dividing the channels in each group into subgroups and

shuffling the outputs of the subgroups in this layer before

feeding them to the next layer. Applying this approach to

block inner product layers requires either moving entries in

memory or doing more, smaller matrix products. Both of

these options would hurt efficiency.

Using IP-BDIP layers also addresses information flow.

Pruning does add some work to the training iterations, but,

unlike the ShuffleNet method, does not add work to the

final execution of the trained network. After pruning is

completed, the learned weights are the result of a more

complete picture; while the information flow has been

constrained, it is preserved as an artifact in the remaining

weights. Another alternative is to randomly shuffle whole

blocks each pass like in the ‘‘ random sparse convolution’’

layer in the CNN library cuda-convnet [15]. We found that

for the inner product layers in LeNet-5 and Krizhevsky’s

cuda-convnet, the ShuffleNet method did not show as much

improvement in accuracy as randomly shuffling the whole

blocks, so we do not include results using the ShuffleNet

method.

Table 1 shows the accuracy results for BDIP layers,

BDIP layers with random block shuffling, IP-BDIP layers

and layers with traditional iterative pruning using the

penalty method to prune weight entries not subject to any

confinement or organization. The baseline accuracy with-

out using any parameter-efficient layers can be found in

parenthesis next to the dataset name in Table 1.3 We show

accuracy results for the most condensed net with BDIP

layers and the net with the fastest speedup in the inner

product layers.

3 Here we denote the baseline architecture using our notation

ð1; . . .; 1Þ-BDm.

Number of Nonzero Entries

Sp
ee

du
p

ip1 Block Forward
ip1 Sparse Forward
ip1 Block Forward/Backward
ip2 Block Forward
ip2 Sparse Forward
ip2 Block Forward/Backward

b1 = 1b2 = 1

Number of Nonzero Entries

Sp
ee

du
p

ip1 Block Forward
ip1 Sparse Forward
ip1 Block Forward/Backward
ip2 Block Forward
ip2 Sparse Forward
ip2 Block Forward/Backward

b1 = 1b2 = 1

Fig. 3 For each inner product layer in LeNet-5 (top) and cuda-

convnet (bottom): forward runtime speedup of block diagonal and

CSR sparse formats, combined forward and backward runtime

speedup of block diagonal format. LeNet-5 uses batch size 64, and

cuda-convnet uses batch size 100

Neural Computing and Applications (2020) 32:6755–6767 6759

123

4.2.1 MNIST

We experimented on the MNIST dataset with the LeNet-5

framework [19] using a training batch size of 64 for 10,000

iterations. LeNet-5 has two convolutional layers with

pooling followed by two inner product layers with ReLU

activation. LeNet-5 (1,1)-BD4 achieves a final accuracy of

99.11%. In all cases, testing accuracy remains within 1% of

this (1,1)-BD4 accuracy.

Using traditional iterative pruning with L2 regulariza-

tion, as suggested in [7], pruning until 4000 and 500

nonzero entries survived in ip1 and ip2, respectively, gave

an accuracy of 98.55%, but the forward multiplication was

more than 8 times slower than the dense FC case (see

Fig. 3, top). On the other hand, implementing the LeNet-5

(100,10)-BD4 architecture with IP-BDIP layers using 15

dense iterations and 350 pruning iterations gave a final

accuracy of 98.65%. (10,1)-BD4 yielded approximately 1.4

times speedup for all gradient descent matrix products in

both inner product layers after any pruning is completed,

and (100,10)-BD4 condensed the inner product layers in

LeNet-5 approximately 81 fold.

In [34], Toeplitz (3) has error rate 2.09% using a single

hidden layer net with 1000 hidden nodes on MNIST. This

method yields 63.32-fold compression over the FC setting.

However, from Fig. 3, this slows down the forward pass by

around 1.5 times and the backward pass by around 5.5

times. A (49,1)-BD2 net with one hidden layer that has 980

hidden nodes has 29.43 fold compression and error rate

4.37% using IP-BDIP layers on MNIST. Our speedup with

this net is 1.53 for forward only and 1.04 when combining

the forward and backward runtime. Our net achieves less

than a 5% error rate even though the blocks of neurons in

the hidden layer can only see a portion of the test input

images.4 What Toeplitz (3) gains in compression and

accuracy, it sacrifices in execution time.

4.2.2 SVHN

We experimented on the SVHN dataset with Krizhevsky’s

cuda-convnet [14] using batch size 100 for 9000 iterations.

Cuda-convnet has three convolutional layers with ReLu

activation and pooling, followed by two FC layers with no

activation. Cuda-convnet (8,1)-BD5 yielded approximately

1.5 times speedup for all gradient descent matrix products

in both inner product layers when purely block diagonal,

and cuda-convnet (64,2)-BD5 condensed the inner product

layers in cuda-convnet approximately 47-fold.

