Mapping Vision Algorithms to Parallel

Architectures

QUENTIN F. STOUT, MEMBER, IEEE

Invited Paper

Because parallel architectures can vary widely, the problem of
mapping a parallel algorithm onto a given parallel machine is gen-
erally much harder than the problem of mapping a serial algorithm
onto a serial machine. This paper examines some of the problems
encountered, emphasizing mappings of vision algorithms onto
mesh, hypercube, mesh-of-trees, pyramid, and Parallel Random
Access Machines (PRAMs) having many simple processors, each
with a small amount of memory. Approaches that have been sug-
gested include simulating one architecture on another, designing
ideal algorithms for ideal architectures and simulating the ideal
architectures, and using general data movement operations. Each
of these is shown to occasionally produce unacceptably
inefficient implementations. It appears that as long as PRAMs can-
not achieve the desired cost and performance goals, programmers
must contend with carefully designing algorithms for specific
architectures.

. INTRODUCTION

Programming parallel machines is difficult for a great
many reasons. Programmers trained to program sequential
computers must unlearn many of their prejudices con-
cerning the best approach to problems. Few languages for
parallel programming have been developed, and they are
not as mature as serial languages. Debugging parallel algo-
rithms is complicated because it is difficult to determine the
state of a parallel machine, and it is difficult to maintain a
mental picture of what the correct state should be. Finally,
parallel machines vary much more widely than serial ones,
makingitdifficultto transfer programs from oneto another.

This paper is concerned with this last difficulty, exam-
ining some of the techniques that are currently being used
to map algorithms onto specific architectures. The prob-
lems and architectures are all concerned with vision and
image processing, though many of the observations are of
more general applicability. No fully satisfactory solutions
are uncovered, and it seems that none will appear soon.

In general, one might describe an algorithm at a great
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many levels. At very high levels one has paradigms such as
divide-and-conquer, dynamic programming, and branch-
and-bound, which suggest approaches to classes of prob-
lems. As more details are given the paradigm becomes an
algorithm for a specific problem, and eventually an imple-
mentation for a specific machine. The higher the level of
description, the more malleable it is, and hence the more
likely that an efficientimplementation can be developed for
a given target architecture. However, it is also true that the
higher the level of description, the more work the pro-
grammer must do to translate the description into usable
form, which requires greater understanding and decreases
programmer productivity.

Starting at a very low level, one may have an algorithm
currently running on parallel machine A and want to trans-
form it to run on parallel machine B. The easiest technique
is to develop a simulation of A on B, for then all of A’s algo-
rithms can be run on B after developing only one simu-
lation. Unfortunately, A may not have been a particularly
good architecture for the problem, and the simulation only
compounds the inefficiency. At a slightly higher level, one
may develop an “‘ideal” parallel algorithm (along with an
“ideal’” architecture for the algorithm), and then simulate
this ideal algorithm on each target machine. This presum-
ably eliminates starting with an inefficient solution, but
requires repeatedly developing simulations of ideal archi-
tectures on a given target architecture. For this to be prac-
tical, it would be helpful to have programs which can map
the ideal architecture onto the target architecture, a prob-
lem known as the mapping problem [7], [9], [41]. At a yet
higher level one may describe an algorithm in terms of stan-
dard operations which manipulate and move the data
between processors, and then develop an efficient imple-
mentation of each operation for the target machine. This
gives more flexibility than in mapping a fixed architecture
to the target architecture, but effectively utilizing this flex-
ibility requires more programmer insight.

Each of these approaches will be examined by consid-
ering a few examples. Throughout the input will be a black/
white image, stored one pixel per processor. This is a fine-
grained model of parallel computing, as opposed to a
coarse-grained model in which there are few processors,
each with a large amount of memory. Image-processing
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computers such as the CLIP series, MPP, and Connection
Machine are all fine-grained [6], [10], [15], [52], [57], and ana-
lyzing fine-grained machines allows us to concentrate on
theissuesinvolved in the parallelism, as opposed to the mix
of serial and parallel computing inherent in coarse-grained
machines. We assume that the machines are SIMD (Single
Instruction Multiple Data), in which a central controiler
issues the same instructions to all processors, since most
fine-grained vision-processing machines are of this form.
Medium- and coarse-grain machines such as most parallel
machines designed for scientific applications, or multipro-
cessor mainframes, are MIMD (Multiple Instruction Mul-
tiple Data) machines in which each processor has its own
setof instructions, as well as its own data [17],{35], [43]. Con-
verting between MIMD and SIMD machines is an important
mapping problem, but due to space limitations it will not
be considered here. We also force to omit any consider-
ation of mapping a larger problem onto a given machine,
of dynamically reassigning tasks to processors in response
to processor or communication load imbalances, of design-
ing an architecture to be efficient for a collection of algo-
rithms, of simulating multiple copies of an algorithm, or of
designing parallel languages to increase portability. Each
of these is important and is the subject of current and pro-
posed research [7],[9], [12], [16], [22], [24], [31], [37], [41], [45]-
[47], [49], [50], [62].

Analyses will always be of worst-case time. Worst-case
time can be unduly pessimistic, but it will be used here
because it is easier to analyze. The observations and con-
clusions about mapping algorithms would hold for
expected case time if such a concept could ever be defined
for vision problems. Similarly, we concentrate on relatively
simple, well-defined problems which are much more ana-
lyzable than most real vision algorithms. Our emphasis is
not on taking a useful vision algorithm and mapping it to
various architectures, but rather analyzing the process of
finding such mappings and trying to determine what makes
the process complicated for the programmer and the result
inefficient for the machine. Vision algorithms suitable for
immediate use on real images are even more difficult to
transfer and optimize.

In the next section the machine models and notation are
introduced. Parallel architectures utilized are the mesh,
pyramid, mesh-of-trees, hypercube, and Parallel Random
Access Machine (PRAM). Section Il considers lower bounds
which arise because of the communication capabilities of
these architectures, and Section IV considers mappings
between the architectures. Section V examines developing
ideal parallel algorithms/architectures and mapping them
onto target architectures. Section VI considers developing
algorithms in terms of general data movement operations,
and implementing them on targetarchitectures. Section VI
concludes with some observations.

II. DerFINITIONS

The input image will be an n X n black/white image,
stored one pixel per processor. To simplify analyses, n will
always be an integral power of 2. Analyses will be of worst-
case time measured in terms of n, analyzed using O, 2, and
©. For positive functions f(n) and g(n), f = O(g) if there are
constants N, D > 0 such that f(n) < D *g(n)foralln = N,
f = Q(g) if there are constants N, C > 0 such that C*gln) <
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f(n)foralln = N,and f = O(g) if f= O(g)and f = Q(g). The
O, 9, and © symbols are sometimes read “‘order no more
than,” ““order no less than,” and “order equal to.” We use
Ig to denote log,.

The mesh computer is a2-dimensional grid of processors,
each connected to its 4 nearest neighbors (except for edge
processors which have fewer connections). See Fig. 1(a).

@ Processor —  Communication Link

Fig. 1. Some regular parallel computers for 4 x 4 images.
(a) Mesh. (b) Mesh of trees (base mesh connections omitted
for clarity). (c) Pyramid. (d) Hypercube.

Throughout it is assumed that the mesh has exactly n” pro-
cessors. There are extensive analyses of meshes as vision
architectures, and many have been built for this purpose
(6], (81, [15], [26], [39], [33], [57].

The mesh-of-trees starts with a base which is a mesh of
n? processors, and then a tree is added over each row and
each column. These trees are disjoint except for their leaves,
which are the base processors. See Fig. 1(b). The mesh-of-
trees has a total of 3n> — 2n processors. It was originally
proposed as a general-purpose paraliel computer ideal for
VLSI implementation [56], and is only recently receiving
attention as a vision processing architecture [28], [36].

