Reconfigurable SIMD Massively

Parallel Computers

HUNGWEN LI, SENIOR MEMBER, AND QUENTIN F. STOUT, MEMBER, IEEE

Reconfigurable SIMD parallel processor is a member of SIMD
architectures. Its most distinguished feature is the utilization of the
reconfigurability of the interconnection network to 1) establish a
network topology well mapped to the algorithm communication
graph so that higher efficiency can be achieved, and to 2) remove
faulty processors from the network so that the system operation
can be kept uninterrupted while maintaining the same or slightly
degraded efficiency. This paper describes several existing recon-
figurable SIMD parallel architectures and their reconfiguration
mechanism, demonstrates the effectiveness of algorithm mapping
through reconfiguration, and discusses fault tolerant schemes via
reconfiguration. \

I. INTRODUCTION

This paper gives a brief introduction to a new class of

computers, the reconfigurable massively parallel computer.
Its most distinguished feature is the utilization of the
reconfigurability of the interconnection network to establish
a network topology well mapped to the algorithm commu-
nication graph so that higher efficiency can be achieved,
and to remove faulty processors from the network so
that the system operation can be kept uninterrupted while
maintaining the same or slightly degraded efficiency.
. Reconfigurable massively parallel computers are primar-
ily of SIMD architecture due to their massive parallelism
nature, however, as will be discussed, their architecture de-
viates from the SIMD paradigm to allow autonomy for each
processor in the system. Reconfiguration is accomplished
by one type of the autonomy the connection autonomy of
the network, which allows each processor to select different
local connectivity to accomplish a global desired topology.
Such a reconfiguration strategy, based on the connection
autonomy, facilitates the mapping of an algorithm to the
network connecting all processors and the fault tolerance
of the system.

We will focus our discussion on several existing re-
configurable parallel architectures and their reconfiguration

Manuscript received May 17, 1990; revised September 15, 1990.

H. Li is with the IBM Research Division, Almaden Research Center,
San Jose, CA 95120-6099.

QF. Stout is with the Department of Electrical Engineering and

Computer Science, University of Michigan, Ann Arbor, MI 48109-2122.
IEEE Log Number 9042728.

mechanism, the effectiveness of the algorithm mapping
through reconfiguration, and the fault tolerant schemes via
reconfiguration.

Historically, the SIMD parallel computers are categorized
as computers consisting of many processing elements, each
of which behaves identically with the others under a cen-
tralized control [1]. In reality, none of the SIMD machines
has been implemented in such a restricted manner. Certain
deviation from the absolute SIMD paradigm has always
been made, and local autonomy has been inserted to exploit
more flexibility of the SIMD architecture. Local autonomy
can be provided in different areas ranging from local
activity control to local program control [2], [3]. Amid
of the local autonomy, we are particularly interested in
the connection autonomy which allows the reconfiguration
of the network be individually and locally controlled in a
SIMD system.

Connection autonomy [4] is a principle aiming at the
efficient mapping of the algorithm graph onto the hardware
network topology via dynamic network reconfiguration
subject to the local condition of every processor in a SIMD
system. It shares the same goals of other reconfigurable
computers [5]-[7] in the aspects of efficient mapping, high
reliability, and high availability. However, in the domain
of SIMD massively parallel computer, the connection au-
tonomy can be very different from other reconfigurable
computers in the method of graph embedding due mainly
to the massive parallelism, the granularity, the network
topology, and the locality of the control mechanism. A very
unique feature offered by the reconfigurable SIMD architec-
tures is its capability of configuring one network topology
at every instruction by manipulating local data at each
processor. Such a feature can be viewed as an extension
of the SIMD paradigm from computing to configuration.

With the connection autonomy, the reconfigurable SIMD
architectures distinguish themselves as a unique computing
model. This can be shown in many new algorithms, to
be discussed in Section III, whose performance approach
an ideal PRAM model. The major reason for such an
improvement is due to the fact that the reconfigurable SIMD

0018-9219/91/0400-0429$01.00 © 1991 IEEE

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

429

A

architectures are able to, on a per instruction basis, config-
ure a topology which mirrors the algorithm connectivity by
using the data-dependent switch setting.

For reconfigurable SIMD architectures, fault tolerance
is treated in the same way as the algorithm mapping by
the use of reconfiguration. Many built-in features of the
switch design for the architectures have readily supported
the fault tolerance. The control of the switch generated
for the algorithm mapping is no different from that for
fault tolerance. This is a significant step toward a uniform
handling of fault as a normal operating condition in a
massively parallel system.

This paper is structured as follows. Section II presents
several reconfigurable SIMD architectures and their mech-
anisms to support the reconfiguration. Section III discusses
many algorithms that exploit the benefits of reconfiguration.
Section IV discusses several fault tolerance schemes that
are based on the reconfiguration principle.

II. ARCHITECTURES

A. Polymorphic-Torus

Polymorphic-torus {8]-{10] is a massively parallel SIMD
architecture aimed toward a more than 1 000 000-processor
system. Study on the VLSI and packaging technology at
the early stage of the design convinced one of the authors
that a feasible approach is to choose a bounded-degree
network with a low-degree of connection. A comparison of
such wiring complexity for a massively parallel system at
different levels of packaging hierarchy (e.g., chip, printed
circuit board and chassis) for various networks has been
studied [9]. Briefly, this comparison shows that a hypercube
network can have a wiring complexity at three orders of
magnitude higher than a mesh. This leads to the conclusion
that a high-degree network may not be a good choice
for a massively parallel system because the packaging
consideration is a genuine and serious technology constraint
for the feasibility of a massively parallel system.

Regarding the choice of network for a massively parallel
system, the following explains the understanding through
many algorithms studies for various networks.

1. A high-degree network may not have a substantial
communication benefit over the lower-degree ones.

2. Many algorithms are performed in a high-degree
network by embedding a lower-degree network.

3. The complexity required to support the communica-
tion in a high-degree network slows down the clock
rate, which leads to a degraded overall communication
bandwidth.

These understandings stimulate the thinking that a low-
degree network can be enhanced to more suitably support
the connectivity of the massively parallel computers.

The connection autonomy was identified as a key mech-
anism for the development of the Polymorphic-torus to
enhance the performance of a low-degree network. The
Polymoprhic-torus selects a two-dimensional mesh as the

430

(PN

ki
e

Fig. 1. A Polymorphic-torus network.

base (physical) network and adds “a switch” to each inter-
section of the mesh. These switches can be independently
controlled by the status of each local processor. At ev-
ery clock tick, the open—close positions of the switches
determine a new network topology for the system. In a
sense, this is an extension of the SIMD paradigm because,
for each instruction, the data manipulating the connectivity
are controlled in exactly the same way as the data for
computing. Circuit switching was adopted to establish the
connection, and as a result, a very long path can be
established in a large system. Many processors therefore
can be attached to the path and can communicate as if
they are one unit distance apart. Communication bandwidth
is consequently increased. Many paths can coexist in the
system and in many cases, multiple paths can be configured
systematically. Since the length of the path can be different,
a variable clock was devised to support the operation of the
connection autonomy.

In a Polymorphic-torus architecture consisting of NxN
processors (Fig. 1), a processor is located at each node
of an N x N two-dimensional torus (called base network
BNET) and a collection of N x N switches are distributed
over every node of the BNET. Since the switches - are
internal to the processors, we call them the internal network
(INET) for the ease of discussion. We use the coordinate
as the identification (PID) of the processor/switch and
simply denote it as P(i,j). For connecting, each processor
P(3,) is equipped with four ports N (4, 7), E(4, j), W(i,),
and S(i,j). The wiring of these ports to BNET follows
mesh/torus pattern, which is fixed and nonprogrammable.

In contrast, the INET is totally programmable. At the
(i,5) node of the BNET, there resides an IN ET(,35)
which is a complete graph of four ports (N (3,7), E(4,4),
W (i,), and S(i,5)). By “complete”, we mean that each
port can be connected to every other port. For example,
any two ports can be connected (e.g., S and N), two
pairs of ports can be connected simultaneously (e.g., N
connected to S and E connected to W), a triple of ports
can be connected (e.g., N connected to both E and w),
or all four ports are connected together. As will be seen
later, the functionality of the INET is a superset of other
reconfigurable massively parallel architectures discussed in

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

the following. In Section III, we will point out the benefit
of having the INET capability.

Circuit switching is adopted for the INET switch. This
means that the connected ports are “short-circuited”; they
share the same logic level along the short-circuit path so
that any datum appearing on the path can be accessed in
the same machine cycle by all processors attached to the
path. This is heavily used for long-distance communication
and broadcasting. To establish a “circuit,” each processor
refers to the instruction and its local condition, then decides
a switch setting. A communication path is accordingly
formed as the result of the collective switch setting.