Using cuda-convnet (1,1)-BD5 we obtained a final

accuracy of 91.96%. Table 1 shows all methods stayed

under a 2:5% drop in accuracy. Using traditional iterative

pruning with L2 regularization until 1024 and 320 nonzero

entries survived in the final two inner product layers,

respectively, gave an accuracy of 90.93%, but the forward

multiplication was more than 8 times slower than the dense

FC computation. On the other hand, implementing cuda-

convnet (64, 2)-BD5 with IP-BDIP layers, which has cor-

responding numbers of nonzero entries, with 500 dense

iterations and less than 1000 pruning iterations gave a final

accuracy of 90.02%. This is approximately 47-fold com-

pression of the inner product layer parameters with only a

2% drop in accuracy when compared to (1,1)-BD5.

4.2.3 CIFAR10

We experimented on the CIFAR10 dataset with Kriz-

hevsky’s cuda-convnet [14] using batch size 100 for 9000

iterations. Using cuda-convnet (1,1)-BD5, we obtained a

final accuracy of 76.29%. Table 1 shows all methods

stayed within a 4% drop in accuracy. Using traditional

iterative pruning with L2 regularization until 1024 and 320

nonzero entries survived in the final two inner product

layers gave an accuracy of 75.18%, but again the forward

multiplication was more than 8 times slower than the dense

FC computation. On the other hand, implementing cuda-

convnet (64, 2)-BD5 with IP-BDIP layers, which has cor-

responding numbers of nonzero entries, with 500 dense

4 With more complex datasets, BDIP layers, especially without any

pruning or block shuffling to assist information flow, are more

appropriate in deeper layers.

Table 1 Accuracy results on

MNIST dataset with the LeNet-

5 network, and the SVHN and

CIFAR10 datasets with the

cuda-convnet network

BDIP (%) rand. shuff (%) IP-BDIP (%) trad. prune (%)

MNIST (99:11% accurate when using (1,1)-BD4)

(10,1)-BD4 98.83 98.81 99.02 99.04

(100,10)-BD4 98.39 98.42 98.65 98.55

SVHN (91:96% accurate when using (1,1)-BD5)

(8,1)-BD5 91.39 91.46 91.88 91.15

(64,2)-BD5 89.21 89.69 90.02 90.93

CIFAR10 (76:29% accurate when using (1,1)-BD5)

(8,1)-BD5 75.07 75.09 76.05 75.64

(64,2)-BD5 72.7 73.45 74.81 75.18

6760 Neural Computing and Applications (2020) 32:6755–6767

123

iterations and less than 1000 pruning iterations gave a final

accuracy of 74.81%. This is approximately 47 fold com-

pression of the inner product layer parameters with only a

1.5% drop in accuracy. The total forward runtime of ip1

and ip2 in cuda-convnet (64, 2)-BD5 is 1.6 times faster

than in (1,1)-BD5. To achieve comparable speed with

sparse format, we used traditional iterative pruning to leave

37 and 40 nonzero entries in the final inner product layers

giving an accuracy of 73.01%. Thus, implementing BDIP

layers with pruning yields comparable accuracy and

memory condensation to traditional iterative pruning with

faster final execution time.

Whole node pruning decreases the accuracy more than

corresponding reductions in the block diagonal setting.

Node pruning until ip1 had only 2 outputs, i.e., a 1024� 2

weight matrix, and ip2 had a 2� 10 weight matrix for a

total of 2068 weights between the two layers gave a final

accuracy of 59.67%. On the other hand, using IP-BDIP

layers, cuda-convnet (64,2)-BD5 has a total of 1344

weights between the two inner product layers and had a

final accuracy 74.81%.

The final accuracy on an independent test set was

76.29% on CIFAR10 using the cuda-convnet (1,1)-BD5 net

while the final accuracy on the training set itself was

83.32%. Using the cuda-convnet (64,2)-BD5 net without

pruning, the accuracy on an independent test set was

72.49%, but on the training set was 75.63%. Figure 4

graphs the difference between the accuracy on the training

set and the accuracy on an independent test set when

training Krizhevsky’s cuda-convnet [14] on the CIFAR10

dataset using BDIP layers; we plot ðb1;1Þ-BD5 for various

values of b1. Figure 5 plots the ratio of the accuracy over

the curves in Fig. 4; we can see that more blocks yield a

higher accuracy to overfit ratio. With IP-BDIP layers, the

accuracy of (64,2)-BD5 on an independent test set was

74.81%, but on the training set was 76.85%. Both block

diagonal methods decrease overfitting, but IP-BDIP layers

decrease overfitting slightly more.

5 Random matrix theory observations

The Marchenko–Pastur distribution describes the asymp-

totic behavior of the singular values of large random

matrices with iid entries [21]. Let X be an m� n matrix

with iid entries xij such that E½xij� ¼ 0 and Var½xij� ¼ r2.
The Marchenko–Pastur theorem states that as n;m!1
such that m=n! y[0, with probability 1 the empirical

spectral distribution of 1
n
XX> converges in distribution to

the density

lyðxÞ ¼
1

2pr2yx

ffi
ðb� xÞðx� aÞ

p
if a� x� b

0 otherwise

8
<

: ð3Þ

with point mass 1� 1=y at the origin if y[1 where a ¼
r2ð1� y2Þ and b ¼ r2ð1þ y2Þ.