The pyramid computer also starts with a base mesh of n
processors, denoted level 0, and then adds levels of meshes
above. Each level has 1/4 as many processor as the level
below, and each processor (except those on the base) is
connected to four children on the level below. See Fig. 1(c).
The apex of the pyramid is at level Ig(n). The pyramid has
atotal of (4/3)n® — 1/3 processors. A few pyramids have been
builtforvision processing, and there has been afairly exten-
sive analysis of pyramidal vision algorithms for serial and
parallel computers [10], [11}, [27], [40], [42], [51], {541, [55].

The hypercube computer with n? processors has each
connected to Ig(nz) others. Processors are assigned labels
which are binary strings of length Ig(n?), and two processors
are connected if and only if their labels differ in exactly one
bit. See Fig. 1(d). While most hypercubes are currently being
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used for scientific applications {43], there is increasing use
and analysis of them for vision applications [17], [28], [34],
[52].

The mesh, mesh-of-trees, pyramid, and hypercube all
have the property that they have a systematic intercon-
nection scheme which can be represented very simply in
formal grammers. They have numerous useful properties
such as the fact that they can be subdivided into smaller
machines of the same type. They (and others like them) are
sometimes known as regular architectures. Distributed sys-
tems such as local area networks are often irregular, and
aredifficultto coordinate on asingle task. Irregular systems
will not be considered here.

The PRAM (Parallel Random Access Machine) is really a
class of architectures. The standard model is as in Fig. 2(a),

Shared Memory

Fig. 2. Parallel random access machines for 3 X 3 images.
(@) A shared-memory PRAM. (b) A distributed memory PRAM.

where thereis aglobal shared memory accessible in parallel
by all processors. The primary variations in this model are
whether or not two or more processors can read the same
memory location simuitaneously (Concurrent Read, CR,
versus Exclusive Read, ER), and whether or not two or more
processors can write to the same memory location simul-
taneously (Concurrent Write, CW, versus Exclusive Write,
EW). No processor can read a location while another pro-
cessor iswriting to it. If concurrent writing is allowed, then
there are variations as to which value ends up being written
into memory. For example, the minimum value may end up
there, or one of the values sent may be chosen arbitrarily.
For our purposes the latter is sufficient.

Another model of a PRAM isadistributed memory model,
as in Fig. 2(b), where all memory is at the processors and
processors communicate directly with each other, as
opposed to indirectly via shared memory on the standard
model. Here processors send messages requesting or trans-
mitting values, instead of reading or writing directly from
memory, and again one can consider concurrent versus
exclusive options. One can have concurrent sends, in which
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the same value is sent to all processors on a list (perhaps
with restrictions on the form this list can take), versus exclu-
sive sends where only one message at a time may be sent,
and concurrent receives, in which multiple simultaneous
incoming messages are permtted, versus exclusive receives.
In the case of concurrent receives one needs to specify
which message reaches the processor. Again, for our pur-
poses it sufficies to assume that the message is chosen arbi-
trarily.

If the memory/processor ratio is large, then the differ-
ences between the two types of PRAM are significant when
many processors want to read different memory locations.
In the former model this is always possible in unit time, but
in the latter model they may have to queue up if they are
all trying to fetch values stored in the same processor. How-
ever, in a fine-grained model where the memory/processor
ratio is a constant the differences are quite minor, and for
our purposes either model is acceptable. In either model,
we assume that there are n” processors. The RP3 is a sim-
ulation of a shared memory PRAM [35], while the Connec-
tion Machine is sometimes described as a simulation of a
distributed memory PRAM [52]. Both of these machines are
to be used for numerous applications, including vision pro-
cessing [19, 52].

Finally, the n X n input image is assumed to be initially
present in the mesh, stored one pixel per processor in the
standard manner. For the pyramid and mesh-of-trees the
image is initially in the base. For the hypercube it is stored
using the Gray code discussed in Section IV. For the shared
memory PRAM the image starts in the shared memory, and
for the distributed memory PRAM the pixels are assigned
to processors using row-major ordering.

I1l. Lower BOuUNDs

One important aspect of designing efficient algorithms
and determining constraints on their portability is to under-
stand the various lower bound arguments that can apply.
There are primarily three techniques that are used, based
on speedup, communication radius, and bandwidth or cut-
set considerations.

The speedup bound means that a machine with P pro-
cessors should take at least T/P time to solve a problem
requiring T time on a single processor. To apply this one
must be careful to make sure that the comparisons are fair
(e.g., that the single processor have as much memory as all
P processors combined), and to understand the anomalies
that can occur if the serial algorithm is not the best possible
(e.g., some search heuristics may lead the serial processor
astray [23]). When applied to sorting, the speedup bound
shows that n processors must take Q(log n) time to sort n
numbers, no matter how the processors are arranged. For
the image processing problems considered here, however,
an n x n image can be processed in ©(n? time on a serial
processor, and hence speedup for n® processors gives the
trivial lower bound of Q(1).

To define communication radius, fixamachine M, let D(p,
q) denote the minimum number of communication links
on any path from processor p to processor q in M, and let
R(p), the radius at p, equal max {D(p, q): q a processor in
M}. R(p) is the largest number of communication links
needed to communicate from p to any other processor. The
communication radius of M is the mimimum value of R(p)
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over all processors p in M. For example, on the mesh the
communication radius is achieved at the four center pro-
cessors, where each takes n hops to go to the furthest cor-
ner. For the pyramid, mesh-of-trees, and hypercube the
communication radius is ©(log n). Given any nontrivial
problem in which one processor is to end up with a value
depending on values initially in all of the processors, such
assorting or determining the average gray level of an image,
any algorithm must take time proportional to the com-
munication radius. As will be shown below, each of these
architectures can achieve this lower bound on simple prob-
lems such as determining average gray level.

Cutset or bandwidth lower bounds are established by
considering some collection C of processors, counting the
number of wires connecting processors in C to the pro-
cessors notin C, and determining the number of values that
must pass over these wires. The time required can be no
less than the number of items divided by the number of
wires. For example, on a mesh, if each processor starts with
an item and these are to be sorted, then considered the
region consisting of the left half. There are exactly n wires
connecting it to the right half, and in the worst case all
n*/2 items on the left must move to the right. Therefore at
least n/2 time units are needed, so sorting takes Q(n) time.
Cutting the pyramid or mesh-of-trees in half shows that they
too must take Q(n) time to sort since they only double the
number of wires crossing between the halves. For the
hypercube these arguments only show that sorting must
take Q(1) time, since any collection of P < n%2 nodes has
Q(P) wires connecting them to the other nodes.

Because the mesh can sort in ©(n) time [53], the sorting
lower bounds can be attained for the mesh, pyramid, and
mesh-of-trees. However, the best known sorting algorithm
for the hypercube is bitonic sort, which takes (log? n) time
[5]. This is larger than any of the hypercube lower bounds,
and it is an interesting open question whether the hyper-
cube can sort faster.

One slightly different lower bound that will be used later
is thata pyramid computer needs ((n log n)"? time to move
n log n items from the leftmost column to the rightmost
one. This was proven in [27] by an argument that is a blend
of the radius and cutset arguments using weighted links.

IV.  STEPWISE SIMULATION

The simplest technique for mapping an algorithm
designed for architecture A onto a target architecture B is
to determine an efficient mapping of A onto B, and then
perform a stepwise simulation of A. This has the advantage
thatalgorithms currently in use are presumably already well
understood and implemented correctly, and it also has the
advantage that once the mapping has been determined, all
algorithms for A can be implemented on B. Because of this
reusability, it is reasonable for a programmer to spend con-
siderable time optimizing the mapping.

Abstractly measuring the efficiency of a mapping is often
done in terms of factors such as the processor load (max-
imum number of processors from A simulated by a single
processor of B), link load (maximum number of commu-
nication links from A mapped onto a single communication
link of B), dilation (maximum length in B of the image of a
communication link in A), and expansion (number of pro-
cessors in B divided by number of processors in A) [7], [9].
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However, we only consider mappings between machines
having the same number of processors (or the same num-
ber of base processors), and because we are analyzing fine-
grained simulation each processor can simulate only a con-
stant number of processors. Rather than use indirect mea-
sures of mapping efficiency, we will only consider the direct
measure, namely the time to simulate a single step. Ini-
tialization time can also be significant but will be ignored.