Four types of controls are used to achieve the con-
nection autonomy: the unconditional control, the PID-
dependent control, the mask-dependent control, and the
data-dependent control. They are discussed next.

Unconditional INET control. This is interpreted and ex-
ecuted uniformly by every processor regardless of the
difference of local status. For example, a “connect all ports”
command will glue all processors in the same path and is
useful for broadcasting. An unconditional “connect E and
W” configures the system into N rows of buses allowing
multiple broadcasting.

PID-dependent control. The processor identification
(PID) or the coordinate of the processor in the BNET is the
most frequently used condition for the Polymorphic-torus
connection autonomy. N binary trees each with N leaves
can be emulated by shorting E-W ports of the processors
with PID[i] = 0 subsequently in i = 1 to log N steps [10].
Similarly, a pyramid can be emulated by systematically
controlling the PIDs.

Mask-dependent control. A connection mask is a known
“condition pattern” prepared as part of the algorithm before
or at compile time. For an N-processor Polymorphic-
torus, the mask consists of N “conditions”, one for each
processor. In the simplest case, each condition is a bit and
each mask bit is used to control the connection function.
The mask is usually stored in the memory and retrieved
when needed. An irregular, but known, connectivity (such
as sparse matrix) [11] is usually implemented on the
Polymorphic-torus by the mask-dependent control. In fact,
the PID-dependent control for an N-processor system can
be stored as logN-bit masks and an unconditional control
can be performed as a conditional one with an “all 1” mask.

Data-dependent control. Connection autonomy driven by
local data is the most powerful mechanism for reconfigura-
tion of the SIMD massively parallel processors. The data-
dependent connection autonomy establishes Polymorphic-
torus and many architectures to be discussed as a dis-
tinguished computing model. Many algorithms (connected
component [12], Boolean [13], and transitive closure [14],
etc.) approach the performance of an ideal CRCW shared-
memory PRAM model. We discuss this in detail in Section
M. For example, one can distribute an N x N image
uniformly over the Polymorphic-tours and can then per-
form the connected component algorithm to segment the
image into several regions, each of which carries a distinct
label. The label then can be used as the condition such

LI AND STOUT: MASSIVELY PARALLEL COMPUTERS: INTRODUCTION

that pixels carrying the same label can be connected (or
short-circuited). Thus the connection autonomy using data-
dependent condition can dynamically group the data that
share the same property. This is similar to the content as-
sociative processing referred in [15]. It is also worth noting
that multiple groups of content associative processing can
be conducted simultaneously in the Polymorphic-torus.

In summary, the Polymorphic-torus demonstrated that the
concept of the connection autonomy can be treated as an
extension of the SIMD architecture. Network topologies
can be configured on a per instruction basis by using
local data in exactly the same way as used in arithmetic
operations. It depicts that a low-degree network can be
enhanced to compete with a high-degree network. The
advantage, however, is that its implementation is more
suitable for today’s VLSI and packaging technology. An
implementation of the Polymorphic-torus is referred to in
[14]. Many algorithms that exploit the unique capability of
the Polymorphic-torus are discussed in [13].

B. Gated-Connection Network

Gated Connection Network (GCN) [16], [17] is a com-
munication structure of part of a larger system called
Image Understanding Architecture (IUA) being developed
for computer vision applications [15], [18]. The IUA is a
hierarchical heterogeneous architecture consisting of three
different types of processing elements: arrays of micropro-
cessors at the highest level, the digital signal processors at
the middle, and, to the interest of this paper, the bit-serial
processors at the lower level. A 512x 512 array is proposed
for the lower level and the GCN is the connecting network
for the array. We give a brief description of the GCN and
its contrast to the Polymorphic-torus in the following.

The GCN consists of a mesh array of eight simple
transmission gates per bit-serial processor as shown in
Fig. 2. These transmission gates are the “local switches”
superimposed on the nodes of the physical mesh network.
The processor situated on the mesh node is connected to
its “local switch” via a dedicated register X (output) and
a dedicated wire (S/N input). Communication between
processors is determined by the switch setting of the
transmission gates. These gate settings are determined by an
eight-bit register which resides in the memory space of each
processor. The transmission gates and the switch control
registers implement the connection autonomy. A control
pattern can be stored in advance or created dynamically in
the control registers, and subsequently used to reconfigure
the network topology.

As in the case of Polymorphic-torus, path with variable
length can be configured and signal delay may become
unacceptable. GCN adopts precharged circuits to shorten
the signal delay. The GCN network is precharged and
processors sending “1” to the path will pull down the
precharged circuit. This is equivalent to a wired-OR circuit.
The wired-OR implements the Boolean and MIN/MAX al-
gorithms in constant time and is an important improvement
over the physical mesh networks. All four types of controls
for the connection autonomy mentioned in previous section

431

NORTH NORTH
NEIGHBOR NEIGHBOR
A 4\
NW 1 3
WEST
NEIGHBOR N1
4
PRECHARGE: ! T
PE1 sm‘:“ V1o
——>4 4
OUTPUT
OF = OF =
X-REGISTER 1 X-REGISTER 2
A\ A
SOUTH SOUTH
NEIGHBOR NEIGHBOR

Fig. 2. A gated-connection network.

can be implemented by these transmission gates. Many
important vision algorithms, such as Hough transform and
connected component labeling have been implemented on
GCN with significant performance improvement. Several
symbolic algorithms also enjoy the benefit of GCN.

A VLSI implementation of the GCN exists. The chip
contains 64 bit-serial processors with their corresponding
GCN and local memory of 320 bits per processor. A dif-
ference in implementing the connection autonomy between
the GCN and the Polymorphic-torus is that GCN has an
internal 8-bit data path to load/store the 8-bit control register
which open/close the eight transmission gates while the
Polymorphic-torus encodes part of the open/close switch
patterns into the instruction set and leaves only one bit of
datum locally for autonomy. The tradeoff is that GCN has
individual control of each switching gate, however, it may
take more instruction cycles to configure a new topology.
On the other hand, the encoding technique used in the
Polymorphic-torus selectively supports important patterns.
However, it can deliver one of these important patterns on
a per instruction basis.

C. Flat Pyramid

Pyramid architectures [19]-[23] were developed to han-
dle multiresolution processing in image processing and
computer vision paradigms. The goal is based on the
observation that salient information can be extracted by
sensory data at different scales of representation. Coarse
solution can be obtained quickly by a reduced version
of image and can be refined by focusing on areas where
evidences exist that further processing at higher resolution
is useful. This is an analogy of the human eye called
foveation.

Two approaches have been attempted to perform the
pyramidal processing: the physical pyramid architecture
and the use of mesh to emulate the pyramid. The former,
the physical pyramid architecture, requires a high-degree
network (e.g., 8 neighbors at the same pyramid level, 4
wites for children at the level below, and 1 wire for parent at

432

the level above) whose wiring complexity usually prevents
such a fixed structure from qualifying a good architecture
for massively parallel computer because of the limited
packaging capacity.

On the second approach, one method of using mesh to
emulate pyramid is shown in [24]. Although simple and
modular, the mapping incurs high overhead for data transfer
among neighboring nodes. This mapping also requires a
large amount of memory because processors at different
levels are mapped to the same processor in the mesh.

The above-mentioned difficulties for pyramidal massively
parallel processing can be largely alleviated by embedding
switches in a mesh and by reconfiguring a pyramid out of
the mesh. The added reconfigurability reduces the wiring
complexity and increases the communication bandwidth.

PAPIA2 is an architecture which configures pyramid
topology out of a flat mesh by adding connection autonomy
into a mesh array. Figure 3 illustrates the basic idea by
an example of a 32 x 32 array. A processor at the base
of the pyramid is represented by “+” while “I, 2, 3,
4, and 5” represent an extra pyramidal processor at a
higher level mapped on the base processors. A processor
at level k is mapped to the mesh location (4,5), i =
(p X 26") moan and j = (g X 2¥7!)mean where p and
q = 1,3,5,.... The communication at base level uses
the mesh. For interprocessor communication at level 1,
the base processors (marked as “+”) can short their E-
W switch or N-S switch to facilitate the communication.
More base processors need to be shorted for interprocessor
communication at higher levels, for example, 3 shorted base
processors for level 2, 7 for level 3, and 15 for level 4.