Network weights do not remain independent through

training. Without momentum, weight parameter W receives

the update W W � k
b

Pb
i¼1

oLðxiÞ
oW

in an iteration, where k
is the learning rate, b is the batch size, L is the loss function

and xi is sampled from the data distribution. One can easily

verify

DVarðWÞ ¼ k2Var
1

b

Xb

i¼1

oLðxiÞ
oW

 !
� 2kCov W;

1

b

Xb

i¼1

oLðxiÞ
oW

 !

ð4Þ

using estimators for the right side of the equation. In our

experience, the covariance quickly became the dominating

term. However, for a large enough weight matrix, the

singular values of an inner product layer weight matrix

behave according to the Marchenko–Pastur distribution

even after thousands of training iterations, that is, after

thousands of correlated updates, the weight matrix behaves

like a matrix with random iid entries. The assumption of

independence fails at the microlevel when calculating the

change in variance of the weights, but is accurate at the

macrolevel when considering the behavior of the weight

matrix as an operator.

In this section, we discuss only the first method for

implementing BDIP layers without pruning. Networks that

differ only by the number of blocks in one layer are

referred to as sister networks. While a relationship between

FC layer weights and the corresponding BDIP layer

weights in trained sister networks is not evident from

Eq. (4), indeed a relationship can be seen in the singular

values of the weight matrices and, in particular, in the

change in the variance of the weight matrix entries

throughout training. The initialization ratio of variances in

corresponding layer weight matrices of sister networks

persists through thousands of training iterations. This

finding may provide a good mechanism for examining

related network architectures and may support claims about

a network’s malleability or fitness.

5.1 MNIST

In our experiments on the MNIST dataset with the LeNet-5

framework [19], the inner product layer weights are ini-

tialized using the Xavier algorithm [5]. Thus, the initial-

ization variance of the weights in ip1 is b1=800 if ip1 is a

BDIP layer, where b1 is the number of blocks, and the ratio

of the ip1 initialization variance in ðb1;1Þ-BD4 LeNet-5

Neural Computing and Applications (2020) 32:6755–6767 6761

123

over the ip1 initialization variance (1,1)-BD4 LeNet-5 is

just b1. Figure 6 (top) shows that this ratio is a good first-

order estimate for the final ip1 variance ratio after 10,000

iterations in sister ðb1;1Þ-BD4 LeNet-5 networks. We have

written ðb1;1Þ-BD4/(1,1)-BD4 in the figure legend, but by

this we mean the ratio of the ip1 weight matrix variance in

ðb1;1Þ-BD4 LeNet-5 over that of (1,1)-BD4 LeNet-5. The

final ip1 variance ratios are 5.03, 9.97, 19.96, 49.32 and

96.99 for b1 ¼ 5; 10; 20; 50; and 100, respectively. We can

see that the relationship deteriorates as the number of

blocks increases. This phenomenon persists when the sig-

moid activation function is used for layer ip1, keeping the

activation function consistent across sister networks. When

using the sigmoid activation function, the ratio seemed to

deteriorate less quickly, e.g., the final ip1 variance ratio

was 101.00 for b1 ¼ 100.

Figure 6 (bottom) compares the singular values of the

ip1 layer weight matrix in sister ðb1;1Þ-BD4 networks after

10,000 training iterations to the singular values of a truly

random 800� 500 matrix whose entries were initialized

with variance 6:6� 10�4, the final variance of the (1,1)-

BD4 LeNet-5 ip1 layer weights. We denote the random

matrix R. To make this comparison, we aggregate the

singular values of each block along the diagonal in ip1 of

ðb1;1Þ-BD4 LeNet-5 and sort them, but we note that the

individual block spectral distributions appear identical to

each other. For an array of singular values arranged by

order, division is done entry-wise. We have written ðb1;1Þ-
BD4=R in the figure legend, but by this we mean entry-wise

division of the ordered singular values of the ip1 weight

matrix in ðb1;1Þ-BD4 LeNet-5 over the ordered singular

0 2000 4000 6000 8000 10000
Iteration

0

0.02

0.04

0.06

0.08

0.1

O
ve

rf
it

(1,1)-BD5
(2,1)-BD5
(4,1)-BD5
(8,1)-BD5
(16,1)-BD5
(32,1)-BD5
(64,1)-BD5

Fig. 4 Difference between the accuracy on the training set and the

accuracy on an independent test set when training Krizhevsky’s cuda-

convnet [14] on the CIFAR10 dataset

0 2000 4000 6000 8000 10000
Iteration

10 1

10 2

10 3

A
cc

ur
ac

y
/ O

ve
rf

it

(1,1)-BD5
(2,1)-BD5
(4,1)-BD5
(8,1)-BD5
(16,1)-BD5
(32,1)-BD5
(64,1)-BD5

Fig. 5 Accuracy over the difference between the accuracy on the

training set and the accuracy on an independent test set when training

Krizhevsky’s cuda-convnet [14] on the CIFAR10 dataset

0 2000 4000 6000 8000 10000
Iteration

0

20

40

60

80

100

R
at

io
 o

f W
ei

gh
t V

ar
ia

nc
e

in
 L

ay
er

 ip
1

(5,1)-BD4/(1,1)-BD4
(10,1)-BD4/(1,1)-BD4
(20,1)-BD4/(1,1)-BD4

(50,1)-BD4/(1,1)-BD4
(100,1)-BD4/(1,1)-BD4

0 100 200 300 400 500
Order

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

R
at

io
 o

f S
in

gu
la

r V
al

ue
 in

 L
ay

er
 ip

1

(1,1)-BD4/R
(5,1)-BD4/R

(10,1)-BD4/R

(20,1)-BD4/R
(50,1)-BD4/R

(100,1)-BD4/R

Fig. 6 10,000 training iterations using LeNet-5 net on MNIST. (Top)