To attain the best possible simulation times, some of the
mappings are nontrivial, especially in the subsection on
"‘Regular Architectures Simulating Regular Architectures.”
Further, due to space limitations many details have been
eliminated. Readers who are most interested in an overview

“of the results may prefer to examine Fig. 5, which sum-

marizes the results in the remainder of this section.

Simulations Involving PRAMs

For each regular architecture, the time needed to sim-
ulate a CRCW PRAM is an important upper bound on the
time needed to simulate arbitrary architectures. If the PRAM
model being simulated is a shared memory model with M
memory locations, then the first transformation is to a dis-
tributed memory PRAM where each processor simulates
M/n* shared memory locations. To simulate a distributed
memory CRCW PRAM, suppose the concurrent write is such
that two or more simultaneous writes to the same location
are resolved by taking the smallest value. Each processor
trying to write a value v to location i creates a record (i, v).
By first sorting the records by their destination, all values
bound for the same location are in consecutive locations.
If ties are broken by placing the smaller value first, then a
record (i, v) contains the value that should be written to i
if and only if the record in the previous processor has a dif-
ferent destination. Records not satisfying this condition are
eliminated, and the surviving records are routed to their
destinations. The concurrent read can similarly be reduced
to a fixed sequence of sorting and routing steps, plus a dis-
tribution step in which values are distributed to runs of con-
secutive processors holding records requesting the value
from the same location [29].

Using this approach, on each regular architecture con-
sidered here a step of a CRCW PRAM can be simulated in
the time needed to sort. Therefore the mesh, pyramid, and
mesh-of-trees neded 6(n) time, and the hypercube can sim-
ulate in ©(log? n) time. Further, these simulations can be
easily modified to finish in the same time using write con-
flicts such as summing the values written, taking an arbi-
trary value written, taking the median value written, or tak-
ing the mode value written. Since simulating the EREW
PRAM is also as time-consuming as sorting, if one is writing
PRAM algorithms only as ideal algorithms to be used in sim-
ulation, then there is no reason not to use concurrent reads
and concurrent writes.

If the CRCW PRAM being simulated has fewer processors
than the simulating machine, then it is sometimes possible
that simulations can be performed faster than just having
a smaller machine simulate the PRAM. For the mesh this is
nottrue, since any collection of Pprocessors in amesh must
have a communication diameter of Q(P"?) (and hence a sim-
ulation time of Q(P"), which can be attained by using a
P x P2 mesh. However, a mesh-of-trees with an n X n
base can simulate n PRAM processors in 6(log n) time, ver-
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sus the 6(n"?) time needed by a mesh-of-trees with a base
of n processors, by using the diagonal processors to sim-
ulate the processors, and the row and column trees to man-
age communication. If the PRAM processor i is to send to
processor j, then the message can travel along the tree in
row i to reach column j, where it then travels in the column
tree to row j. To finish in logarithmic time it must be that
the concurrent write operation can be determined by the
column tree in logarithmic time. All concurrent write oper-
ations of widespread usage, such as using the minimum or
maximum value, using the average value, using the value
sent by the processor of smallest or largest index, or using
an arbitrary value, satisfy this condition. Similarly, for any
concurrent write operation in widespread use, the hyper-
cube can simulate a CRCW PRAM with n?~¢ processors, for
any fixed e > 0, in ©(log n) time, where the implied mul-
tiplicative constant depnds upon e. This is because the
hypercube can sort this amount of data in ©(log n) time [34].
Another improvement of some use is the fact that, on the
mesh, the basic sorting-based approach to PRAM simula-
tion can be modified so thatif itis known that the maximum
distance between source and destination processors for any
message is d, then the step can be complete in 6(d) time.

Reversing the direction of simulation, the simpler EREW
PRAM, and hence also the CRCW PRAM, can simulate any
fixed interconnection architecture of degree d, with the
same number of processors, in ©(d) time. This can be done
by having d locations for each simulated processor to sim-
ulate the input communication links. To simulate one time
step the PRAM processor reads and resets these locations,
performs the calculations performed by the processor it is
simulating, and writes the output values to the appropriate
locations. This shows that the EREW PRAM can simulate the
mesh, pyramid, and mesh-of-trees in ©(1) time. To simulate
the hypercube would take 6(log n) time by this procedure,
but for all of the algorithms considered here it is known
which input link will contain data, and hence only one loca-
tion need be examined and the simulation takes O(1) time.
Thisis notthe only possible model of hypercube algorithms
and architectures, and it is easy to conceive of models where
an EREW PRAM would take 6(log n) time to simulate one
step. For example, Valiant’s work on routing assumed that
in unit time a hypercube processor could receive an input
on each link, decidewhereto forward it, and send an output
on each link [59]. However, for our purposes it is not rea-
sonable to call this a single time step.

Regular Architectures Simulating Regular Architectures

Since the pyramid and mesh-of-trees contain the mesh
in their base, they can do a straightforward simulation of
it in ©(1) time. The hypercube can simulate the mesh by
using Gray codes. If G is a Gray code mapping 0. .n — 1to
0..n — 1 (viewing the latter set as bit strings of 1g(n) bits),
then the Gray code property is that G(i) and G((i + 1) mod
n) differ by a single bit, for 0 < i < n. The mesh is mapped
onto the hypercube by mapping processor (i, j) to the
hypercube processor with label which is the concatenation
of G()) and G( ). This maps mesh neighbors to neighboring
processors in the hypercube, and the simulation takes 6(1)
time. Notice that any such Gray code map has the property
that each row is mapped to a subcube, as is each column.
For some of the mappings mentioned later, we need addi-
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tional properties which depend upon using the reflexive
Gray codes, instead of arbitrary Gray codes. If G, denotes
the reflexive Gray code mapping0. .2° — Tinto binary strings
of length b, then they can be recursively defined via G4(0)
=0,Gy(1) =1, and

0G, (i), i
Gpliy = b>1
1G,_12° =1 — i), i

IA
N
&
|
A
|
—

v
N
it

For the mesh to simulate the other architectures, the
PRAM simulation result implies that it can simulate each in
O(n) time. Further, since each of the other architectures has
a communication radius of 6(log n), and the mesh has a
communication radius of ©(n), it must take Q(n/log n) time
to simulate each of the others. For the pyramid there is a
natural mapping of the levels above the base down onto its
base, where at most one upper processor is mapped onto
any base processor (see Fig. 3(a)). Using this mapping, the

1 1 t 1
2 2
1 1 1 1
3
1 1 t 1
2 2
1 1 1 1
(a)
11 ! 1 (1
142 2 2|1

B o l}nlalg(n)-l)

(b)

Fig. 3. Mapping the pyramid onto its base. (a) Local map-
ping of pyramid onto base (numbers indicate level). (b)
Squares for global optimal mapping (numbers indicate min-
imum level).

mesh will take ©(n) time since the apex is mapped to a pro-
cessor at distance 6(n) from the processors simulating its
children. This mapping can be modified to achieve the lower
bound by dividing the base into (2 Ig n — 1)? squares, as in
Fig. 3(b). Now a pyramid node at height h is projected down
to the base just as before, and if it is in a square labeled h
or greater it is mapped to that base square. Otherwise the
nearest square labeled h is located and the pyramid node
is mapped to any base processor not already mapped onto.
With this mapping adjacent nodes in the pyramid are
mapped to the same or adjacent squares, and hence are
never more than ©(n/log n) apart. Using the fact mentioned
above that the mesh communication can be modified to
finish in time proportional to a known upper bound on the

PROCEEDINGS OF THE IEEE, VOL. 76, NO. 8, AUGUST 1988



distance messages need to travel, pyramid simulation takes
O(n/log n) time per step.