For the proposed mapping, the interlevel communication
occurs at the diagonal direction. Short-circuited paths along
SE and NW direction can be established by setting appro-
priate switches. The interlevel communication is limited in
its concurrency; for example, when level 1 and 2 are com-
municating, communication paths between level 2 and 3 are
blocked. However, the proposed mapping is highly regular
and extendable, and no extra wiring is required beyond

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

R T e AR S e S i Sl flie
AN FENFFFIRFFERNFEER T ER RN+
B Tk e e N I e i Sl Al i
PO VIR S e S IR S I S I ol i
U T T I PN SR I e el gl i
T T T R I R I I S LI S S
G T T SR R I e S Sl gl i
O S S T I i T R I I I TE I i i B S i
P T T I IR R ST it T Sl Sl i
++~++¢N+++N+++~+++~+++~+++~+++N+
J P N T b A N A it S i Sl
O E I R 2 T S I I 2 I T I S S
[P I Tk 2 TR I i e e S Sl i
++-&++n#++~++-~+++N¢++~+++~+¢+n+
R At SR I R St il i
U T I I S I I T A S S

Fig. 3. A PAPIA2 Flat pyramid on a 32 x 32 mesh.

the original mesh links. By adding connection autonomy
to the mesh network, one can efficiently configure a mesh
into a pyramid which is suitable for a large category of
hierarchical-structured algorithms.

D. CLIP 7

Researchers at University College London have gone
through several generations of SIMD processor array de-
signs designated as CLIP series [25}-{30]. The CLIP 7
represents the latest research focusing on the autonomy.

The CLIP7 chip contains one processor whose internal
structure is shown in Fig. 4. Several features are imple-
mented in CLIP7 chip to support the local autonomy and
reconfigurability. A 16-bit C register serves the purpose of
autonomy. When used in autonomous mode (determined by
a pin in CLIP7 chip), the meanings of the bit assignment are
described in the following. The use of these bits supports
several categories of autonomy and configuration.

Bit 15 of the C register is equivalent to the activity (or
enable/disable) bit common to many SIMD arrays. Results
from arithmetic operation (e.g., carry, overflow, zero, or
sign) can be stored into this bit to subsequently determine
the participation of the processor in the array operations.

The network reconfiguration is supported by CLIP7 in
a unique way. Bit 07 of the C register select the gated
input from one of the eight neighbors when in binary
operation. In the case of 8-bit operation, data from neigh-
bors are collected through the N inputs (Fig. 4) serially

LI AND STOUT: MASSIVELY PARALLEL COMPUTERS: INTRODUCTION

+_+..+._.+...+_.-¢-_.q..+..+.‘+_.+_.+_.+..+_.+._+_‘
T R L R AU S R I T Jh g g

P e 2 I T e il it
T i S I B I S ol S i
e Tl I T i i i
PR A ERNFFERN I ENEF IR E IR AR NS
B e e N T B i il S Sl
P S T I I A 2 I T T g i S i
U G 2 SRR e IR S S il
++~+++n+++~++¢m+++~+++~+++N+++N+
P T e N I T St S S
O I T A T R T I A i S T
S e T e T R S et el Al i
+-o-+++~+++~+++n+++~+++»+++N+++n+
P e et N I I e i S
J . kI O R 2 I T A S S S S

and stored in the N registers. Bit 02 of the C register
control the multiplexer to select one of the 8 N registers
By programming the C register, the processors in the
array can receive data from different neighbors under one
instruction. This effectively changes the logical topology of
the network dynamically. In analogy to the Polymorphic-
torus and Gated-Connection Network, the C register is the
internal switch that controls the flow of the data (or the
reconfiguration) in the entire network. Since the CLIP7 chip
contains only one processor and is not committed to any
“physical network”, this leaves a lot of room to conduct
research on connection autonomy by using the same chip.
Many networks can be emulated by choosing a physical
network and by programming the C registers.

A prototyping CLIP7A system is physically connected as
a linear array of 256 processors. Besides its easiness and
relative low cost to construct, the choice of linear network
has the benefit of lowest wiring complexity and easiness to
emulate a two-dimensional array and other network. Being
a linear array, the CLIP7 is left with more luxury in wiring;
a CLIP7 chip contains a 16-bit processor and communicates
with other processor via 8-bit ports. Since the program
chose a 64-pin package, the packaging constraint forced the
port communication in serial. The choice of the CLIP7A is
a good indication of the seriousness of the wiring constraint
put on the engineering of a massively parallel computer.

E. Reconfigurable Bus Architecture
Reconfigurable bus architectures [14], [31]-[33] are a

433

Nin 0-7 1BUS
— MUX |= B0-3
N inputs —2]
— 86 F—=| —— Control
—
} — Data
\ {]
C |—- ALV S I<——- Sin
MDR
SBUS
1 Din
Nout |+— ot] Co]
Dout
RAM Port

Fig. 4. A CLIP 7 processor structure.

family of computing models that have exhibited its unique
strength in a wide spectrum of computations. A two-
dimensional processor array with a reconfigurable bus sys-
tem consisting of N x N processors connected to a mesh-
shaped reconfigurable bus system (called reconfigurable
mesh) is shown in Fig. 5. The configuration of the bus sys-
tem can be dynamically changed by adjusting the switches
within each processor. Different shape of buses such as
rows, columns, diagonals, zig-zag, and staircase can be
formed by properly adjusting the switches/ports. There
exists a range of reconfigurable bus architecture proposals:
one assumes that only one processor can broadcast value
at a time in a connected path (bus); the second supports
simpler switch that has only two ports, one controls the
attachment of the processor to the row bus and the other
to the column bus; and a third supports only N-S and E-
W short-port capability. These are examples with subset
capability of the model discussed in the Polymorphic-torus
section. They differ in the performance of algorithm map-
ping. Extension of the reconfigurable bus architecture to
higher dimension is conceptually straightforward however
requires careful engineering considerations.

The uniqueness of the reconfigurable bus system is
displayed through many algorithms tailored to its recon-
figurability and is discussed in detail in Section III.

F. Engineering and Technology Constraints

As discussed above, the reconfigurable SIMD architec-
tures are all of two-dimensional topology. This is due to the
evolutionary nature that the knowledge generated by many
mesh-oriented architectures [29], [34]-[39] have laid a
solid theoretical and technological foundation on which the
reconfigurable massively parallel architectures are based.
The lack of knowledge in high-dimensional topology also
forces the infancy of the reconfigurable arrays starts from
two-dimension. Besides the evolutionary reasons, the engi-
neering and technological constraints play a very important
role in the architecture choice. Several constraints that are

434

O Processor

PEANVAASVAAN

B>

b .

By ¢ 1
&

()

Fig. 5. Reconfigurable bus architectures.

generic to massively parallel systems are discussed but
are of particular pertinence to the reconfigurable massively
parallel architectures.

The choice of the physical network is of fundamental
impact to the design of a reconfigurable massively parallel
array. The bounded degree network has been a favorable
choice and a degree-4 mesh is among the most popular. This
is because of its low pin requirement and two-dimensional
topology, both of which are well suited for today’s VLSI
and packaging technology. Beyond obviousness, the mesh
network is chosen for its ability to deliver good performance
in algorithm mapping (Section IIT) and for its better known
fault tolerant schemes (Section IV). As to be discussed
in Section III, many algorithms on this degree-4 network
performs equally well as that of a higher-degree network.
The secret of achieving equal performance with less wires
lies on the reconfigurability or the local connection au-
tonomy to make full utilization of the wires for efficient
communication.

The choice of circuit switching versus packet switching is
another important consideration. Most systems that use the
mesh network adopt circuit switching for communication.
The circuit switching has a low overhead in terms of VLSI
implementation as demonstrated in the Polymorphic-torus
and the Gated-Connection Network. Such a low overhead is
extremely important for a single-bit array. One implication
of choosing the circuit switching is the potential large signal
delay due to a long chain of “shorted” path. This issue can
be resolved by adopting all-active and precharged circuit for
local switches. For the packet switch implementation, the
switch design is more complicated and the communication
time can be longer than the data movement in the mesh
network. Nevertheless, the power and the flexibility of the

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

packet switching [40]-[42] can be a promising enhancement
to the reconfigurable architectures.

In a massively parallel system, clocking technique is a
primary consideration. This is especially compelling for
a reconfigurable system with circuit switching implemen-
tation because an indefinite length of “shorted” path can
be established. If a fixed length clock is designed to
accommodate the worst case “shorted” path, the clock for
the massively parallel system will be degraded. In Section
I1I, many constant time algorithms can be developed for a
reconfigurable system. Although theoretically correct, the
claim made by constant time algorithms does not consider
the clock implementation. The readers must be reminded
of the possibly degraded clock rate for a fair comparison.
Many clocking schemes are possible to accommodate the
worst case path while not affecting the average clock
performance. One such proposal is the variable length clock
[10] that adjusts the length of clock to the length of the path.

III. ALGORITHMS

In this section, some algorithms for reconfigurable ar-
chitectures will be given to illustrate the flexibility of
these architectures. Some attention will also be paid to
differences in the architectures that affect performance. For
most purposes we will start with the Polymorphic-torus
model described earlier, and then describe how algorithms
for other architectures differ from this. The base mesh for
our analyses will be a \/n x \/n mesh, with a total of n
processors.