The ratio of the ip1 weight matrix variance in ðb1;1Þ-BD4 over the ip1

weight matrix variance in (1,1)-BD4. (Bottom) Ratio of trained ip1

weight matrix singular values over singular values of a truly random

matrix with the same dimensions

6762 Neural Computing and Applications (2020) 32:6755–6767

123

values of R. By convention, the lowest order singular

values are the largest.

The individual curves in Fig. 6 (bottom) are difficult to

distinguish. In fact, for each curve in Fig. 6 (bottom) the

average distance from one, when averaging over order, is

bounded above by 4� 10�2 (see Fig. 7). This behavior

aligns with what the Marchenko–Pastur theorem dictates

would happen to the ratio of the spectral distributions if the

ip1 layer weight matrix had random iid entries, but in fact

the ip1 layer weight matrices hold knowledge and are the

product of 10,000 correlated updates. By the Marchenko–

Pastur theorem, increasing the variance of the entries in a

random matrix and simultaneously decreasing the matrix

dimension by the same factor will not affect the singular

value distribution; the decrease in matrix size would cancel

with the increase in variance by the same factor [see

Eq. (3)]. Figure 6 (top) shows that the ratio of the ip1

initialization variance in ðb1;1Þ-BD4 LeNet-5 over the ip1

initialization variance (1,1)-BD4 LeNet-5 is still b1 after

10,000 training iterations, and for b1 blocks the ip1 layer

weight matrix decreases in dimension by a factor of b1.

Figure 6 (bottom) shows that these factors canceled for the

trained ip1 matrices like they would for random matrices

since the ratio of the singular values is just one, that is, the

learned ip1 layer weight matrices behave like random

operators.

The singular values of the trained ip1 layer weight

matrices from ðb1;1Þ-BD4 LeNet-5 follow the curve that

the singular values of the truly random matrix create with

some error in the largest and smallest singular values. The

disparity in the extreme singular values will be the focus of

future work; it may be the first place where network

learning become evident, or it may be the result of over-

fitting. Using (1,1)-BD4 LeNet-5, the accuracy reaches

98.28% by iteration 1000. After 1000 iterations, the ratio of

the largest singular value of the trained weight matrix in

layer ip1 over the largest singular value of a truly random

matrix with the same dimensions and variance is 1.16.

Figure 6 (bottom) shows that this ratio is 1.44 after the full

10,000 iterations. Figure 7 shows the expected value, taken

over singular value order, of the distance between 1 and the

ratio of sorted, aggregated singular values of ip1 weight

matrices for sister ðb1;1Þ-BD4 LeNet-5 networks and the

singular values of R, a random matrix with iid entries of

equal dimension; this is plotted over training iterations for

varying values of b1. In Fig. 7, we can see that at iteration

zero smaller b1 values correspond to expected ratios closer

to one, which can be explained by the necessity of the limit

in the Marchenko–Pastur theorem. On the other hand, after

10,000 training iterations, smaller b1 values correspond to

expected ratios farther away from one, indicating that lar-

ger values of b1 maintain a final distribution that is more

similar to that of a random matrix. In Figs. 4 and 5, we

learned that larger values of b1 also correspond to reduced

overfit.

The ratios in Fig. 6 best highlight the relationship to

random matrix theory and the relationship between ip1

layer weight matrix distributions in sister ðb1;1Þ-BD4 net-

works, but we also include the ip1 layer weight matrix

variances and their singular values without taking a ratio in

Fig. 8. Figure 8 (top) shows that the variances did change

through training, and so the fact that they maintained their

original variance ratios is nontrivial. The curves in Fig. 8

(bottom) are again difficult to distinguish, but one can more

clearly see the classic Marchenko–Pastur distribution.

Figure 9 (top) compares the probability density function

of the singular values of R, a truly random matrix with

independent entries, to the measured distribution of the ip1

layer weight matrix singular values for the (1,1)-BD4

LeNet-5 architecture after 10,000 training iterations. For a

matrix M, kM is the PDF of the eigenvalues of M. We use

W1 to denote the ip1 layer weight matrix in (1,1)-BD4 after

10,000 training iterations and again R to denote a 800�
500 random matrix with iid entries that have the same

variance as the entries in W1. kð1=500ÞW1W
>
1
and kð1=500ÞRR>

align as we would expect from Fig. 6 (bottom).