This same approach can be used when simulating the
mesh-of-trees on the mesh, finishing in ©(n/log n) time using
asimilar complicated mapping and in ©(n) time using a nat-
ural mapping which maps each row and column tree to its
base row and column, respectively, using the mapping in
Fig. 4a) When simulating either the pyramid or mesh-of-

0 level 4
/\
0 level 3
/\ —
0 1 2 level 2
o 1 2 3 4 level 1
0 1 2 3 4 5 6 7 8 9 base
0000 0001 0011 0010 0110 O111 0101 0100 1100 1101 Gray code
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onj 3
oo 1 1| 1
* o 0

nof 1 1] 1
m| 4
101 2 2
100 1 11 1

. .

- .

Y .

(b)

Fig. 4. Mapping into the hypercube via the base. (a) Tree
nodes over base nodes they are mapped to (lines indicate
parent-child links). (b) Pyramid nodes over base nodes they
are mapped to.

trees, the simulations finishing in ©(n/log n) time are glob-
ally optimal in that they minimize the worst possible com-
munication. However, the simpler embeddings have the
property that if the algorithm is only using the bottom k
levels then each step can be simulated in only 6(2%) time
since no two neighboring nodes are more than 02" apart.
This situation does not help the globally optimal embed-
ding, which still takes ©(n/log n) time. Since many pyramid
and mesh-of-trees algorithms use only a few levels at atime,
globally optimal embeddings may not provide the best total
simulation times, and the more natural locally optimal
embeddings may be better. However, this is only true if it
is known which levels are being used, and if an intelligent
simulation is being employed which utilizes this infor-
mation. By a naive simulation with locally optimal embed-
dings it is meant that the simulation assumes that com-
munication atall levels is possible, taking ©(n) time per step.

For the pyramid to simulate the mesh-of-trees, level i of
the pyramid will simulate levels 2i — 1 and 2/ of the mesh-
of-trees. Partitioning the base into squares of edgelength
2%, above each base square there are exactly 3*(2%) mesh-
of-trees processors in row trees at levels 2i — 1and 2i, two
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per row at level 2i — 1 and one per row at level 2i. In the
pyramid, above each base square there is a square with
exactly 2 * 2/ processors at level i. Each pyramid processor
in this square at level i will stimulate three processors from
mesh-of-trees row trees at levels 2i — 1 and 2i above the
same base square, using any arbitrary assignment. The pyr-
amid processors also each simulate three processors from
column trees above the same base square. This mapping
is based on techniques from [27], and using data movement
operations there it is straightforward to show that any sin-
gle step of the mesh-of-trees can be simulated in 8(n"?) time.
Using the Q((n log n)""?) lower bound noted in Section |11 for
the pyramid moving n log n items from the first column to
the last, coupled with the fact that the mesh-of-trees can
accomplish this in ©(log n) time, shows that the best pos-
sible simulation is ©((n/log n)"?). It seems that the mapping
given here is as good as possible, and that a slightly
improved use of the techniques in [27] might be able to
prove this.

For the hypercube to simulate the pyramid and mesh-of-
trees, the basic technique is to map each onto its base and
then apply the Gray code mapping to the map the base onto
the hypercube. To take advantage of the fact that proces-
sors can be adjacent in the hypercube that are images of
processors not adjacent in the mesh, for the pyramid the
mapping down to the base is done in a slightly altered fash-
ion so that the neighbors will ultimately be mapped to
nearby processors in the hypercube. Fig. 4 illustrates the
mapping that is used to map each row or column tree down
to the base, and the mapping of the pyramid into its base.
Using these maps, neighbors in the mesh-of-trees are
mapped to processors within 2 of each other in the hyper-
cube, and neighbors in the pyramid are mapped to pro-
cessors within 3 of each other, and the hypercube can sim-
ulate a step of either in 6(1) time [28], [48].

For the mesh, pyramid, or mesh-of-trees to simulate the
hypercube it seems that no mapping can be better than just
arbitrarily mapping the hypercube onto the base and using
the PRAM simulation result, taking 6(n) time. While it is
easy to prove that each must take Q(n/log n) time, the author
does not know of a proof that @(n) time is required.

Finally, for the mesh-of-trees to simulate the pyramid it
again seems that a simple simulation is as good as possible.
For each pyramid processor above the base, determine the
base processor it maps to under locally optimal pyramid to
mesh mapping, determine the mesh-of-tree processor in a
column tree that would map to the same base location under
the locally optimal mapping, and map the pyramid pro-
cessor to this column tree processor. In [31] it is shown that
the communication can be arranged so no bottlenecks
occur, and the simulation time is 6(log n).

Fig. 5 summarizes the simulation times obtained by the
above mappings. In some cases the simulations are quite
simple, but in other cases they are less so, and are com-
plicated by the fact that there are globally optimal versus
locally optimal solutions for some source/target pairs. The
simulation strategy, which is the easiest way to deal with
the ““dusty deck” problem of converting existing algo-
rithms from one parallel machine to another, is compli-
cated by the fact that naive simulation of all possible com-
munication may be significantly slower than intelligent
simulation of only those portions actually used. Achieving
the best possible results, even when restricted to the using
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Fig. 5. Simulation times.

stepwise simulation, requires that the programmer under-
stand the algorithm.

V. IDEAL PARALLEL ALGORITHMS

In this section we examine the approach based on devel-
oping an ideal parallel algorithm for a given problem, and
then mapping this to a target machine. The only restriction
that we impose is that the optimal solution must be for a
machine with no more than n? processors, and that each
processor have only a constant amount of memory. While
thisapproachis closely related to the simulations discussed
above, it has the possibility of avoiding inefficiencies that
arise when the architecture being simulated is not par-
ticularly well suited for the problem. However, it has the
difficulty that there may not be any such ideal algorithm,
or that there will be too many. Further, since it potentially
requires developing a new mapping for each problem, to
be widely useful the mapping process should be as auto-
mated as possible. Some systems for automatically finding
maps are described in [7], [41].

Reduction

One of the more fundamental operations used is global
reduction (or aggregation), in which each processor has
some value and these are all combined to form a single
result. For example, determining the average gray level of
the image can be viewed as a reduction which sums up the
gray levels, followed by a division by the number of pixels.
Reduction can also be used for problems such as counting
the number of pixels with a given property, finding the left-
most, topmost, rightmost, and bottommost black pixels, or
determining if all processors have terminated. Reduction
is quite simple, and illustrates the principle that generally
one wants to minimize communication. It also illustrates
that applying this principle is not as straightforward as one
would suppose.

Summing the values in the processors will be used as a
specific example of the reduction operation. The natural
parallel approach to finding the sum is to find the sum of
the first half, while simultaneously finding the sum of the
second half,and then add the two partial sums. This directly
yields a balanced binary tree approach with n? leaf nodes,
which finishes in exactly 2 Ig (n) steps. Values start at the
leaf nodes and are passed up to the parents. FEach node
receiving two values from its children adds them and passes
up their sum. After the first step there are only n%/2 numbers
remaining to be added, after the second there are only
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n*l4, etc. This is an “/ideal” parallel algorithm/architecture
for this problem, assuming that concurrent reads or con-
current writes are forbidden. (See [13] for faster summing
algorithms on CRCW PRAMs. If concurrent reads, or con-
current writes are forbidden then it is straightforward to
show that any reduction operator must take Q(log n) time.)

If this ideal parallel algorithm is applied to the pyramid,
one quickly sees that actually one should divide into 4
pieces, rather than 2, and that these should be the quad-
rants of the base. Each node will compute the sum of the
numbers below it by adding together the four answers
passed to it by its children. The algorithm finishes in Ig(n)
steps, where each step involves 3 additions. Notice that for
the common row-major ordering of the base processors,
the quadrants do not correspond to contiguous numbers.
A naive automatic mapping technique which maps the leaf
nodes of the ideal tree directly onto the base nodes of the
pyramid with the same numberwould give a very inefficient
algorithm. An efficient solution could be found automat-
ically, but it requires that the mapping program notice that
by coalescing pairs of levels in the tree together it creates
atreewhereeachinterior node has4children. The mapping
program must also notice that the pyramid contains such
a tree with the apex as its root and the base processors as
the leaves, though not with the standard ordering.