One critical factor in the analysis of reconfigurable al-
gorithms is the time needed to propagate a signal. Some
authors treat this as a unit-time operation no matter how
far the signal must travel, while others note that the signal
takes longer to propagate in a larger machine and hence
the time must be a function of the number of processors.
If a logarithmic function is used, so that the speed of
propagation is proportional to the log of the distance
traveled, then the time to send a signal across the entire
machine is ©(logn). On the other hand, if a linear function
is used so that the speed is proportional to the distance
traveled, then the time is ©(y/n) if the entire mesh is
one circuit, or as much as ©(n) if the mesh has been
configured as a long snake-like circuit. Physically, the time
must be at least linear in the distance traveled, but since
the speed of propagation is much faster than the clock
period a linear time analysis is misleadingly pessimistic
over the relevant size range. For the remainder of this
section, time analyses will assume a constant time, called
the constant-delay model, or a logarithmic time, called the
logarithmic-delay model.

We assume that the controller does not issue a new
instruction until the previous signal has had sufficient
time to propagate. Thus programmers must either be able
to specify a suitable delay period, or else the controller
must make the pessimistic assumption that every signal
propagation is across the entire machine. The former puts a
significant burden on the programmer, while the latter loses

LI AND STOUT: MASSIVELY PARALLEL COMPUTERS: INTRODUCTION

some of the potential of the machine. In practice perhaps
both would be used, in that the programmer could specify
a delay less than the most pessimistic one in the few cases
where it was known to be appropriate. The development of
some carefully tuned standard routines could result in much
of the communication taking place with nearly optimal
timings. For the following algorithms the pessimistic delay
is the appropriate one, with the exception of the XOR
algorithm for the logarithmic-delay model, in which the
analysis assumes that an optimal delay is used.

A. OR

Perhaps the simplest function which can be computed is
a global OR, in which each processor starts with a boolean
value and the goal is to obtain the OR of all of these values.
To solve this on the Gated-Connection network, all gates
are closed so that all processors are connected together
and the circuit is precharged. Then each processor that has
a “true” (1) pulls down the circuit. The time is just the
time for a signal to propagate across the machine, and so
is ©(1) in a constant-delay model, and is O(logn) in a
logarithmic-delay model.

If each processor opens its N and S gates before the
operation, then the result will be the OR in each row, in
the same time bounds as for the global OR. This is an
example of the unconditional control mentioned in Section
II-A. Further, this can be simultaneously used on any set
of disjoint circuits, a fact that will be exploited below in
Section III-C.

On the reconfigurable mesh model considered in [33]
the OR function is slightly more complicated, due to the
restriction that only a single processor can broadcast at
any one time on any given circuit. To see how this can
be accomplished, consider just a single row of processors.
First, each processor with a 1 opens the gate to its right
and closes the gate to the left, while each processor with
a 0 closes both gates. In each subcircuit created, there is
exactly one processor with a 1, and it is the rightmost
processor within its subcircuit. The only exception to this
is the rightmost circuit, which has no processor with a 1
unless the rightmost processor of the row has a 1. Each
processor with a 1 then transmits that value. At this point
all processors know the correct value, except those in
the rightmost subcircuit since they have not seen a value
transmitted and do not know if their subcircuit is the entire
row. To remedy this the left-right directions are reversed.
Now each processor with a 1 opens the gate to its left and
closes the gate to its right, each processor with a 0 closes
both gates, and again each processor with a 1 transmits the
1 on its subcircuit.

The total time is ©(1) in the constant-delay model, and
O(logn) in the logarithmic-delay model. Further, a global
OR can be computed in similar time bounds by computing
OR within each row, and then within each column, or by
first setting the gates to form a Hamiltonian path through
the processors and treating the path in a manner similar to
a single row.

435

iy
00O —I
@ ®)

Fig. 6. A block switch setting for XOR.

B. XOR and Addition

Computing the XOR shows some of the power of the
reconfigurable architectures, and illustrates some of the
significant differences among the variations. Suppose each
processor starts with a boolean value, and the goal is to
take the XOR of all of these values.

1) Polymorhic-torus algorithms: In the Polymorphic-torus
model, first the XOR will be computed in 3x3 blocks. This
can be done in constant time, after which each processor in
each block knows the result for its block.

Then rows of blocks (i.e., groups of 3 rows) compute the
XOR as follows. In each block in which the XOR is 0, the
gates will be set as in Fig. 6(a), while in each block in which
the XOR is 1, the gates will be set as in Fig. 6(b). Then the
gates for the first and third rows are closed between each
block, and a signal is started in the leftmost processor of the
first row. If it arrives at the rightmost processor of the first
row then the result of the XOR is 0, while if it arrives at the
leftmost processor then the result is 1. Closing all the gates
in the row of blocks, the result can then be transmitted to
the entire row. To compute the XOR over the entire mesh,
a similar process can be used in a column of blocks. The
time for the XOR is ©(1) in the constant-time model, and
O(logn). in the logarithmic-time model.

The XOR circuit can also be used to form the sum of the
boolean values. To simplify discussion, only the sum within
a row of blocks will be discussed, with the extension to the
entire array being straightforward. The XOR has computed
the lowest-order bit of the sum, and note that a carry should
be issued every time a block has an XOR of 1 and the
outgoing signal is a 0. Therefore, at the end of the first
XOR, within each block there is either a 0 or 1 for a carry,
and this can be determined by the processor in the lower
left corner of the block since it will know if the outgoing
signal is 0 and whether the block had an XOR of 0 or 1.
Further, since the original block had 9 values in it, there can
be an initial carry of as much as 4 to be added to this. Again
the proper circuit in each block can be set up, and a new
XOR of these carry bits formed, giving the second-lowest
bit. After a total of log,n iterations, the correct answer has
been determined. The total time a ©(logn) in the constant-
time model, and ©(log?n) in the logarithmic-time model.
If each processor starts with a b-bit number then the global
sum can be found in ©(b+ logn) time in the constant-time
model, and ©(blogn + log®n) time in the logarithmic-time
model. It is not known if these are the best possible times
for these models.

2) Reconfigurable mesh algorithms: The nonplanar con-
nection possibilities of the Polymorphic-torus play a deci-

436

o 4
0 0 0
0 0 o
oo @—i_
(a) ®)

Fig. 7. A column switch setting for XOR.

sive role in the above algorithm for XOR, in that the circuit
for a block with a 1 needs to construct a crossing. In the
reconfigurable mesh model of [33], or the Gated-connection
network, such crossings are not possible and as a result it
does not seem possible to compute the XOR quite as quickly.
One natural technique is to use a pyramidal approach,
computing the XOR bottom-up in the pyramid with each
node above the base taking the XOR of the results of its
children. This will take ©(logn) time in the constant-time
model, and ©(log?n) in the logarithmic-time model.

Following the work in [33], a faster algorithm can be
developed by noting that the XOR of /n bits can be done
quickly on the reconfigurable mesh. To see that this is
so, first suppose that each even column has a single bit.
Pair columns up, and transmit the bit of the even column
throughout the pair. For each pair of columns, if the bit is
0 then the column switches are set as in Fig. 7(a), if the
bit is 1 then they are set as in Fig. 7(b). Then the switches
between pairs of columns are closed, and a signal started
at the lower left processor. In the rightmost column, if the
signal reaches a processor with row coordinate = then the
sum of the bits in the even columns is z div 2, and the XOR
is (z div 2) mod 2. If each column has a single bit, then
two applications of this procedure can be used to find the
sum or XOR. The time is ©(1) in the constant-time model
and O(logn) in the logarithmic-time model.

To efficiently find the XOR or sum of all of n bits a more
complicated approach is needed. In [33], the XOR problem
on a mesh of n processors is solved recursively, finding the
XOR in submeshes of \/n processors, and then moving the
results to different columns and using the above procedure
to find the XOR of the remaining bits. This approach gives
a time of ©(loglogn) on the constant-delay model, and
O(logn) on the logarithmic-delay model. This algorithm
can be extended to find the sum of n b-bit numbers in
O(bloglog(n) + logn) time on the constant-delay model,
and O(blog(n) + logn) on the logarithmic-delay model.

It is not known if the ©(loglogn) time is the best possible
for the XOR or the constant-delay model. If it is, then this
is an example of a nontrivial problem for which the time
on the logarithmic-delay model is less than log (n) times
the constant-delay time. It would also be an example of a
problem on which the reconfigurable mesh is more than a
constant multiple slower than the Polymorphic-torus.