If we make ip2 a BDIP layer as well in the LeNet-5

framework, the change in variance in ip1 sees minimal

effect. For b1 ¼ 1; 2; 5; 10; 50; 100 and b2 ¼ 1; 2; 5; 10;, the

final variance in the ip1 layer weights using ðb1; b2Þ-BD4

over the final variance in the ip1 layer weights using

ðb1;1Þ-BD4 is approximately 1 with error � 0:05.5

5 The ip2 layer weights also appear to have the same behavior, but

the matrix size is much smaller so the estimate of the variance is

0 2000 4000 6000 8000 10000
Iterations

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

E or
de

r[|1
 -

W
b 1/

R
|]

(1,1)-BD4
(5,1)-BD4
(10,1)-BD4

(20,1)-BD4
(50,1)-BD4
(100,1)-BD4

Fig. 7 10,000 training iterations using LeNet-5 net on MNIST.

Expected value taken over order of the distance between 1 and the

ratio of sorted, aggregated singular values of ip1 weight matrices for

sister ðb1;1Þ-BD4 networks and the singular values of R, a random

matrix with iid entries of equal dimension

Neural Computing and Applications (2020) 32:6755–6767 6763

123

In our experiments, the relationship between inner pro-

duct layers in sister networks is independent of network

architecture. We ran experiments on purely inner product

layer networks without convolutional or other types of

layers with the same results, and we will discuss a small

purely inner product layer network briefly here. In a three-

layer network in which both hidden layers have 500 nodes

and ReLu activation, we compare (1,1,1)-BD3 to (1,100,1)-

BD3 on MNIST where in both cases ip2 is initialized with

Xavier variance [5]. After 10,000 iterations, the ratio of the

variance of the weight matrix entries in layer ip2 in block

diagonal setting over the variance of the weight matrix

entries in layer ip2 in the fully connected setting is 106.42.

Let rWb2
be the singular values of the ip2 layer weight

matrix in the (1,b2,1)-BD3 architecture with only 3 inner

product layers after 10,000 iterations. The final variance of

the ip2 layer weights in (1,1,1)-BD3 is 0.0012. If R is a

500� 500 truly random matrix with independent entries

that have variance 0.0012, then E½j1� rW1
=rRj� ¼ 0:1162.

The final variance of the ip2 layer weights in (1,100,1)-

BD3 is 0.12. If R is a 500� 500 truly random matrix with

independent entries that have variance 0.12, then

E½j1� rW100
=rRj� ¼ 0:0896.

5.2 CIFAR10

In our experiments on CIFAR10 with Krizhevsky’s cuda-

convnet [14], the first inner product layer weights are ini-

tialized using a Gaussian filler with standard deviation 0.1.

Thus, the ratio of variance of the weights in ip1 in the block

diagonal case over that of the fully connected case at ini-

tialization is 1. Figure 10 (top) indicates that this ratio is a

good first-order estimate for the final ratio in sister ðb1;1Þ-
BD5 cuda-convnet networks after 9000 iterations at which

time the ratios are 1.02, 1.02, 1.01, 1.11, 1.21 and 1.5 for

b1 ¼ 2; 4; 8; 16; 32; and 64, respectively. Like with our

experiments on MNIST, the relationship deteriorates as the

number of blocks grows.

We compared the singular values of the weight matrix in

layer ip1 for sister ðb1;1Þ-BD5 cuda-convnet networks after

9000 training iterations to the singular values of a truly

random 1024� 64 matrix initialized with variance

7� 10�3, the final variance of the fully connected ip1 layer

weights after training. We denote the random matrix R. As

Footnote 5 continued

lower order and the asymptotic assumptions of Marchenko–Pastur are

far from met.

0 2000 4000 6000 8000 10000
Iteration

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
V

ar
ia

nc
e

of
 W

ei
gh

ts
 in

 L
ay

er
 ip

1
(1,1)-BD4
(5,1)-BD4
(10,1)-BD4

(20,1)-BD4
(50,1)-BD4
(100,1)-BD4

0 100 200 300 400 500

Order

0

0.5

1

1.5

2

Si
ng

ul
ar

 V
al

ue
s o

f W
ei

gh
ts

 in
 L

ay
er

 ip
1 R

(1,1)-BD4
(5,1)-BD4
(10,1)-BD4
(20,1)-BD4
(50,1)-BD4
(100,1)-BD4

Fig. 8 10,000 training iterations using LeNet-5 net on MNIST. (Top)

Variance of weight matrix entries in layer ip1 in both the fully

connected and block diagonal settings. (Bottom) Singular values of

ip1 weight matrices for sister ðb1;1Þ-BD4 networks and of R, a

random matrix with iid entries of equal dimension

0 1 2 3 4 5 6

Eigenvalue

0

0.02

0.04

0.06

0.08

0.1

0.12

 P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n
V

al
ue

λ(1/500)W
1
W

1
T

λ(1/500)RRT

Fig. 9 k 1
500

Wb1
W>

b1

is the measured empirical spectral distribution of

1
500

Wb1W
>
b1
where Wb1 is the ip1 layer weight matrix in the ðb1;1Þ-BD

architecture after 10,000 training iterations on MNIST using LeNet-5.