Worst problems occur when trying to map onto the mesh-
of-trees. Again one tries to reduce the number of partial
sums remaining as quickly as possible, but doing so based
on halves or qudrants does not seem to work efficiently. To
combine 4 numbers stored one per quadrant in the middle
of the quadrant takes logarithmic time. This would create
an algorithm obeying a recurrence of the form T(n) =
T(n/2) + 6(log n), which gives T(n) = 9(10g2 n)time to com-
pute the entire sum. To produce a more efficient algorithm,
one notices that in each row the ideal algorithm can be
directly applied, finding the row sum and then moving the
answer back down the row tree to place it in the leftmost
base processor in logarithmic time. Now all partial sums are
in the first column, where again the ideal algorithm can be
applied using the column tree, completing the problem in
logarithmic time. Once again, this solution might be dis-
covered by an automatic mapping program if it mapped the
top half of the tree onto the first column, and the bottom
pieces of the tree onto the rows, and then identified the top
of each row tree with that row’s leaf in the first column tree,
but discovering such mappings seems to be beyond cur-
rent mapping systems.

Forthe mesh, the ideal tree approach can be used but will
give an algorithm which is slower than optimal by a mul-
tiplicative constant. Instead a simple approach of finding
the sum in each row (and storing it in the leftmost pro-
cessor), and then adding these sums along the first column,
will give an algorithm requiring only 2(n — 1) steps, where
each step involves one addition and passing one number.
Discovering a reasonable mapping of the binary tree onto
the mesh is within the capabilities of automatic mapping
systems (7], but the extra overhead of simulating the tree
is fairly substantial when compared to the simple approach.

For the hypercube, again the ideal binary tree could be
mapped onto the hypercube by coalescing nodes and map-
ping the resulting quotient graph onto the hypercube, but
the results are not as good as can be obtained by an algo-
rithm more natural for the hypercube. This is the ““recursive
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halving” approach of having each node with a high-order
bit of 1 send its value to its neighbor with a high-order bit
of 0. The nodes receiving a value add it to their value. The
number of partial sums remaining is n%2, and they are all
stored in a subcube of 1 smaller dimension. The process is
recursively applied, taking Ig(n®) = 2Ig(n) steps, each taking
a constant amount of time.

Notice that the hypercube, or at least the hypercube pro-
cessors and the communication links used by recursive
halving, can also be considered the ideal architecture for
reduction, using only n? processors instead of the 2n? — 1
used by the binary tree. However, the tree for recursive
halving has a processor with degree 2 Ig(n), as opposed to
the degree 3 or less for all processors in the binary tree. Had
we started with the recursive halving tree as the ideal archi-
tecture, the mappings would have been less efficient since
the other architectures do not have nodes of logarithmic
degree. This would have forced neighbors of the apex to
be more than a constant distance away, which would force
the simulation to take more than constrant time per step.
In the pyramid and mesh-of-trees this would make the algo-
rithm take more than logarithmic time using a naive sim-
ulation. Thus the efficiency of simulating an ideal solution
depends on the specific “ideal” architecture chosen, and
on the target architecture.

Extreme Points

The next example is more sophisticaed than reduction,
but still results in significantly reducing the amount of com-
munication used in later stages. We are interested in deter-
mining the convex hull of the black pixels, where the con-
vex hull of a finite planar set is the smallest convex polygon
containing them. It is easy to show that the corners of this
polygon are points of the set. See Fig. 6. The corners, called

® Exweme point

Fig. 6. Extreme points.

the extreme points, are a concise representation of the con-
vex hull. Using only them, one can determine properties
such as the smallest circle enclosing the figure, a smallest
rectangle enclosing the figure, the diameter of the figure,
etc. [26].

We will consider only the problem of finding the extreme
points of all black pixels, rather than of each individual
object. Finding the extreme points of each object typically
requires ablend of the approaches used to find the extreme
points of all black pixels and to label connected compo-
nents (discussed below).

One commonly used approach for determining extreme
points is to use divide-and-conquer, based on the obser-
vation that if the points are partitioned then a point which
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is extreme for the entire set must be extreme for its par-
tition. This is given in Algorithm 1.

Algorithm 1 Finding Extreme Points via Divide-and-
Conquer

1) Divide theimage in half by aline and find the extreme
points of each half (as if each was the entire image).
Call these points “candidates.”

2) Findthe two lines of support between the halves and
eliminating all candidates in the center between the
lines of support. The remaining candidates are
extreme points of the entire image.

Fig.7 shows the lines of support that need to be determined
when merging two halves. They can be determined by a

line of support

line of support

Fig. 7. Lines of support.

logarithmic search on each side, where one step involves
sending a description of one edge of the polygon on one
side to the other side and determining if all pixels on the
other side lie on the same side of the line as the pixels on
thesendingside. Forexample, inFig.7, if side A isthe probe,
then the reply is yes, while if side B is the probe then the
reply is no. Based on this, one knows that the support line
lies between A and B.

If step 2) is interpreted as requiring such a binary search,
where each step requires sending a value to all processors
ontheother side and then collecting their replies, then step
2) involves ©(log n) searches, each taking Q(log n) time to
transmit the query and collect the replies. Thus the total
time for step 2) is Q(log? n), and the total for the entire algo-
rithm is Qlog® n). This approach can be directly imple-
mented by the pyramid in 8(log® n) time, and also by the
hypercube and mesh-of-trees in the same time. Further, the
tree connections of the pyramid provide a perfect imple-
mentation if one alternates between vertical and horizontal
separating lines to do the division in step 1).

However, if one does not insist on this reading of the algo-
rithm then faster divide-and-conquer algorithms are pos-
sible. First, on the pyramid, hypercube, and mesh-of-trees,
when abinary search is being conducted, each time aprobe
edge is being tested it takes logarithmic time to send the
information and then collected the replies. This only uses
one level of the machine at a time, so most processors are
idle. One can pipeline probes, sending each over one time
step after the previous one. By dividing the remaining can-
didate edges into a logarithmic number of pieces (instead
of two), each round still takes logarithmic time, but only
O((log n)/log log n) iterations are needed.

Another speedup by a factor of log log n can be obtained
by combining a logarithmic number of pieces together at
one time, rather than two at a time. To obtain both speed-
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ups one could combine 6((log n)"?) pieces together simul-
taneously, using O((log )" probes from each at each step.
In practice, however, the greatly increased difficulty of
implementing either of these speedups makes it nearly cer-
tain that they would never be used. Further, the extra over-
head introduced would require that n be extremely large
before the log log n factors would overcome the overhead.
Because of this, from now on improvements by factors less
than log n will not be discussed.

Significantly better times can be obtained if one uses only
vertical separating lines instead of alternating between hor-
izontal and vertical ones. Eventually the recursive appli-
cation produces regions which are each a single column.
In a column, the extreme points are the topmost and bot-
tommost points, which can be determined by simple reduc-
tion operations, rather than the slower and more compli-
cated general divide-and-conquer approach. Now, for each
candidate in each column, two lines of support are deter-
mined. Assuming that a candidate is the topmost point in
its column (with the bottommost points having a similar
operation), the line of support to all candidate points to the
left is determined, as well as the line of support to all can-
didate points to the right. For each candidate C, its lines of
support can be found by determining maximal angles, rel-
ative to vertical with C as the origin, from C to any other
candidate on the left and to any other candidate on the right.
Finally, Cis an extreme point only if these lines of support
from an angle less than . This is utilized in Algorithm 2.

Algorithm 2 Extreme Points via Column Reduction and
Complete Interchange

1) Determine the topmost and bottommost black pixel
in each column. Call this “‘candidates.”

2) For each candidate, find the support line to all can-
didates to the right, and the support line to all can-
didates to the left. The candidate is extreme if and
only if these support lines from an angle of less than
w (towards the object).