3) Bus automata algorithms: Finally, note that the

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

Polymorphic-torus solution would also be applicable in a
weaker bus automaton model if it also allowed the cross-
over connections of the Polymorphic-torus, as long as
each automaton knew its relative position with its block.
However, the reconfigurable mesh solution is not as easily
applicable to the bus automaton because the calculations
needed to perform the divide-and-conquer are significantly
more complicated, and it is not trivial to have these
performed efficiently in an automaton model. Using the
clerk idea from [43), after a ©(y/n) initialization period,
a bus automaton could then form an XOR in O(logn)
time. However, the details are formidable and would
never be used in practice. The fastest possible XOR on a
bus automaton without cross-over connections is an open
question.

C. Component Labeling

An interesting and practical use of the OR occurs in
component labeling. Suppose each processor contains a
pixel of a black/white image, and the goal is to assign a
label to each black pixel so that two black pixels have the
same label if and only if there is a connected all-black
path from one to the other. Here we say that two pixels
are connected if they share an edge. For this problem we
assume each processor has a unique id of length log,n,
typically a concatenation of its row and column coordinates.
The label in each component will be the largest id of any
processor in the component.

1) Polymorphic-torus algorithms:

To label the components in the Polymorphic-torus, first
each processor with a white pixel opens all of its gates,
while each processor with a black pixel closes all of its
gates. This has the result of making turning all of the
processors in a single component into a single circuit. These
switch settings stay fixed for the remainder of the algorithm.
Now a sequence of steps occurs, for i = 1,...,logyn.
Initially each black processor is “live”, and during the zth
step, if a live black processor has a 1 in the 4th highest
position of its ID, then it will set a local flag to 1; otherwise
the flag is set to 0. Then an OR is computed within the
component, just as in the global OR. If the result was 1
then all live PE’s that had a true local flag remain live, and
all other PE’s become “dead”; otherwise the result was 0,
and all live PE’s remain live.

The effect of this algorithm is to compute the component
label from highest order bit down to lowest bit. At the start
of stage i, the only processors alive in any component are
those that have an id with the same first ¢ — 1 bits as the
largest id in the component. At the end, only one processor
in each component is live, namely the one with the largest
id.

This algorithm is an illustrative example data-dependent
switch settings, and on broadcasting information based on
locally computed data and on data received from earlier
broadcasts. It also shows how the machine can be config-
ured to have circuits which exactly mirror the components

LI AND STOUT: MASSIVELY PARALLEL COMPUTERS: INTRODUCTION

in the image, a flexibility unmatched in fixed connection
networks.

2) Reconfigurable mesh algorithms: On the reconfigurable
mesh model of [33], the component labeling is significantly
more complicated, again because of the restriction that only
a single processor may broadcast on any circuit at any one
time. Because the shape of the component is not known in
advance, and because it can be quite convoluted, there does
not seem to be a simple adaptation of the above technique
which works for all images. However, if the components
are sufficiently nice then there is a reasonable approach.
Note that if the processor ids are formed by the usual
process of concatenating row and column coordinates, then
in each component the processor with the largest id is on the
border. Suppose each figure is sufficiently nice so that the
border processors form a simple cycle, e.g., there are no bad
components such as a dumbbell shaped component where
the bar is only a single pixel wide. This can be checked by
having each processor determine the pixels in its neighbors,
and then by deciding if it is a border processor and if so then
by deciding whether its local piece of the border is simple.

If all the components have borders that are simple cycles,
then the bit-by-bit determination of the component label
can be accomplished by using a technique similar to the OR
within a row. Now each border processor with a 1 opens
the gate in the counterclockwise traversal of the border (this
can be determined locally by thinking of a counterclockwise
traversal as one in which you walk around an object by
keeping your left hand on it), and closes the gate in the
clockwise traversal direction, while each border processor
with a O closes both such gates. Because the border is a
cycle, only one round of messages needs to be sent rather
than the two used in a row.

At the end of the entire process, all the processors with
a black pixel close all gates, all white processors open
all gates, and the single live processor in each component
broadcasts its id to the entire component. The time for this
algorithm is the same as the time for the Polymorphic-torus
algorithm, to within multiplicative constants.

Unfortunately, not all components have such nice borders
and it is not known how to orient arbitrary borders. In
[33], a more complicated divide-and-conquer approach is
used, labeling regions with subsquares of (n/2) x (n/2)
processors and then combining the labeling information of
the subsquares to obtain a label for the entire image. This
algorithm takes ©(log®n) time on the constant-delay model
and ©(log®n) time on the logarithmic-delay model.

D. Simulation and Sorting

One measure of the power of an architecture is its
ability to rapidly simulate other architectures. In general,
the reconfigurable mesh can easily simulate any architecture
which has a planar layout, since a given layout can be
mapped into appropriate switch settings. Once the switches
are set, each communication step of the given architecture
can be simulated with a single communication step of the
reconfigurable mesh. This may not be quite as good as one
would hope since it is possible for an architecture with

437

Fig. 8. Row tree processors above the base processor projected.

m processors to require as much as m? area for a planar
layout, and hence a reconfigurable mesh of n processors
may only be able to simulate an instance of the architecture
with /n processors.

1) Pyramid and mesh-of-trees: For architectures with a
not-quite planar layout, the reconfigurable mesh can some-
times do quite well. Two such architectures of interest are
the pyramid and mesh-of-trees. For the pyramid, the “flat
pyramid” embedding noted in Section II-C is such that all
East—West connections at all levels of the pyramid can be
simultaneously set up on the reconfigurable mesh. Simi-
larly, all North-South connections can be simultaneously
set up, as can all parent-child connections between pyramid
levels. Thus only three communication steps are needed to
simulate all the communication of the pyramid. Further, a
pyramid with an m X m base, and a total of (4m? — 1)/3
processors, can be so simulated on a (2m — 1) x (2m — 1)
reconfigurable mesh.

The mesh-of-trees is constructed by taking an m x m
base, for m a power of 2 and by adding a complete
binary tree above row and a complete binary tree above
column, where these trees have only their leaves (the
base processors) in common. To simulate a mesh-of-trees
with a /n X /n base on a /n x /n reconfigurable
mesh, each processor will simulate a base processor of
the mesh of trees, at most one row-tree processor, and at
most one column-tree processor. This uses a projection of
the row and column trees onto the base, as illustrated in
Fig. 8. To simulate a communication step of the mesh-
of-trees, first the base mesh communication is performed,
then the row-tree communication, and then the column-
tree communication. Since the row-tree and column-tree
communication is similar, only the row-tree communication
will be described.

The row-tree communication is simulated level by level,
starting at the bottom. Notice that the projection in Fig.
8 has the property that each parent node is between its
two children nodes, and that all the communication links
between children at height ¢ and their parents at height
i+ 1 in the row-tree can occur simultaneously in the recon-
figurable mesh. Therefore, only ©(logn) communication
steps in the reconfigurable mesh as needed to simulate all
possible row-tree communication.

438

The above has shown that any algorithm for a pyramid
can be stepwise simulated on a reconfigurable mesh, taking
only ©(1) time per step, any algorithm for the mesh-of-
trees can be simulated in only ©(logn) time per step.
The pyramid and mesh-of-trees are normally analyzed in
a constant-time model, but if they were analyzed in a
logarithmic-time model then again the time on the recon-
figurable mesh would only be multiplied by the indicated
amount.

There are a large number of efficient algorithms for the
pyramid and mesh-of-trees, typically involving images or
graphs (see [44]), that therefore can be simulated to yield
reasonably efficient algorithms for the reconfigurable mesh.
Further, some of the mesh-of-trees algorithms have the
property that only one level of the row- or column-trees
are being used at any one time, and therefore, the stepwise
simulation time on the reconfigurable mesh is ©(1) instead
of ©(logn). Such algorithms are called normalized in [33].

2) PRAM simulation and sorting: As a general-purpose
computer, the reconfigurable mesh has the same deficiency
that the plain mesh does, namely the fact that it must take
(+/m) time to sort n values. This is because a slice through
the center cuts only /7 wires, and to sort on average half
the items must cross those wires, taking at least (y/n)
time. For some applications this is a serious deficiency,
but for others it can be gotten around by noting that the
reconfigurable mesh does quite well on sorting /7 values
if they are initially stored one per row or one per column.

To accomplish this, the items are first moved to the
diagonal processors. Then in each row the value in the
row’s diagonal processor is broadcast, and then in each
column the value in the column’s diagonal processor is
broadcast. Now each processor compares its row value to
its column value, and if the row is greater then it sets a
flag 1, otherwise it sets the flag to 0 (in case of ties it sets
the flag equal to 1 if the row coordinate is at least as large
as the column coordinate). In each row, the rank of the
item in the diagonal processor is the sum of the flags in the
row. These flags can be summed in a tree-like fashion, first
forming the sum of pairs, then the sum of four consecutive
processors, etc. Using bit-serial communication, this would
take a total of ©(log?n) time on the constant-delay model
and ©(log3n) time on the logarithmic-delay model. In the
reconfigurable model considered in [33] the communication
is assumed to be wordwise, and hence for it the time would
be ©(logn) on the constant-delay model, and ©(log’n) on
the logarithmic-delay model.