Bar graph of k 1
500

W1W
>
1
with plot of k 1

500
RR> for a random matrix R with

the same variance

6764 Neural Computing and Applications (2020) 32:6755–6767

123

in the MNIST experiments, we aggregate the singular

values of each block in the block diagonal method and sort

them, and for an array of singular values arranged by order,

division is done entry-wise. In Fig. 10 (bottom), we have

written ðb1;1Þ-BD5=R in the figure legend, but by this we

mean entry-wise division of the ordered singular values of

the ip1 weight matrix in ðb1;1Þ-BD5 cuda-convnet over the

ordered singular values of R. By convention, the lowest

order singular values are the largest.

By the Marchenko–Pastur theorem, maintaining the

variance of the entries in a random matrix while decreasing

the matrix dimension by the some factor b1 will alter the

singular value distribution by a factor of 1=
ffiffiffiffiffi
b1
p

; see

Eq. (3). Figure 10 (top) shows that the ratio of the ip1

initialization variance in ðb1;1Þ-BD5 cuda-convnet over the

ip1 initialization variance (1,1)-BD4 cuda-convnet remains

relatively constant after 9000 training iterations, and for b1
blocks the ip1 layer weight matrix decreases in dimension

by a factor of b1. Figure 10 (bottom) shows that the ratio of

the singular values of the trained layer ip1 weight matrix in

ðb1;1Þ-BD5 cuda-convnet networks over the singular values

of R is approximately 1=
ffiffiffiffiffi
b1
p

, suggesting that the trained

layer ip1 weight matrix in ðb1;1Þ-BD5 cuda-convnet net-

works behaves like a random matrix with deterioration as

b1 grows.

Again, the ratio of the variance and singular values of

the ip1 layer weight matrix in block diagonal setting over

that of the ip1 layer weight matrix in the fully connected

setting after 9000 training iterations on CIFAR10 using

cuda-convnet best highlight the relationship to random

matrix theory, but we also include the variance and the

singular values without taking a ratio in Fig. 11. The sin-

gular values of the fully connected ip1 layer weight matrix

follow the curve that the singular values of the truly ran-

dom matrix R create.

Figure 12 compares the probability density function of

the singular values of a truly random matrix with inde-

pendent entries to the measured distribution of the ip1 layer

weight matrix singular values using the (1,1)-BD5 archi-

tecture after 9000 training iterations. We use W1 to denote

the ip1 layer weight matrix and R to denote a 1024� 64

random matrix with iid entries that have the same variance

the entries in W1.

If in addition we make the ip2 a BDIP layer, again, the

change in variance in ip1 sees minimal effect. For

b1 ¼ 1; 2; 4; 8; 16; 32; 64, the final variance in the ip1 layer

weights using the ðb1; 2Þ-BD5 cuda-convnet method over

the final variance in the ip1 layer weights using the ðb1;1Þ-
BD5 cuda-convnet method is approximately 1 with error

� 0:03.

6 Conclusion

We have shown that BDIP layers can reduce network size,

training time and final execution time without significant

harm to the network performance. We have also shown that

random matrix theory gives informative results about

relationships in network structure that are preserved

through thousands of training iterations.

While traditional iterative pruning can reduce storage,

the scattered surviving weights make sparse computation

inefficient, slowing down both training and final execution

time. Our block diagonal methods address this inefficiency

0 2000 4000 6000 8000 10000
Iteration

0.9

1

1.1

1.2

1.3

1.4

1.5

R
at

io
 o

f W
ei

gh
t V

ar
ia

nc
e

in
 L

ay
er

 ip
1

(2,1)-BD5/(1,1)-BD5
(4,1)-BD5/(1,1)-BD5
(8,1)-BD5/(1,1)-BD5

(16,1)-BD5/(1,1)-BD5
(32,1)-BD5/(1,1)-BD5
(64,1)-BD5/(1,1)-BD5

0 10 20 30 40 50 60 70

Order

0

0.2

0.4

0.6

0.8

1

1.2

R
at

io
 o

f S
in

gu
la

r V
al

ue
 in

 L
ay

er
 ip

1

(1,1)-BD5/R
(2,1)-BD5/R

(4,1)-BD5/R

(8,1)-BD5/R
(16,1)-BD5/R

(32,1)-BD5/R

(64,1)-BD5/R

Fig. 10 9000 training iterations using cuda-convnet on CIFAR10.

(Top) Ratio of variance of ip1 weight matrix entries in block diagonal

setting over variance of ip1 weight matrix entries in the fully

connected setting. (Bottom) Ratio of trained ip1 weight matrix

singular values over singular values of a truly random matrix with the

same dimensions

Neural Computing and Applications (2020) 32:6755–6767 6765

123

by confining dense regions to blocks along the diagonal.

Without pruning, block diagonal method 1 allows for faster

training time. IP-BDIP layers preserve the learning with

focused, structured pruning that reduces computation for

speedup during execution. In our experiments, IP-BDIP

layers saw higher accuracy than the purely block diagonal

method. The success of IP-BDIP layers supports the use of

pruning as a mapping from large dense architectures to

more efficient, smaller, dense architectures. Both methods

make larger network architectures more feasible to train

and use since they convert a fully connected layer into a

collection of smaller inner product learners working jointly

to form a stronger learner. In particular, GPU memory

constraints become less constricting.