Toimplement Algorithm 2 efficiently one needs to be able
to perform reductions in each column, transmit the can-
didates to all other columns, and then again perform col-
umn reductions. The column and row trees of the mesh-of-
trees provide precisely these connections, and the entire
algorithm can be completed in B(log n) time [28], [36]. Since
all the reduction operations are maximums over a prede-
termined collection of possibilities bounded by a poly-
nominal in n (i.e., either n row coordinates to find the col-
umn candidates, or over slopes which can have O(n?
values), these can be determined in 6(1) time on a CRCW
PRAM [58]. Therefore the CRCW PRAM can complete this
algorithm in 6(1) time, though logarithmic time would be
needed if the concurrency in either the read or write was
prohibited.

The mesh could simulate CRCW PRAM and mesh-of-trees
algorithms in ©(n) time, if the stepwise simulation of the
mesh-of-trees uses the global simulation or intelligently
uses the local simulation. Naively using the local simulation
would increase the times by a factor of log n. If a stepwise
simulation of the pyramid implementation of the original
divide-and-conquer aglorithm is performed then the times
would increase to 8(n log’n)if the global simulation is used,
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to ©(n log n) if the local simulation is used intelligently, and
to O(n log’ n) if the local simulation is used naively.

The hypercube can simulate the mesh-of-trees imple-
mentation of the column reduction algorithm in 6(log n)
time, it can simulate the pyramid implementation of the
divide-and-conquerin 6(Iog3n)time, anditcansimulatethe
CRCW PRAM implementation of the column reduction
algorithm in 6(log? n) time.

For the pyramid one confronts a confusing situation. If
one admits concurrent reads and concurrent writes, then
the CRCW PRAM provides the “natural” structure for the
fastest possible algorithm. If one does not admit concur-
rent reads or concurrent writes, then the reduction oper-
ations are fairly naturally performed by the mesh-of-trees.
Whichever of these two possibilities one adopts, applying
them to the pyramid creates severe problems. If the pyr-
amid does a stepwise simulation of the mesh-of-trees ver-
sion it will take 6(n"?) time, and stepwise simulation of the
CRCW PRAM would encounter the sorting bound and take
O(n) time. Thus the pyramid will take significantly longer
by executing the fastest parallel algorithm, as opposed to
the time required using the simple initial divide-and-con-
quer. Similarly the mesh-of-trees will perform much slower
if it does a stepwise simulation of the faster CRCW PRAM
algorithm, for the communication requirements of simu-
lating the PRAM increase the time to 6(n).

These observations lead us to conclude that there prob-
ably is no ideal parallel algorithm for determining extreme
points, at least in the sense that simulating it gives good
results on all architectures. Divide-and-conquer provides
a useful starting point for developing good extreme point
algorithms, but significant variations occur when one con-
siders how to repeatedly divide (e.g., alternate horizontal
and vertical, or always use vertical), when to stop using
divide-and-conquer and instead apply a different tech-
nique on the small pieces (e.g., stop when it is reduced to
a single column), and how many pieces can be merged
together at one time (e.g., 2, or n). These variations signif-
icantly affect the amount of communication required. The
faster column reduction algorithm has the property that it
uses more communication to combine pieces together,
when compared to the original version, and more com-
munication to do the simultaneous column reductions.
While reducing communication is an important general goal
in designing efficient parallel algorithms, for each archi-
tecture there is a point beyond which further reductions
do not help. A slow, communication-intensive operation on
onearchitecture, such as determining the topmost and bot-
tommost black pixels in each column on the pyramid, may
be fast and exactly matched to the communication capa-
bilities of another architecture, such as the mesh-of-trees.

Labeling

In component labeling, each black pixel is assigned a
label, where two black pixels have the same label if and only
if they are connected by a path of adjacent black pixels. Two
black pixels are considered adjacent if and only if they share
an edge ("’4-connectivity’’), though with only trivial changes
the same algorithms work if they are considered adjacent
whenever they share a corner ("“8-connectivity”). In all of
the algorithms, black pixels start with a label that is the con-
catenation of their row and column coordinates, i.e., it is
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their number in row-major ordering of the processors. At
the end, all pixels in a connected component will have as
their label the smallest initial label of any pixel in the com-
ponent.

On a parallel computer where adjacent pixels are in adja-
cent processors, an extremely simple algorithm for this
problem is to have each black pixel start with its row-major
index as its label, and then repeatedly take as its label the
minimum of its label and the label of any of its black neigh-
bors. This process continues until no pixels change their
label. In each component all pixels adjacent to the pixel
with the smallest initial label receive their final label during
the first execution of step 2), while those two pixels away
receive their label during the second execution, and so on,
where an item at internal distance d receives the label at
iteration d. (Given a connected object, the internal distance
between two pixels in the object is 1less than the minimum
number of pixels needed to form a connected path from
one pixel to the other.) If the components are small or fairly
close to being convex this algorithm can work quite well,
but in the worst case it can take 8(n?) time since a figure
may have two pixels at internal distance 6(n? (see Fig. 8).

Fig. 8. A bad image for propagation.

A much better approach is to use divide-and-conquer.
Apparently the first application of this to images is in Nas-
simi and Sahni [33], where it is used to provide an optimal
mesh algorithm. The algorithm is given in Algorithm 3.

Algorithm 3 Divide-and-Conquer Component Labeling

1) lInitially each pixel starts with its row-major index as
its label.

2) If the image is 1 x 1 then the algorithm is finished,
otherwise divide the picture into quadrants and label
the components in each quadrant, ignoring adjacent
pixels in other quadrants. (This is a recursive call to
the algorithm starting at Step 2.)

3) Combine adjacency information from along the
boundaries of the quadrants to decide on the final
labels of all components lying in more than one quan-
drant.

4) Correct the labels of components lying in more than
one quadrant.

Fig. 9 shows the labels as they might be assigned by the end
of step 2). Notice that the only components which can have
morethan two labels are those lying in more than one quad-
rant. This means that step 3) uses only the adjacency infor-
mation from pixels along the borders of the quadrants,
instead of the entire image. This use of a restricted amount
of data is crucial in obtaining the desired speed.
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Fig. 9. Labels assigned in quadrants.

In step 3), determining the labels by using the border
information is the connected components problem for
undirected graphs. This subproblem can be solved inagreat
many ways. For example, one could construct an adjacency
matrix, and use a parallel version of Warshall’s algorithm
to compute the connected components[61]. This would take
(n) time, and could be accomplished in this time by any
of the architectures discussed herein, based on Van Scoy’s
O(n) time mesh implementation [60].

For most of the architectures, significantly faster solu-
tions can be found by using algorithms based on keeping
the graph in the form of a collection of edges, rather than
an entire adjacency matrix, since the number of edges is
O(n) while the adjacency matrix may have ©(n% entries.
Edge-based algorithms have the disadvantage that their
communication follows a very irregular, data-dependent
pattern, compared to the elegant communication pattern
used in Van Scoy’s algorithm, but they compensate by hav-
ing significantly faster asymptotic times. Most efficient par-
allel edge-based algorithms are based on variations of Sol-
lin’s serial algorithm, which starts with each vertex being
a separate ‘‘club’” and repeatedly merges adjacent clubs
together until each component is a single club. This can be
implemented in B(log n) time on a CRCW PRAM [44], and
in ©(log? n) on aEREW PRAM by simulating the CRCW PRAM
algorithm. Mesh implementations of a variant of this finish
in ©(n) time [38], but a stepwise simulation of the CRCW
PRAM algorithm would take an extra factor of log n.