Another use of the diagonal processors comes from sim-
ulating algorithms for a Parallel Random Access Machine
(PRAM) with exclusive write and either exclusive or con-
current read. If there are just \/n processors and memory
cells of the PRAM to be simulated, then the diagonal
processors simulate these. For each communication step,
if PRAM processor ¢ is sending information to process of
memory cell j, then first simultaneous row broadcasts are
used to give the destination and value being sent. Each
processor checks to see if the destination is equal to its
column. Then simultaneous column broadcasts are used to

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

send the value to the appropriate diagonal processor. As
long as no two messages are simultaneously being sent to
the same location, there will be no conflicts, and a step of
the PRAM can be simulated in ©(1) communication step
on the reconfigurable mesh.

This PRAM simulation can be useful in divide-and-
conquer image algorithms where first a problem is solved
on subimages, and then the pieces are put together to solve
the entire problem. The reason for this is that often the
merging operation involves 6(n) words of information and
hence the above techniques can be applied. The PRAM
simulation is used in the component labeling algorithm in
[33], and in algorithms for finding nearest neighbors and
convex hulls.

IV. FAULT TOLERANCE

Fault tolerance has been treated as a luxurious subject in
the computer development and has been emphasized only in
areas where a malfunction of the computer may lead to fatal
results such as the space shuttle and nuclear power plant
control, etc.. For massively parallel processing, the fault
tolerance needs to be treated as part of the design because
the probability of the occurrence of a fault within such a
large amount of devices is very high. Many levels of fault
tolerance are possible, e.g., circuit or memory; nevertheless
this section focuses on the use of reconfiguration as a means
for fault recovery. We describe several reconfiguration
schemes for fault tolerance of massively parallel computers.

A. Row/Column Replacement for Mesh Network

Row/Column replacement is a popular reconfiguration
scheme for fault tolerance [36), [45], [46] of a two-
dimensional array. In such a scheme (Fig. 9), processors in a
row (column) which contains one or more faulty processors
are bypassed and treated as “connecting processors” via a
built-in switch or multiplexer, and a spare row (column)
is switched in to make up the loss of the bypassed
row (column). The advantage of such a scheme is its
simplicity: the extra hardware to support the bypassing is
minimal, and the algorithm to replace the fault is efficient.
The disadvantage however is the waste of the entire row
(column) when there is only one or few processors at fault.

The row/column replacement scheme can be readily
supported by the reconfiguration architectures discussed in
Section II. For example, the bypassing of a column can
be performed by connecting the East and West ports of all
processors in the column in the Polymorphic-torus network.
Similarly, for the Gated-Connection Network, bypassing
a processor involves the activation of two gates of the
switch in the processor (e.g., W and F) and activating the
appropriate gates of the entire row accomplishes the column
replacement. It is important to note that for a reconfigurable
architecture the faults are recovered via reconfiguration
in exactly the same way as an algorithm mapping by
controlling the open/close position of the switches. The
design of a reconfigurable architecture considers a faulty
condition as a normal operating mode of the system. A

LI AND STOUT: MASSIVELY PARALLEL COMPUTERS: INTRODUCTION

bypassed
spare

/ column

faully
processor

B[R

Fig. 9. A row/column replacement scheme by reconfiguration.

unified mechanism (i.e., reconfiguration) is provided to
handle both the algorithm mapping and the faults.

The row/column replacement is performed on PAPIA2
via reconfiguration for fault tolerance in a similar manner
but at a higher cost. When a processor is found at fault, two
adjacent columns are disabled (i.., the column containing
the faulty processor and the previous or the following
column). Two spare columns are activated to make up the
loss.

The waste of processors in a massively parallel sys-
tem using row/column replacement scheme can be large.
This can be improved by localizing the replacement. In a
localized row/column replacement scheme, the massively
parallel system logically arranged as a two-dimensional
array of size M x N is decomposed into many smaller mxn
arrays, each of which is equipped with local spare rows
and columns and the replacement takes place only locally.
That is, a spare in m(i) x n(¢) subarray can replace a faulty
processor only in the same subarray. The waste of the spare
processors caused by one fault is restricted to max(m,n)
which can be a large saving when M > m or N > n.
Furthermore, considering that m x n can be fitted into a
chip, the signal delay due to the bypassing is small and the
worst signal delay can be estimated regardless of the system
size. Consequently, the system clock can be designed in
a more controllable manner. The localized scheme offers
advantages in engineering a large system.

The simplicity of the row/column replacement can be
explained from the viewpoint of mapping. Removing a
row/column entirely from the network is equivalent to
maintaining the topology of the network such that the map-
ping of an algorithm onto the network remains unchanged.
This is a tradeoff of using either hardware or software for
fault recovery. The row/column replacement demonstrates
that using large amount of hardware resource (i.e., bypassed
nonfaulty processors), although expensive, is an effective
way of simplifying the mapping.

439

Switch for
N port in row

ré/ Spare

(E &W port
connected
similarly)

eee _I Switch for

N port in column
) 4%_1

switch for
S port in column

—

Switch for ;@

S port in row I
i

-

o

Spare

Fig. 10. A diagonal replacement scheme.

The idea of row/column replacement can be extended to
topologies other than the two-dimensional mesh. The goal
is to remove a small number of nonfaulty processors while
maintaining the original topology. Such a goal requires
to include enough redundancy in the original design. The
localized row/column replacement is one such example. By
recognizing that a small array is a subset of a large array and
by building redundancy in each subarray, one can remove
a fault at a smaller cost.

B. Localized Diagonal Replacement Scheme

The waste of the bypassed nonfaulty processors in the
row/column replacement scheme can be improved by the
localized diagonal replacement scheme which uses one
spare processor for each processor in the diagonal location
of the two-dimensional array. The spare processor at (i,1)
location is connected to every processor in the ith row
and 4-th column, and it can replace any faulty processor in
the i-th row or sth column. Since one spare processor can
recover one fault, the utilization of the spare is increased
in comparison with the row/column replacement scheme.
However, when multiple faults occur at the same row i,
the spare (4,) can only be used to recover one fault in the
row, and the rest of the faults need to be recovered by the
spares located in their column indices. One can therefore
create a fault pattern consisting of faulty processors at
(s,t), (s,y) and (z,t) locations; such a fault condition
can not be recovered by the diagonal replacement scheme.
Enhancement to improve the recovery of such a fault pattern
will be discussed shortly.

Extra wires and switches are needed to implement the
diagonal replacement scheme. The N port of a spare
processor (d,d) is connected to all N ports of the regular
processors in the same row and to all N ports of the regular
processors in the same column through switches (Fig. 10).
The extra connections for the S, E, and W ports of the
spare processor are established in a similar way. One switch
is inserted in each extra connection wire and is turned on

440

(2,2) (2,1 (1,2) (1.1)
NEWSNEWSNEW2NEWS

P(1,1)

P(1,2)

P(2,1)

P(2,2)

.| Spare (2,2)

Spare (1,1)

AL

VEMZ WnEMZ

Fig. 11. A layout for a diagonal replacement scheme.

N Spare PE

ESNNSN/

O0O00CsEN

DOO000s®s [eloo |
00000 w =™ =
S O0000ONN =
OO000O0OSNN B
SENES

ESNNE E

(a) ®)

Fig. 12. A multitrack scheme.

when the spare is to be used. Considering the case that
the faulty processor (d,j) is to be replaced by the spare
(d, d), the switches controlling the four ports of P(d, j) to
SP(d,d) are turned on so that the data flow into the faulty
processor are guided to the spare. The fault is isolated.

At the first glance, the extra wires required for the
diagonal replacement seems to destroy the regularity of the
mesh connectivity. However, one layout pattern shows that
it can be a systematic and efficient fault tolerant scheme.
Figure 11 shows that the ports of the regular processors are
routed to the side of the processor rows and are available
for connection vertically through the entire chip. A spare
processor is placed in row direction and its ports are
connected to all appropriate ports via “opening contacts” at
the vertical connection. When the scheme is localized, the
suggested layout imposes only a small overhead in VLSI
implementation.

The above described layout for the diagonal replacement
scheme also provides an efficient way to add more spare
processors to every diagonal position to increase the prob-
ability of recovery. More than one. spare processor can
be added to the diagonal positions so that more faults
can be recovered. The connectivity of the spare to the

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

Fig. 13. A fault recover example using a multitrack scheme.

regular processors is a straightforward duplication. It is
also possible to put spares in positions other than the
diagonal. Since the vertical wiring for the ports of the
regular processors is readily available, the difference will
be “opening the contacts” at nondiagonal connections. This
later option further enhances the utilization of the spare
Processors.