There is a lot of room for additional speedup with BDIP

layers. Dependency between layers poses a noteworthy

bottleneck in network parallelization. With structured

sparsity like ours, one no longer needs a full barrier

between layers. Additional speedup would be seen in

software optimized to support weight matrices with orga-

nized sparse form, such as blocks, rather than being opti-

mized for dense matrices. For example, for many small

blocks, one can reach up to sixfold speedup with special-

ized batched matrix multiplication [12]. Hardware has

been developing to better support sparse operations. Block

format may be especially suitable for training on evolving

architectures such as neuromorphic systems. These sys-

tems, which are far more efficient than GPUs at simulating

mammalian brains, have a pronounced 2-D structure and

are ill-suited to large dense matrix calculations [2, 23].

We have established a connection between random

matrices with independent entries and trained inner product

layers; the group behavior resembles that of a random

matrix with independent entries, but the individual weight

updates have complex dependencies. Similar random

activity occurs in the mammalian brain and suggests

looking at random matrix theory to support a network’s

plasticity or robustness. This connection could help eval-

uate network fitness. We have also shown that the rela-

tionship in structure between sister networks is perpetuated

in the ratio of the change in variance after thousands of

training iterations. We emphasize that this is a nontrivial

relationship surviving various datasets, network architec-

tures and activation functions. Random matrix theory has

been indispensable to the advancement of nuclear physics,

quantum physics, neuroscience and ecology and has the

0 2000 4000 6000 8000 10000
Iteration

7

7.5

8

8.5

9

9.5

10

10.5
V

ar
ia

nc
e

of
 W

ei
gh

ts
 in

 L
ay

er
 ip

1
10-3

(1,1)-BD5
(2,1)-BD5
(4,1)-BD5
(8,1)-BD5

(16,1)-BD5
(32,1)-BD5
(64,1)-BD5

0 10 20 30 40 50 60 70
Order

0

0.5

1

1.5

2

2.5

3

3.5

Si
ng

ul
ar

 V
al

ue
s o

f W
ei

gh
ts

 in
 L

ay
er

 ip
1

R
(1,1)-BD5
(2,1)-BD5

(4,1)-BD5
(8,1)-BD5
(16,1)-BD5

(32,1)-BD5
(64,1)-BD5

Fig. 11 9000 training iterations using cuda-convnet on CIFAR10.

(Top) Variance of weight matrix entries in layer ip1 in both the fully

connected and block diagonal settings. (Bottom) Singular values of

ip1 weight matrices for sister ðb1;1Þ-BD5 networks and of a random

matrix with iid entries of equal dimension

0.6 0.8 1 1.2 1.4 1.6
Eigenvalue

0

0.05

0.1

0.15

 P
ro

ba
bi

lit
y

D
en

si
ty

 F
un

ct
io

n
V

al
ue

λ(1/64)W
1
W

1
T

λ(1/64)RRT

Fig. 12 k 1
64
Wb1

W>
b1

is the measured empirical spectral distribution of

1
64
Wb1W

>
b1
where Wb1 is the ip1 layer weight matrix in the ðb1;1Þ-BD5

architecture after 9000 training iterations on the CIFAR10 dataset

using cuda-convnet framework. Bar graph of k 1
64
W1W

>
1

with plot of

k 1
64
RR> for a random matrix R with the same variance

6766 Neural Computing and Applications (2020) 32:6755–6767

123

potential to elevate artificial neural network analysis in the

same manner.

Acknowledgements This material is based upon work supported by

the National Science Foundation Graduate Research Fellowship under

Grant No. DGE-1256260. This work used the Extreme Science and

Engineering Discovery Environment (XSEDE), which is supported by

National Science Foundation Grant No. OCI-1053575. Specifically, it

used the Bridges system, which is supported by NSF Award No. ACI-

1445606, at the Pittsburgh Supercomputing Center (PSC).

References

1. Ailon N, Chazelle B (2009) The fast Johnson Lindenstrauss

transform and approximate nearest neighbors. IAM J Comput

39(1):302–322

2. Boahen K (2014) Neurogrid: a mixed-analog-digital multichip

system for large-scale neural simulations. IEEE 102(5):699–716

3. Cheng Y, Yu FX, Feris R, Kumar S, Choudhary A, Chang S

(2015) An exploration of parameter redundancy in deep networks

with circulant projections. In: ICCV

4. Chollet F (2017) Xception: deep learning with depthwise sepa-

rable convolutions. arXiv:1610.02357

5. Glorot X, Bengio Y (2010) Understanding the difficulty of

training deep feedforward neural networks. In: International

conference on artificial intelligence and statistics, vol 9,

pp 249–256

6. Han S, Mao H, Dally WJ (2015) Deep compression: compressing

deep neural networks with pruning, trained quantization and

huffman coding. In: ICLR

7. Han S, Pool J, Tran J, Dally WJ (2015) Learning both weights

and connections for efficient neural networks. In: NIPS,

pp 1135–1143

8. He T, Fan Y, Qian Y, Tan T, Yu K (2014) Reshaping deep neural

network for fast decoding by node-pruning. In: IEEE ICASSP,

pp 245–249

9. Herculano-Houzel S (2012) The remarkable, yet not extraordi-

nary, human brain as a scaled-up primate brain and its associated

cost. In: NAS

10. Hinton G, Vinyals O, Dean J (2014) Distilling the knowledge in a

neural network. In: NIPS

11. Ioannou Y, Robertson D, Cipolla R, Criminisi A (2017) Deep

roots: improving CNN efficiency with hierarchical filter groups.