Implementing the divide-and-conquer algorithm on the
mesh, using either the adjacency matrix or the efficient
edge-based algorithm for the graph subproblem in step 3),
yields an algorithm obeying the recurrence T(n) = T(n/2) +
6(n), giving T(n) = O(n) [33]. Implementing on the mesh-of-
trees, if Van Scoy’s algorithm is used then the time is again
O(n), but if a stepwise simulation of the CRCW PRAM algo-
rithm is used for step 3) then the time satisfies the recur-
rence T(n) = T(n/2) + B(log? n), giving O(log> n) time. Here
a critical fact is that the CRCW PRAM is solving a problem
ononly 6(n) edges, and can finish in logarithmic time using
only ©(n) processors. Therefore the mesh-of-trees can sim-
ulate each PRAM step in logarithmic time, rather than the
O(n) time needed to simulate 6(n%) PRAM processors. Sim-
ilar comments and timings hold for the hypercube. How-
ever, by dividing into n"? pieces instead of 4, the divide-and-
conquer approach can yield a hypercube implementation
taking ©(log? n) time [14], [29].

For the pyramid the time requirements are more com-
plicated. The best way to simulate n PRAM processors is to
simulate them on the middle level of the pyramid, which
is a mesh of n processors. There the graph labeling sub-
problem could be completed in 6(n'? log n) time, but if
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instead the optimal mesh algorithm is used it is completed
in ©(n") time. Moving the data to the middle level, and the
answers back down again, can also be accomplished in
6(n") time [27), so the entire algorithm satisfies a recur-
rence of the form T(n) = T(n/2) + ©(n"), giving T = 6(n"?).
This algorithm is optimal for the pyramid, as can be seen
by considering Fig. 10. In the image X’s indicate pixels which

X pixels are either
black or white.

Fig. 10. An image requiring extensive communication.

may or may not be black. Two adjacent Y’s will have the
same labelif and only if the X in the intervening row is black,
and hence in constant time after the labeling is finished the
¥Y’s can determine if the intervening X is black. Since this
data movement requires Q(n"?) time (see Section 1), com-
ponent labeling must take Q(n"?) time. Notice that the
implementation which finishes in this time is not a simu-
lation of any one ideal architecture, but instead moves the
data around to achieve the best simulation of a good archi-
tecture for a single step (PRAMs along the borders of the
quadrants). This is far beyond the capabilities of any auto-
matic mapping system, and would be very difficult for most
programmers.

Fora CRCW PRAM, the divide-and-conquer algorithm will
give arecurrence of the form T(n) = T(n/2) + ©(log n), which
is B(log” n). If instead the pixels are just thought of as ver-
tices, with an edge between two of them only if they are
adjacent black pixels, then directly applying the graph com-
ponent labeling algorithm, with no use of divide-and-con-
quer, wjll finish in B(log n) time. Similarly a EREW PRAM
would give atime of B(log® n) if the divide and conquer algo-
rithm is used, or (E)(Iog2 n) if the entire image is viewed as
a single graph. A significantly different EREW PRAM algo-
rithm finishes in ©(log n) time, utilizing properties of the
planar nature of the image [2].

Once again, we have the situation that if the fastest algo-
rithm, the CRCW PRAM single-graph version, is simulated
by some of the architectures then they will end up with far
slower implementations than they can obtain from the orig-
inal divide-and-conquer. On the mesh, pyramid, or mesh-
of-trees the time would increase to 6(n log n), and on the
hypercube itwould increase to ©(log’ n). Evenif one ignores
the single-graph CRCW PRAM solution, there remains the
problem of identifying the best architecture for the original
divide-and-conquer algorithm. Many programmers would
just decide that it is too complicated a problem and chose
the PRAM of n? processors, but then the simulation time
jumps up to the time required to sort. A more tractable pos-
sibility is to have tree of PRAMs, where the root is a PRAM
with ©(n) processors identified with borders of the quad-
rants. Descendants are smaller PRAMs identified with bor-
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ders of the recursive subdivisions, with different levels in
the tree communicating through connections between
processors corresponding to the same pixel in different
subdivisions. This is a rather formidable ideal architecture
which is actually what is utilized in Algorithm 3, but it is
unlikely that programmers would feel comfortable using it
and it is not at all clear that any automatic mapping system
will be able to do a decent mapping of it in the near future.

VI. DATA MOVEMENT OPERATIONS

As the above examples have shown, moving data is a crit-
ical part of algorithms. The movement of data to the middle
level mentioned in the pyramid implementation of labeling
is a significant operation, and in fact similar movement was
needed in the other non-PRAM architectures. For example,
the mesh-of-trees implementation needs to move the infor-
mation to the diagonal processors, and then it can effi-
ciently simulate the PRAM graph algorithm for n proces-
sors. Such movement is not part of PRAM algorithms, but
is critical for efficient implementations on paralle! archi-
tectures with fixed interconnections. Further, the question
of where the data is moved to is highly dependent on the
architecture.

Since the data movement is critical in determining the
efficiency of implementing algorithms, one approach is to
make such movement much more explicit. This enables one
to directly confront the problems of optimizing the move-
ment. It also introduces the possibility of reusing previ-
ously developed implementations of common movement
operations, much as one might reuse a mapping. For exam-
ple, one might loosely express the column reduction algo-
rithm for convex hulls as in Algorithm 4.

Algorithm 4 Extreme Points via Column and
Crossproduct Reductions

1) Inall columns ¢ simultaneously, 0 < ¢ < n — 1, use
reduction to determine the location of the topmost
black pixel t(c) (the reduction operation is maximum)
and bottommost black pixel b(c) (the reduction oper-
ation is minimum). In a column with no black pixels,
set t(c) = —oo and b(c) = + . Create records (c, t(c))
and (c, b(c)).

2) Move the n records containing ¢ values, 1 from each
column, to locations where crossproduct reduction
can be efficiently determined.

3) Using crossproduct reduction, for all ¢ simulta-
neously determine

L(c) = max {slope of the line through (c, t(c)) and
(d, t{d): d < ¢}, and

R(c) = min {slope of the line through (c, t(c)) and
(d, {d): d > c}.

Then t(c) is an extreme point if and only if L(c) > R(c).
4) Complete steps similar to 2) and 3) for the b values.

The reduction operation used there has been discussed
previously. For the crossproduct reduction one has a set S
of values, a function fdefined on pairs of elements of §, an
reduction operation * over the values of f, and wants to
compute F(s) = *{ f(s, t): t € S} for all s in S. Some uses of
the crossproduct operation appear in [27].
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Since operations such as reduction and crossproduct
reduction are useful in many algorithms, they can be opti-
mized for a given architecture, and then used repeatedly.
For example, the pyramid can implement rowwise reduc-
tion and a crossproduct reduction over ©(n) items in
6(n") time [27], and therefore can implement this algo-
rithm in ©(n"? time. While this is not as fast as the original
divide-and-conquer, it is far better than simulating the
CRCW PRAM implementation.

Data movement operations that have been suggested

include reduction, broadcasting, multicasting (simulta-
neous broadcasts with different groups), concurrent read
and write with specified tie-breaking proceduresin the case
of concurrent writes, sorting, crossproduct reduction,
matrix multiplication, and prefix (in which there is some
semigroup operation *, each processor i starts with some
value v(i), and ends up with the value v(0)*v(1)
*v(i — 1)) [4], [21], [25], [27], [29], [33]. More specialized data
movement operations include matrix transposition, sparse
matrix read (reduction over all rows simultaneously), list
ranking (in which items are on a linked list and the problem
is to determine their order position on the list), and path
compression (in which items are in upward directed trees
and the problem is to have each determine the root of the
tree it is in) [13], [20], [29], [33].

Use of data movement operations is fairly natural, in that
one develops programs as a sequence of operations, and
in fact they may be implemented as a sequence of pro-
cedure calls. Data movement operations are used much as
data structures are used in serial computers. The data
movement approach also decreases the emphasis on iden-
tifying the best possible architecture for an algorithm, and
hence decreases the inefficiencies that arise due to inap-
propriate simulations. For example, the mesh-of-trees will
directly implement this algorithm in 6(log n) time, and it
isirrelevantthata CRCW PRAM can perform the reductions
(including the reduction in crossproduct reduction) in con-
stant time.