Generalizing the scheme to the extreme, the area where
the vertical ports meet the ports of spare processors can
be considered as a “reconfiguration area” in which a spare
processor can be programmed as a spare to certain rows and
columns at the chip fabrication stage, and can be controlled
for replacement at the run time. What is more intriguing
is that when three-dimensional silicon structure is realized
[47] one layer of the silicon structure can be dedicated as
“the reconfiguration area” for fault tolerance purpose only.

C. Multitrack Scheme

As shown in Fig. 12, the multitrack scheme [48]-[51]
inserts several tracks of switches between two rows of pro-
cessors (Fig. 12(b)) and provides spares around the edges
of the two-dimensional array (Fig. 12(a)). By reconfiguring
the switches, the ports of the regular and spare processors
are reconstructed as an array. The purpose of providing
more tracks is to recover more faults with the same number
of spares. The scheme is an attempt to improve upon
the row/column replacement scheme by using one spare
(instead the entire row of spares) to recover one fault.
It is recognized that more alternative paths are needed
when multiple faults occur, as a result, multiple tracks
of switches provide the alternative paths. An example of
recovering multiple faults using multiple tracks is shown in
Fig. 13. Research has been widely conducted to determine
the number of tracks, the probability of successful recovery,
the recovery algorithm, and the track structure.

The multitrack and the diagonal replacement scheme
share the same goal to recover one fault by one spare. They
all use the reconfiguration as the fundamental mechanism to
achieve the recovery. However, they differ in the distribu-
tion of the reconfiguration and extra switches. The diagonal
replacement scheme centralize the “reconfiguration area”
while the switches for the reconfiguration of the multitrack
scheme are dispersed among the array. A spare in the
multitrack scheme replaces a faulty processor in the same
row while the diagonal scheme allows the spares to replace
faults in the row or column direction.

Reconfigurable SIMD architectures such as Polymorphic-

LI AND STOUT: MASSIVELY PARALLEL COMPUTERS: INTRODUCTION

»>w

3-track

torus and GCN support multitrack scheme as follows.
For example, of a 2-track system, two rows of proces-
sors/switches below a processor row can be treated as the
switch tracks dedicated solely for connecting purpose. Re-
configuring the switch track for fault tolerant is no different
from reconfiguration for algorithm mapping. Although the
processing capability of the processors in the tracks are not
used, the multitrack scheme on reconfigurable architectures
enjoys a unified approach to both the mapping and the fault
tolerance. Furthermore, there is no need to determine in
advance the number of tracks because there is no distinction
between switches and processors. A processor row can
be converted to a switch track as demanded by the fault
pattern.

D. Summary of Fault Tolerance by Reconfiguration

We have discussed three schemes to recover faults via
reconfiguration as representative examples among a large
body of available schemes [52], [53]. Fault recover schemes
for higher dimensional topology is less understood and is
an active research field [54], [55]. Besides their pertinence
to the reconfigurable massively parallel architectures, the
choice of presenting these schemes indicates the simplicity
of the row/column replacement scheme, and the quantum
jump in complexity of the diagonal and multitrack schemes.
The discussion in previous sections reveals encouraging
messages that these schemes are consistently supported by
reconfigurable SIMD architectures via executing different
fault recovery algorithms. Such a feature is an impor-
tant step toward the design of a reconfigurable SIMD
architecture that encompasses sufficient built-in connection
autonomy so that new and more powerful fault recovery
algorithms can be applied without hardware redesign.

Two subjects, the algorithm mapping and the fault-
tolerance discussed in the previous sections, were treated in
the past as two separate areas. The mapping is concerned
with the transformation of an algorithm graph into a pro-
cessor graph while the fault tolerance is concerned with the
transformation of the same algorithm graph into a degraded
(and/or modified) processor graph. The contribution of
many reconfigurable architectures discussed in the paper
is the attempt to unify the treatment of mapping and fault
tolerance via a switching network with rich local autonomy.

V. SUMMARY

We have presented in this paper a family of reconfig-
urable massively parallel architectures that employ the idea

441

of connection autonomy as the mechanism to efficiently
support the algorithm mapping and the fault tolerance.
Different implementations of the connection autonomy for
reconfiguration were illustrated. We also showed the im-
proved algorithm efficiency accomplished via reconfigura-
tion. Faults are treated by these reconfigurable architectures
in a uniform way as the algorithm mapping. A further
detailed description of this architecture can be found in [56].

REFERENCES

1

[2]

31
(4]

(5]
[6]
[7

—

8
[
[10]

—

f11]

(12}

(13]

[14]

[15]

(16]

(171

[18]

[19]
[20]

[21]

(22

[23

—_—

442

M. J. Flynn, “Some computer organizations and their effec-
tiveness”, IEEE Trans. Comput., vol. 21, pp. 948-960, Sept.
1972.

T. J. Fountain, “Introducing Local Autonomy to Processor
Arrays,” in Machine Vision: Algorithms, Architectures and Sys-
tems, H. Freeman, Ed. New York: Academic, 1988.

M. Maresca, M. Lavin, and H. Li, “Parallel Architectures for
Vision,” Proc. IEEE, vol. 76, pp. 970-981, Aug. 1988.

M. Maresca and H. Li, “Connection autonomy in SIMD archi-
tectures: A VLSI implementation,” J. Parallel and Distributed
Processing, vol. 7, no. 2, pp. 302-320, Oct. 1989.

L. Snyder, “Introduction to the configurable highly parallel
computer,” IEEE Comput., vol.15, pp. 47-56, Jan. 1982.

S. Yalamanchili and J. K. Aggarwal, “Reconfigurable strategies
for parallel architectures,” IEEE Comput., Dec. 1985.

C. Davis, S. P. Kartashev, and S. 1. Kartashev, “Reconfigurable
multicomputer networks for very fast real-time applications,”
in Proc. NCC, pp. 167-184.

H. Li and M. Maresca, “Polymorphic-Torus Network,” in Proc.
Int. Conf. Parallel Processing, 1987.

H. Li and M. Maresca, “Polymorphic-torus network,” IEEE
Trans. Comput., vol. 38, pp. 1345-1351, Sept. 1989.

H. Li and M. Maresca, “Polymorphic-torus architecture for
computer vision,” IEEE Trans. Patt. Anal. Mach. Intell., vol.
11, pp. 233-243, Mar. 1989.

H. Li and M. Sheng, “Sparse matrix vector multiplication
on polymorphic-torus,” in Proc. FRONTIERS ‘88, 2nd Symp.
Frontier of Massively Parallel Computation, Fairfax, VA, Oct.
1988,.

H. Li and M. Sheng, “Connected component labeling algorithm
on polymorphic-torus architecture,” in Proc. Int. Comput. Symp.
Dec. 15-17, 1988, Taipei, China.

M. Maresca, H. Li and M. Sheng, “Parallel computer vision on
polymorphic torus architecture,” in Int. J. Comput. Vision and
Appl., Nov. 1989.

B.'F. Wang and G. H. Chen, “Constant time algorithms for the
transitive closure problem and its applications,” in Proc. Int.
Conf. Parallel Processing, 1990.

C. C. Weems, S. P. Levitan, A. R. Hanson, E. M. Riseman, D.
B. Shu, and J. G. Nash, “The image understanding architecture,”
Int. J. Comput. Vision, vol. 2, pp. 251-282, 1989.

D. B. Shu and J. G. Nash, “The gated interconnection network
for dynamic programming,” in Concurrent Computations, S. K.
Tewsburg, ef al., Eds. New York: Plenum, 1988.

D. B. Shu, L. W. Chow, J. G. Nash, and C. Weems, “A content
addressable, bit-serial associate processor,” in JEEE Workshop
on VLSI Signal Processing, Montery CA, Nov. 1988,

D. B. Shuy, J. G. Nash, and C. Weems, “Image understanding
architecture and applications,” in Advances in Machine Vision,
J. L. C. Sanz, Ed. New York: Spring-Verlag, 1989.

V. Cantoni and S. Levialdi, Eds., Pyramidal System for Com-
puter Vision. New York: Spring-Verlag, 1986.

L. Uhr, “Pyramidal multiprocessor structures, and augmented
pyramid,” in Computer Structure for Image Processing, M. J.
B. Duff, Ed. New York: Academic, 1983.

S. L. Tanimoto and T. Pavlidis, “A hierarchical data structure
for picture processing,” Comput. Graphics and Image Process-
ing, vol. 4, pp. 104-109, 1975.

D. H. Schaefer, P. Ho, J. Boyd, and C. Vallejos, “The GAM
Pyramid,” in Parallel Computer Vision, L. Uhr Ed. New York:
Academic, 1987.

V. Cantoni, M. Ferretti, S. Levialdi, and R. Stefanelli, “PAPIA:
Pyramidal architecture for parallel image analysis,” in Proc. of
7th Symp. Comput. Arithmetic, 1985.