In: CVPR

12. Jhurani C, Mullowney P (2015) A gemm interface and imple-

mentation on nvidia gpus for multiple small matrices. J Parallel

Distrib Comput 75:133–140

13. Krizhevsky A (2009) Learning multiple layers of features from

tiny images. Technical report, Computer Science, University of

Toronto

14. Krizhevsky A (2012) cuda-convnet. Technical report, Computer

Science, University of Toronto

15. Krizhevsky A (2012) cuda-convnet: high-performance C??/

cuda implementation of convolutional neural networks

16. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-

fication with deep convolutional neural networks. In: NIPS,

pp 1106–1114

17. L2 Q, Sarlo T, Smola A (2013) Fastfood—approximating kernel

expansions in loglinear time. In: ICML

18. Lebedev V, Lempitsky V (2016) Fast convnets using group-wise

brain damage. In: CVPR

19. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. IEEE

86(11):2278–2324

20. LeCun Y, Cortes C, Burges CJ The mnist database of handwritten

digits. Technical report

21. Marchenko VA, Pastur L (1967) Distribution of eigenvalues for

some sets of random matrices. Math USSR Sb 1(4):457–483

22. Masliah I, Abdelfattah A, Haidar A, Tomov S, Baboulin M,

Falcou J, Dongarra J (2016) High-performance matrix-matrix

multiplications of very small matrices. In: Euro-Par 2016: parallel

processing, vol 9833, pp 659–671

23. Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J,

Akopyan F, Jackson BL, Imam N, Guo C, Nakamura Y, Brezzo

B, Vo I, Esser SK, Appuswamy R, Taba B, Amir A, Flickner MD,

Risk WP, Manohar R, Modha DS (2014) A million spiking-

neuron integrated circuit with a scalable communication network

and interface. Science 345(6197):668–673

24. Moczulski M, Denil M, Appleyard J, de Freitas N (2016) ACDC:

a structured efficient linear layer. arXiv:1511.05946

25. Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng A (2011)

Reading digits in natural images with unsupervised feature

learning. In: NIPS

26. Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable par-

allel programming with cuda. ACM Queue 6(2):40–53

27. Tishby N (2017) Information theory of deep learning

28. Rajan K (2010) What do random matrices tell us about the brain?

Grace Hopper Celebration of Women in Computing

29. Rajan K, Abbott LF (2006) Eigenvalue spectra of random

matrices for neural networks. Phys Rev Lett 97(18):188104

30. Reed R (1993) Pruning algorithms—a survey. IEEE Trans Neural

Netw 4(5):740–747

31. Sainath TN, Kingsbury B, Sindhwani V, Arisoy E, Ramabhadran

B (2013) Low-rank matrix factorization for deep neural network

training with high-dimensional output targets. IEEE ICASSP

32. Saxe AM, Koh PW, Chen Z, Bhand M, Suresh B, Ng AY (2011)

On random weights and unsupervised feature learning. In: ICML

33. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. arXiv:1409.1556

34. Sindhwani V, Sainath T, Kumar S (2015) Structured transforms

for small-footprint deep learning. In: NIPS, pp 3088–3096

35. Sompolinsky H, Crisanti A, Sommers H (1988) Chaos in random

neural networks. Phys Rev Lett 61(3):259–262

36. Srinivas S, Babu RV (2015) Data-free parameter pruning for deep

neural networks. arXiv:1507.06149

37. Sun KHXZSRJ (2015) Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. arXiv:1502.

01852

38. Wen W, Wu C, Wang Y, Chen Y, Li H (2016) Learning struc-

tured sparsity in deep neural networks. In: NIPS, pp 2074–2082

39. Yuan M, Lin Y (2006) Model selection and estimation in

regression with grouped variables. J R Stat Soc B 68(1):49–67

40. Zeiler MD, Fergus R (2013) Visualizing and understanding

convolutional networks. arXiv:1311.2901

41. Zhang X, Zhou X, Lin M, Sun J (2017) Shufflenet: an extremely
efficient convolutional neural network for mobile devices. arXiv:

1707.01083

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2020) 32:6755–6767 6767

123

http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1511.05946
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1507.06149
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083

	Neural networks with block diagonal inner product layers: a look at neural network architecture through the lens of random matrices
	Abstract
	Introduction
	Related work
	Methodology
	Experiments: speedup and accuracy
	Speedup
	Accuracy results
	MNIST
	SVHN
	CIFAR10

	Random matrix theory observations
	MNIST
	CIFAR10

	Conclusion
	Acknowledgements
	References