Use of data movement operations creates some prob-
lems, however. Because operations can sometimes be much
fasterifonlyalittle datais involved, the operations and their
implementations tend to proliferate to match different sit-
uations. For example, one needs not only reduction, but
simultaneous reduction over rows, and perhaps simulta-
neous reduction over quadrants. One also needs to know
the how to simulate n PRAM processors, as well as how to
simulate n’. It seems that each new architecture introduces
new special cases which can be exploited. The more algo-
rithms become highly tailored to exploit this, the less gen-
eral they become and the more they resemble a direct
implementation on a given architecture.

VII. FINAL REMARKS

As was noted in the introduction, the mapping of algo-
rithms to architectures can occur at many levels. In general,
the higher the level the more likely that an efficient algo-
rithm can be obtained, though at the cost of more pro-
grammer effort to develop the implementation for a spe-
cific machine. General paradigms are quite useful guides,
but provide little specific information concerning a given
problem and how to solve it on a given architecture. At the
opposite end of the spectrum, code generated for a specific
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machine may require extensive modifications for another
machine of nearly identical architecture. For example, code
for an MIMD hypercube may need extensive revision to be
usable on an SIMD hypercube. Such retargeting may
involve a great amount of detailed work, but should be eas-
ier to automate (or semi-automate) than the mappings
across architectures considered here.

When transferring algorithms between different archi-
tectures, the simplest approach is to develop a simulator
of the source architecture on the target architecture, and
then use stepwise simulation. If many algorithms had been
developed on the source architecture, then by developing
a single simulator they all become available on the target
architecture. One problem with this approach is that the
algorithm may have already lost efficiency in being imple-
mented on the source architecture, and the simulation
overhead just compounds this. Another problem is that
stepwise simulation may be slower than necessary if the
algorithm does not use all the communication links of the
source architecture at each step. In this situation an intel-
ligent locally optimal simulation may be superior to a glob-
ally optimal one.

One possibility above the level of source-to-target sim-
ulations is to map ideal algorithm/architecture solutions
onto target architectures. Since each algorithm may have
a different ideal architecture, either the programmer must
develop a mapping for each algorithm, or else procedures
are needed to help automate the mapping. While this has
achieved some attention, it does not always produce good
results. As the reduction example showed, automatically
achieving a good mapping of one regular architecture onto
another isanontrivial problem, though current systems can
achieve some success on simple mappings [7]. Further, the
notions of ““ideal’” parallel algorithms or “ideal” architec-
ture for an algorithm do not seem as clear as one would
initially think. The reduction example showed that there
might be two ideal architectures for a single algorithm, and
that the choice made a difference when simulated on other
machines. The extreme point and labeling examples
showed that it is unlikely that there is any ideal algorithm
for them. Ideal in the sense of being fastest is not ideal in
the sense of being fastest to simulate.

Another approach is to develop algorithms in terms of
data movement operations, and then provide efficient
implementations of these on the target architecture. These
make the data movement more explicit and easier to opti-
mize, and if sets of generally useful data movement oper-
ations can be distilled then they need to be implemented
only once on each target machine, and then can be used
for multiple problems. Unfortunately, efficient implemen-
tations depend on the amount of data involved, as well as
the architecture involved, so actually a collection of imple-
mentations may be needed for each operation/architecture
pair. Selecting a proper implementation requires that extra
information be known about the amount of data involved,
which complicates their use and requires more of the pro-
grammer.

Even the data movement approach does not completely
solve the problem of mapping algorithms onto architec-
tures. The data movement capabilities of architectures vary
significantly, and it appears to be impossible to write an
algorithm in terms of data movement operations and have
it yield optimal, or nearly optimal, implementations on all
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architectures. As the extreme point example showed, the
fastest parallel algorithm, even with a data movement
approach, will yield a poor solution on the pyramid, and
similarly the fastest parallel algorithm for labeling (the
CRCW PRAM single-graph algorithm) will yield a poor solu-
tion on the pyramid and mesh-of-trees.

One fundamental difficulty with a data movement
approach is that operations that take approximately the
same time on one machine may be vastly different on
another. For example, a EREW PRAM will take O(log n) time
to find the sum of n* numbers, to find the sum in each row
of an n X n array of numbers, or to sort n> numbers. A
hypercube will take ©(log n) time to find the global or row-
wise sums, and the best known sorting algorithm takes
e(logZ n)time. A mesh-of-trees will take ©(log n) time to find
the global or row-wise sums, but 6(n) time to sort. A pyr-
amid will take 8(log n) time to find the global sum, ©(n™?)
time to find the row-wise sums, and 6(n) time to sort, while
the mesh will take ©(n) time to perform all three. Suppose
a programmer devises two algorithms A and B which are
nearly identical but, say, A uses a sort and global sum, while
B replaces this with log n iterations of rowwise sums. On
the PRAM or mesh A is better, on the mesh-of-trees and
pyramid Bis preferred, and on the hypercube they have the
same times (at least, as measured in general O-notation).
It seems impossible to write nontrivial algorithms which
take such variations into account and yield an efficient
implementation on each architecture. The data movement
approach seems to give adecentimplementation of an algo-
rithm on a specified architecture, but cannot eliminate the
fundamental difficulty that the communication demands of
the algorithm may be poorly matched to the communi-
cation capabilities of the architecture.

Problems which are as hard as sorting may be somewhat
more amenable to general use of PRAM simulation or the
data movement approach. For example, given n? planar
points, determining their extreme points takes Q(n’ log n)
time on a serial computer [63] (and this time can be
achieved), and it can be accomplished in &(log n) time on
a EREW PRAM [30]. (CRCW PRAM algorithms finishing in
this time appeared in [1], [3].) Stepwise simulation of this
will provide a hypercube implementation taking 6(fog? n)
time, and mesh-of-trees, pyramid, and mesh implementa-
tions taking ©(n log n) time. While each of these architec-
tures can solve the problem faster by a factor of log n [30],
the relative inefficiency is much less than that encountered
on the extreme points example for image data. As another
example, given two points (x1, y1) and (x2, y2) in the plane,
say that the first dominates the second if x1 = x2 and y1 =
y2. Given aset of planar points, the maximal points are those
that are not dominated by any other. Atallah and Goodrich
[4] have given a data movement operation algorithm for
determining maximal points which is optimal for all archi-
tectures considered here: first sort the points into decreas-
ing order by their x coordinates, breaking ties in decreasing
order of their y coordinates. Then use prefix to determine
for each point the largest y coordinate of any point in a pre-
ceeding processor. A point is maximal if and only if its y
coordinate is larger than this value.

However, the use of sorting should have little relevance
forvision, particularly for the lower-level operations. While
the algorithms in Section V involve extensive data move-
ment, they require significantly less than is involved with
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sorting all the data. Once the image data is reduced to a
representation as a set of points or a graph, the remaining
steps may be as communication-intensive as sorting, but
the amount of data involved is far less than the number of
pixels and the movement can be performed more quickly.
Quickly reducing the amount of data, and utilizing locality
of information exchange, is critical for efficient vision algo-
rithms. These features lead researchers to propose and uti-
lize image processing architectures such as the pyramid
and mesh-of-trees, despite the fact that they are no better
than the mesh when they must sort n? values. An important
exception to the principle of data locality occurs with exten-
sive image rotation or warping, which require significant
communication.

Because reducing the amount of data plays such an
important role in vision, and because the communication
capabilities of architectures vary widely, it is difficult to see
how vision algorithms can be easily mapped to varied archi-
tectures and provide efficient implementations. If PRAMs
with thousands of processors could be built to perform with
acceptable speed then this would not be needed, and we
would have only the (major) problem of determining how
to write efficient vision algorithms for PRAMs. However, for
quite some time it will be true that to achieve high per-
formance one must take into account the location of data,
even in pseudo-PRAM machines such as the RP3 or Con-
nection Machine [35], [52]. Further, many vision applica-
tions, such as real-time navigation, place severe perfor-
mance demands on vision systems. Use of simulations, or
data movement operations, can be helpful in many algo-
rithm mapping cases, but notin all. For the forseeable future
programmers solving vision problems with high perfor-
mance requirements will need to both understand the
problem and the architecture in order to develop efficient
algorithms.
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