[24

[25)
[26]

[27]
(28]

[29]
(30]

[31]

(32]
[33]

[34]
[35]

[36]

B71

[38]

[39]
[40]
[41]
[42]

(43]
[44]
[45]

[46]
(47]

[48]

[49}

[50}

(51]

[52]

A. P. Reeves, “Pyramidal algorithms on processor arrays,”
in Pyramidal System for Computer Vision, V. Cantoni and S.
Levialdi, Ed. New York: Spring-Verlag, 1986.

T.). Fountain, Processor Array-Architectures and Applications.
New York: Academic, 1987.

M. J. B. Duff, B. M. Jones, and L. J. Townsend, “Parallel
processing pattern recognition system UCPR1,” Nucl. Instr.
Meth., vol. 52, pp. 284-288.

D. M. Watson, The application of cellular logic to image pro-
cessing, PhD. dissertation, University Coliege London, 1974.
M. J. B. Duff, D. M. Watson, T. J. Fountain, and G. K. Shaw, “A
cellular logic array for image processing,” Pattern Recognition,
vol. 5, pp. 229-247, 1973.

T. J. Fountain and V. Goetcherian, “CLIP4 parallel processing
system,” Proc. Inst. Elec. Eng. vol. 127E, pp. 219-224.

M. J. B. Duff, “Real Applications on CLIP4,” in Integrated
Technology for Parallel Image Processing, S. Levialdi, Ed.
London: Academic.

R. Miller, V. K. Prasanna Kumar, D. Reisis, and Q. F. Stout,
“Image computations on reconfigurable VLSI arrays,” in Proc.
Conf. Comput. Vision and Pattern Recognition, 1988.

J. Rothstein, “Bus automata, brains, and mental modeis,” I[EEE
Trans. Syst. Man, Cybern., vol. SMC-18, 1988.

R. Miller, V. K. Prasanna Kumar, D. Reisis, and Q. F. Stout,
“Parallel computations on reconfigurable meshes,” IEEE Trans.
Comput. vol. 39, 1990.

S. H. Unger, “A computer oriented toward spatial problems,”
Proc. IRE, vol. 46, pp. 1744-1750, 1958.

G. H. Barmnes, R. M. Brown, M. Kato, D. J. Kuck, D. L.
Slotnick, and R. A. Stokes, “The Illiac IV Computer,” IEEE
Trans. Comput., vol. 17, pp. 746-757, 1968.

K. E. Batcher, “Design of a massively parallel processor,” IEEE
Trans. Comput., vol. C-29, pp. 836-840, Sept. 1980.

P. M. Flanders, D. J. Hunt, F. S. Reddaway, and D. Parkinson,
“Efficient high-speed computing with the distributed-array pro-
cessor,” in High Speed Computing and Algorithm Organization,
D. J. Kuck, D. H. Lowrie and A. H. Sameh Eds., 1977.

D. K. Arvind, I. N. Robinson, and 1. N. Parker, “A VLSI chip for
realtime image processing,” in IEEE Int. Symp. Circuits Syst.,
pp- 405-408, 1983.

T. Kondo, T. Nakashima, M. Aoki, and T. Sudo, “An LSI
adaptive processor,” IEEE J. Solid-State Circuits, vol. 18, 1983.
W. J. Dally, “A VLSI Architecture for concurrent data struc-
ture,” Ph.D. dissertation, Calif. Inst. Technol., 1986.

W. J. Dally and C. L. Seitz, “Torus routing chip,” in Distributed
Computing, vol. 1, no. 4, 1986.

W. J. Dally and P. Song, “Design of a self-timed VLSI
multiprocessor communication controller,” in Proc. Int. Conf.
Comput. Design: VLSI in Computer and Processors, Oct. 1987.
Q. F. Stout, “Using clerk in parallel processing,” in Proc. 23rd
IEEE Symp. Found. Comput. Sci., 1982.

R. Miller and Q. F. Stout, Parallel Algorithms for Regular
Architectures.Cambridge, MA: MIT Press, 1990.

I. Koren, “A reconfigurable and fault tolerant VLSI multi-
processor,” in 8th Symp. Comput. Architecture, pp. 425-442,
1981.

S. Y. Kuo and W. K. Fuchs, “Efficient spare allocation for
reconfigurable arrays,” IEEE Design and Test, Feb. 1987.

G. R. Nudd, R. D. Etchells, and J. Grinberg, “Three-dimensional
VLSI architecture for image understanding,” J. Parallel and
Distributed Computing, vol. 2, no. 1, pp. 1-29, Feb. 1985.

S. N. Jean, H. C. Fu, and S. Y. Kung, “Yield enhancement
for WSI array processor using two-and-half-track switches,” in
Proc. Int. Conf. Wafer Scale Integration, Jan. 1990.

M. Sami and R. Stefanelli, “Reconfigurable architectures for
VLSI processing array,” Proc. IEEE, vol. 74, pp. 712-722,
May 1986.

L. Jerris, F. Lombardi, and D. Sciuto, “Orthogonal mapping: A
reconfigurable strategy for fault tolerant VLSI/WSI 2D arrays,”
in Proc. Int. Workshop on Defect and Fault Tolerance in VLSI
Systems, Oct. 1988.

G. Saucier, J-L. Party, E-F. Kouka, T. Midwinter, P. Ivey, M.
Huch, and M. Glesner, “Defect tolerance in a wafer scale array
for image processing,” in Proc. Int. Workshop on Defect and
Fault Tolerance in VLSI Systems, Oct. 1988.

M. Chean and J. A. B. Fortes, “A taxonomy of reconfigurable
techniques for fault-tolerant processor arrays,” IEEE Comput.,
Jan. 1990.

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 4, APRIL 1991

[53] W. R. Moore, “A review of fault tolerant techniques for the
enhancement of integrated circuit yield,” Proc. IEEE, May
1986.

[54] M. S. Chen and K. G. Shin, “On hypercube fault tolerant
routing using global information,” in Proc. 4th Conf. Hypercube
Concurrent Computers and Applications, Montery, CA, Mar.
1989.

[55] J. M. Gorden and Q. F. Stout, “Hypercube message routing in
the presence faults,” in Proc. 3rd Conf. Hypercube Concurrent
Computers and Applications, Jan. 1988.

[56] H. Li and Q.F. Stout, Reconfigurable Massively Parallel Com-
puters. Englewood Cliffs, NJ: Prentice Hall, 1991.

Hungwen Li was born in Taiwan in 1951. He
received the BSEE degree in 1973 from National
Taiwan University. He received the M.S. and
Ph.D. degrees in electrical engineering from the
University of Pittsburgh, PA, in 1977 and 1979,
respectively.

Since 1976, he has been conducting research
in various branches of parallel processing in-
cluding architecture, algorithm, language, simu-
lation, performance evaluation, and application.
He has applied parallel computing to power

system, satellite control, digital signal processing, image processing, and

computer vision. He joined the Advanced Technology Laboratory of the

RCA Government System Division in 1980 and in 1982 he became
- Manager of the Advanced Signal Processor Architecture group working

primarily on the VLSI digital signal processor, advanced parallet architec-

tures and its applications. He joined the Industrial Machine Vision group of
the IBM T.J. Watson Research Center in 1983 to initiate a research project
on VLSI polymorphic architecture, parallel language, and parallel vision
algorithms. In 1988, he joined the IBM Almaden Research Center. His
current research involves massively parallel processing for solid and fluid
mechanical design and analysis for computer disk storage systems. He was
the guest editor of PROCEEDINGS OF THE [EEE Special Issue on Computer

Vision in 1988. He is a coeditor of the book Reconfigurable Massively

Parallel Computers (Prentice Hall, 1991). He holds several U.S. patents

on parallel computers.

LI AND STOUT: MASSIVELY PARALLEL COMPUTERS: INTRODUCTION

Quentin F. Stout (Member, IEEE) learned com-
puting in the public schools of Euclid, OH. He
received the B.A. degree from Centre College,
Danville, KY and the Ph.D. degree from Indiana
University.

Since 1984 he has been an Associate Profes-
sor in the Department of Electrical Engineer-
ing and Computer Science of the University
of Michigan, Ann Arbor, where he is a mem-
ber of the Advanced Computer Architecture
Laboratory and the Laboratory for Scientific
Computing. His primary rescarch interests are in parallel algorithms,
parallel computing, and parallel architectures. With H. Li, he recently
coedited the book Reconfigurable Massively Parallel Computers (Prentice
Hall, 1991), and with R. Miller he is completing the book Parallel
Algorithms for Regular Architectures (MIT Press, 1991).

Dr. Stout is a member of the Association for Computing Machinery and
the American Mathematical Society, and serves on the editorial boards
of INFORMATION PROCESSING LETTERS and the IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS.

443

