
Selection on the Recon�gurable Mesh�

Eric Haoy Philip D� MacKenziez Quentin F� Stoutx

Advanced Computer Architecture Laboratory

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor� MI ����������

Abstract

Our main result is a ��logn� time algorithm to select the kth smallest element

in a set of n elements on a recon�gurable mesh with n processors� This improves

on the previous fastest algorithm�s running time by a factor of logn� We also show

that some variants of this problem can be solved even faster� First we show that a

good approximation to the median of n elements can be found in ��log log n� time�

This can be used to solve two�dimensional linear programming over n equations in

��log n log logn� time� an improvement of log n� log logn time over the previous fastest

algorithm� Next� we show that� for any constant � � �� selecting the kth smallest

element in a set of n��� elements evenly spaced throughout the mesh can be done

in constant time� We also show that one can select the kth smallest element from

n b�bit words in ���b� log b�maxflog� n � log� b� 	g� time� which implies that if the
elements come from a polynomial range� one can select the kth smallest element in

��log n� log log n� time� In addition� we show that the expected time to select the kth
smallest element from n elements� assuming that all possible orderings of the elements

are equally likely� is the time to perform bit�addition� which is currently known to be

O�log� n�� Finally� we show an 
�log log n� time lower bound for �nding the maximum

of n elements on the rmesh� This implies an 
�log log n� time lower bound for selection�

and is the �rst known non�trivial lower bound on the rmesh which does not rely on

the bandwidth constraints of the mesh and does not restrict the instruction sets of the

processors�

�A preliminary version of this paper appeared in the �th Symposium on the Frontiers of Massively Parallel

Computation�
ySupported by a University of Michigan College of Engineering Benton Fellowship�
zSupported by an AT�T Fellowship and by NSF�DARPA grant CCR���������
xSupported by NSF�DARPA grant CCR���������

�



� Introduction

A recon�gurable mesh� or rmesh� consists of a bus in the shape of a mesh which connects a
set of processors� but which can be split dynamically by local switches at each processor� By
setting these switches� the processors partition the bus into a number of subbusses through
which the processors can then communicate� Thus the communication pattern between
processors is �exible� and moreover� it can be adjusted during the execution of an algorithm�
The rmesh has begun to receive a great deal of attention as both a practical machine to

build� and a good theoretical model of parallel computation� On the practical side� rmeshes
have been constructed for use in vision and VLSI applications �see ���	� On the theoretical
side� the rmesh has been shown to be able to solve some fundamental theoretical problems
very quickly� In fact� the rmesh can solve some problems faster than the PRAM� the model
most often used for theoretical parallel computation� For instance� an n processor rmesh
can �nd the parity of n bits in constant time ��
�� which is signi�cantly faster than an n
processor PRAM� which requires ��logn� log logn	 time ���� Of course the rmesh still su�ers
from the bandwidth constraints of the standard mesh� so that an n processor rmesh needs
��
p
n	 time to sort n items� whereas an n processor PRAM can sort n items in 
�logn	

time�
In this paper� we will examine the problem of selection on the rmesh� The selection

problem is to �nd the kth smallest element from a totally ordered set of n elements� A special
case of this problem is to �nd the median� The �rst linear time sequential algorithm for
selection was given by Blum et� al� ���� Parallel solutions were explored in ��� �� ��� ��� �
� ����
Of these� ElGindy and W�egrowicz ��� obtained the best previous running time on the rmesh�

�log� n	� Their algorithm is a parallelization of the serial selection algorithm of Munro and
Paterson ����� The main bottleneck in their algorithm is the time to �nd good approximations
to the kth element� Using the special properties of the recon�gurable mesh� we dramatically
improve the time to �nd good approximations� Furthermore� we also improve the accuracy of
these approximations� Thus we are able to reduce the running time of the selection algorithm
to 
�logn	�
We also show that one can �nd an approximate median in 
�log logn	 time� As mentioned

in ���� an approximate median can be used in place of an exact median in a parallelized version
of Megiddo�s two�dimensional linear programming algorithm ����� ElGindy and W�egrowicz
��� �nd an approximate median in 
�logn	 time� which gives a 
�log� n	 time algorithm
for two�dimensional linear programming� Our faster algorithm for �nding an approximate
median results in a 
�logn log logn	 time algorithm for two�dimensional linear programming�
We also examine the selection problem when the number of processors is greater than

the number of inputs� Speci�cally� for any constant � � 
� given n��� elements spaced evenly
throughout the mesh� we present a constant time selection algorithm�
We also present an algorithm to select the kth smallest element from n b�bit words that

works in 
��b� log b	maxflog� n � log� b� �g	 time� which implies that if the elements come
from a polynomial range� then one can select the kth smallest element in 
�logn� log logn	
time�
Next� we examine the selection problem when the number of inputs equals the number

of processors and all input orderings are equally likely� In this case� we present a selection
algorithm which is guaranteed with high probability to run in the time to perform bit�

�



P roc e s s o r

Swi tch

Reconfigurable
Bus

Figure �� The Recon�gurable Mesh Architecture�

addition� The known 
�log� n	 time algorithm for bit�addition thus implies a 
�log� n	
expected time algorithm for selection�
Finally� we show that the proof of the ��log logn	 time lower bound for �nding the

maximum on the PRAM given in Fich� Meyer auf der Heide� Ragde and Wigderson ���
can be converted to give an equivalent lower bound proof for the rmesh� This implies an
��log logn	 time lower bound for selection� and is the �rst known lower bound on the rmesh
which does not rely on the bandwidth constraints of the mesh and does not restrict the
instruction sets of the processors�

� Recon�gurable Mesh

The recon�gurable mesh ���� of size n consists of a recon�gurable bus in the shape of ap
n � p

n grid� with four switches at each intersection point of the grid �three for points
on the sides� and two for points in the corners	 and a processor at each intersection point
which controls the switches and can read data from or write data to the bus� See Figure ��
By dynamically setting the switches� the bus can be subdivided into independent connected
components called subbusses� All processors connected to a subbus can read the data on it�
but only one processor can write data to a subbus at a time�
The processors operate synchronously� In one time step a processor may

� perform a single operation on words of size O�logn	�
� set any of its switches� or
� write or read data from the bus�

Data placed on a bus reaches all processors connected to the bus in unit time� When
the processors in the rmesh can independently connect their north�south switches together
and their east�west switches together at the same time� we call this the cross�over model�
Otherwise we call it the non�cross�overmodel� Li and Stout ��� discuss the di�erence between

�



0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Row-major

0 1

23

4

5 6

7 8

9 10

11

1213

14 15

Proximity

0 1 2 3

4567

8 9 10 11

12131415

Snake-like

Figure �� Three Orderings for Mesh Processors�

these two models� and MacKenzie ���� proves an ��log� n	 time separation between them�
Unless otherwise stated� we will assume the non�cross�over model�
We assume each processor knows its row and column indices� In addition we will also

want processors to know their rank in some total ordering on the mesh� For our algorithms�
we will use three types of orderings� row major ordering� snake�like ordering� and proximity
ordering� In row major ordering� we number processors in each row left to right� beginning
with the top row� and ending with the bottom row� In snake�like ordering we simply reverse
every other row� so that processors with consecutive indices are adjacent� In proximity
ordering� we are guaranteed that processors with consecutive indices are adjacent� and that
the �rst quarter of the processors are in the �rst quadrant� the second quarter in the second
quadrant� and so on� and that this property holds recursively �with a suitable change in
axes	 within the quadrants� See Figure ��
Often it is assumed that a processor initially knows its position in row�major order�

snake�like order� and proximity order� If not� a processor can compute its rank in row�major
order or snake�like order from its indices in constant time and its rank in proximity order
from its indices in 
�logn	 time� Also� by working together� the processors in the rmesh can
compute their ranks in proximity order from their indices in 
�log logn	 time�
We now list some known algorithms for the

p
n � p

n rmesh which will be used in our
selection algorithm�

� One processor can broadcast a value to all other processors in constant time�
� Two lists of size O�pn	 can be merged in constant time�
� p

n elements can be sorted in constant time provided they are located in a single row
or column� or are located on the diagonal ��� ����

� n elements can be sorted into row�major order in 
�
p
n	 time using a standard mesh

sorting algorithm �����

� Pre�x bit�addition over n bits stored one per processor can be performed in 
�log logn	
time� using a

p
n divide�and�conquer technique similar to the one given for �nding the

minmum of n values in Miller� Prasanna�Kumar� Reisis and Stout �����

� Bit�addition over n bits stored one per processor can be accomplished in 
�log� n	 time
on the cross�over model ��� ����

�



� A histogram over h values stored one per processor counts the number of occurances
of each value� �We assume h is less than

p
n and that a histogram is stored in a single

row�	 Assuming the mesh has been preprocessed so that each submesh of size h� � h�

contains a histogram of its own processors� values� then a histogram for the whole mesh
can be found in O�maxflog� n� log� h� �g	 time on the cross�over model ����

� Selection Algorithm

Our algorithm is based on the rmesh algorithm of El Gindy and W�egrowicz ���� which is
in turn based on the serial algorithm of Munro and Paterson ����� Munro and Paterson�s
algorithm was designed to be very frugal in memory usage� Though we do not need to worry
about memory usage on the rmesh� it turns out their algorithm parallelizes very well� Here
we give a simpli�ed explanation of the algorithm of Munro and Paterson�

��� Serial Selection Algorithm

This algorithm runs in O�logn	 phases� Each phase is designed to reduce by a constant
fraction the number of elements which still have to be considered in selecting the kth ele�
ment� This is done by forming a sorted sample of size s � 
�logn	 from which two good
approximations to the kth element can be taken� one which is guaranteed to be below the kth
element� and one which is guaranteed to be above the kth element� These approximations
will be called the low and high �lters� To �nd the sample� �rst we partition the elements into
sublists of size s and sort those sublists� Then we perform a procedure similar to a mergesort
on these sublists� except that as sublists are merged� they are also thinned by removing every
second element� Thus the sizes of the sorted sublists remains at s� For n � s�r� there are
r levels of merges� Munro and Paterson show that the elements dk��re � r and dk��re in
the �nal sample can be used as the �lters� and that the number of elements between these
�lters is at most ��r � �	�r� For s � � logn� this is less than �

�
n�

��� New Parallel Selection Algorithm

Now we give our rmesh algorithm for selection� We assume that we have a set of elements
distributed at most one per processor on an rmesh with n processors� and would like to �nd
the kth element of this set� Initially all the processors contain an element and are active�
As elements are eliminated as possible candidates� the processors which hold them become
inactive�
Let s � logn� Procedure Select will iterate until the number of active elements becomes

less than s�� at which time it will sort the remaining elements� and choose the correct
candidate�

Procedure Select�k	

Stage � Split the mesh into n�s� submeshes of size s � s and sort the elements in these
submeshes into row major order� This step takes O�s	 time using the sorting algorithm
of Thompson and Kung �����

�



Stage � Number the active processors in row major order within the s� s submeshes and
in proximity order between submeshes� This can be done using a pre�x bit�addition
to �nd the proximity ordered ranks� and then altering the ranks within each submesh
to correspond to the row�major order� We notice that the ranks of the active elements
in each submesh are contiguous in the row�major order� which makes this alteration
very simple� The time required by this step is determined by the time to perform
pre�x bit addition� which is 
�log logn	� Let m be the number of active processors� If
m mod �s� �� 
� add enough active processors with value � so that m mod �s� � 
�

Stage � If m � �s�� then arrange the m processors along the �rst row in 
�s	 time� sort
them in constant time� pick the kth element� and exit�

Stage � Compute the sample by calling procedure Sample�k	�

Stage � Choose the �lters and broadcast them to all the processors� Perform a pre�x bit
addition algorithm to �nd how many active elements fell below the low �lter� Call this
value b� Make each processor which contains an element below the low �lter or above
the high �lter inactive�

Stage � Let k � k � b and go to stage ��

End Select

To compute the sample� we will �rst partition the active elements into consecutive groups
of size s according to the numbering performed in step �� These groups will form the base
of our �merge tree�� We proceed as described below�

Procedure Sample�k	

Stage � Partition the elements into consecutive groups of size s� Move the items of a group
to the submesh which contains the �rst element of that group� We do this by moving
elements using subbusses formed along the proximity ordering between the submeshes�
Note that we have enough bandwidth to do this� and that the items can be moved
to the correct busses because they are arranged linearly in each submesh� Now each
submesh has an integral multiple of s elements�

Stage � If a submesh contains new data �at most s�� new elements	� then it can sort these
elements in constant time� Thus all the groups it contains are sorted�

Stage � For � � log s steps� we will thin and merge consecutive pairs of groups in parallel�
just as Munro and Paterson did in serial� We will merge the �rst and second groups in
the submesh where the �rst group resides� the third and fourth group in the submesh
where the third group resides� and so on� Any two groups which originally resided
in the submesh are already sorted� so we thin and merge them by simply selecting
every other item from them� When one of the two groups or part of one of the two
groups originally resided in another submesh� we must thin and merge these using the
constant time merge algorithm� Note that this can only occur with the last group �and
thus at most one group	 in each submesh� When the second group in the pair which
needs to be merged is not in the submesh� it will need to be transported there from

�



its own submesh� It can get there by the busses which travel in proximity ordering
between the submeshes� and it can be merged in constant time as above� Thus each of
these thinning and merging steps takes constant time� and after � � log s steps� every
consecutive pair of submeshes will have at most one group of s items�

Stage � �The basic structure of this stage is similar to other O�log logn	 algorithms� such
as �nding the maximum �����	 For log log�m�s�	 steps� at each step i merge ��

i��

consecutive groups of elements and use every ��
i��

th element for the new group� thus
thinning the large sorted list down to a new sorted group of s elements� We do this
as follows� Form m��s���

i��

supergroups� each consisting of ��
i��

consecutive groups�
Also form n�s���

i

super�submeshes� each of size ��
i��

s���i��

s� We would like to move
each supergroup of elements into the super�submesh which contains the �rst group in
the supergroup� To do this� in each super�submesh� we sort all elements which have
their leader in the super�submesh where they reside� Then we sort those which will
need to travel to another super�submesh� Now we simply put the traveling elements
onto the correct subbusses formed in proximity order between these super�submeshes
Each super�submesh will then have the correct ��

i��

groups of elements� and it can sort
and thin these in constant time�

End Sample

Stages � and � in the procedure Sample take constant time� Stage � uses � � log s �
O�log logn	 steps which each take constant time� and stage � uses log log�m�s�	 � O�log logn	
steps which each take constant time� Thus� procedure Sample takes O�log logn	 time� We
now analyze how good the resulting sample is� Let Lij andMij be the least and most number
of elements which can precede element j at step i of stage �� From Munro and Paterson �����
Lij � j�i � � and Mij � �i � j � �	�i� Then at the start of the stage �� L��log s�j � �js� �
and M��log s�j � �s�log s� j	�
Now let L�

ij andM
�

ij be the least and most number of elements which can precede element
j at step i of stage �� We present the following lemma�

Lemma ��� L�

ij � js��
i � � and M �

ij � �i � j � log s	s��
i

�

Proof� Obviously L�

�j � �js� � and M �

�j � �s�j � log s	� From the way we construct these
groups in the algorithm� we can see that

L�

ij � minfL�

i���p� � L�

i���p� � � � �� L�

i���p
��

i��
� ��

i�� � � j p� � p� � � � �� p��i�� � ��
i��

j�

p� � 
� p�� p�� � � � � p��i�� � 
g

and

M �

ij � maxfM �

i���p�
�M �

i���p��� � � � ��M �

i���p
��

i���� j p� � p� � � � �� p��i�� � ��
i��

j�

p� � 
� p�� p�� � � � � p��i�� � 
g�

From these equations� the lemma follows inductively� �

�



Now let r � log log�m�s�	� the number of steps in Stage �� We must choose the low and
high �lters from the sample after step r of Stage �� We will call these u and v respectively�
We must have

k � � � M �

ru � �r � u� log s	s��
r

and
k � � � L�

rv � vs��
r � ��

so we will choose u � d�k � �	�s��re � log s � r� and v � dk�s��re� The kth element must
then be one of u or v or lie between them in the order� Given s � logn� the number of
elements between the uth and vth elements is at most

M �

rv � L�

ru � � � �r � log s� v � u	s��
r

� ��r � log s	s��
r

� �

� ��log log
m

s�
� log s	

sm

s�
� �

� O�m�
q
logn	

Theorem ��� In 
�logn	 time� one can select the kth of n items on an n processor recon�
�gurable mesh�

Proof� Use procedure Select� Each iteration of the main loop in procedure Select� which
includes the call to Sample and a constant number of pre�x bit�additions� takes 
�log logn	
time� and reduces the number of active elements by a factor of

p
logn� Therefore this loop

is executed O�logn� log logn	 times� giving a total of O�logn	 time� Stages � and � of Select
are each executed only once� and each takes 
�logn	 time� Therefore the procedure Select
is completed in 
�logn	 time� �

Theorem ��� Given m elements stored at most one per processor on a
p
n � p

n rmesh�
an approximate median �an element with rank between m�� and �m��� can be found in

�log logn	 time�

Proof� First partition the mesh into submeshes of size � log logn�� log logn and sort them�
Then use procedure Sample� but with s � � log logn� Now examine how many elements are
below and above element s�� in the sample after step r � log logm�s��

L�

r�s�� � �s��	s��
r � �

� m��� �
and

M �

r�s�� � �r � �s��	 � log s	s��
r

� �m��

Thus at least m�� elements are below and m�� elements are above element s�� in the sam�
ple� We choose this element to be the approximate median� and the theorem follows� �

�



Theorem ��� We can solve the two�dimensional linear programming problem with n equa�
tions on an n processor rmesh in 
�logn log logn	 time�

Proof� We use a simple parallelization of Megiddo�s algorithm ���� for two�dimensional
linear programming� This results in O�logn	 calls to a median algorithm� This median
algorithm is simply used to remove a constant fraction of the equations from consideration�
Thus we can also use an approximate median� namely� an element which is guaranteed to
have a �xed fraction of inputs below it� and a �xed fraction above it� in the total order�
ElGindy and W�egrowicz ��� also use an approximate median in place of an exact median
in their algorithm� From the previous theorem� we can �nd this approximate median in

�log logn	 time� which results in a 
�logn log logn	 time algorithm for two�dimensional
linear programming� �

We say m elements are evenly spaced throughout the rmesh if there is one element in

each
q
n�m �

q
n�m submesh� We examine here the case of the selection problem� when

the number of elements is much fewer then the number of processors� and these elements are
evenly spaced throughout the rmesh� It turns out that in this case we can perform selection
much faster�

Theorem ��� For any constant � � 
� one can select the kth of n��� items on an n processor
recon�gurable mesh in constant time� assuming the items are spaced evenly throughout the
mesh�

Proof� First we note that we can count the active items in constant time� To do this we
simply count the active items inside all n�� n� submeshes in parallel in constant time� since
there are � n� items initially evenly spaced in each� Then we start the 
�log logn	 time
bit�addition algorithm from the point where the subsquares are of size n� � n�� Then in
log�����	 steps� the algorithm will be �nished�
The selection algorithm proceeds similar to procedure Select except groups of n� can

initially be sorted in constant time� and we will use a sample of size n��� in a modi�ed Sample
procedure� We will omit Stage � from procedure Sample� and begin Stage � by merging n�

groups together� Note that procedure Sample will then take log�logm�� logn	 � log��
�
� �	

steps� The corresponding equations for L�

ij and M
�

ij will be

L�

ij � n���i���n���j � �

and
M �

ij � �j � i� n����	n���i���n����

Now let r � log�logm�� logn	� We must choose the low and high �lters from the sample
after step r of Stage �� We will call these u and v respectively� We must have

k � � � M �

ru � �r � u� n����	n���n���r���

and
k � � � L�

rv � n���r���n���v � ��

�



so we will choose u � d�k � �	�n���n���r���e � n���� � r� and v � dk�n���r���n���e� The kth
element must then be one of u or v or lie between them in the order� The number of elements
between the uth and vth elements is at most

M �

rv � L�

ru � � � �r � n���� � v � u	n���r���n���

� ��r � n����	n���r���n��� � �

� ��logm�� logn� n����	mn���� � �

� O�mn����	

Thus each iteration� which takes a constant number of steps� reduces the number of active
elements by a factor of n���� Therefore this loop is executed � �

�
��� �	 times� and thus the

whole procedure takes constant time� �

� Selection on b�bit words

To select the kth of n b�bit words� we can use a di�erent type of algorithm� This algorithm
will �nd the kth word in �b� log b stages by honing in on the kth word �log b	�� bits at a
time� Using a preprocessing phase which takes 
�b� log b	 time� we can set up the rmesh
so that each of the �b� log b stages takes O�maxflog� n � log� b� �g	 time �in the cross�over
model	� Thus the time of the algorithm will be O��b� log b	maxflog� n � log� b� �g	� This
is asymptotically faster than the comparison based selection algorithm in Section � when
b � o�logn log logn	� For the special case of b � O�logn	 �i�e� the words come from a
polynomial range	� the algorithm takes O�logn� log logn	 time�
Our algorithm is outlined in procedure Selectword� which consists of four stages� Stages ��

� and � are involved in preprocessing� This preprocessing divides the rmesh into submeshes
and does all the rest of its work in parallel in each submesh� Its purpose is to create records
in each submesh which will be useful in stage �� These records are formed as follows� For
each level i from � to �b� log b consider the elements of each submesh partitioned into groups
according to their top i�log b	�� bits� From one level to the next� one can think of groups as
subdividing into one or more groups depending on the next �log b	�� bits� The preprocessing
phase forms records which store the number of elements which belong to each group at each
level i� Because of the limited storage in the submesh� we will only form records for those
groups with more than �b� log b elements� If a group doesn�t subdivide at some level� we will
not form a new record for that group at that level� but simply modify the record from the
previous level to indicate that the group has not subdivided� The records we create will be of
the form �level�bits�number�hold�� The level �eld indicates to which level this record belongs�
from � to �b� log b� The bits �eld indicates the group to which this record belongs� The
number �eld indicates how many elements in the submesh are in this group� and the hold
�eld indicates for how many levels this group has gone without changing� Zero records are
formed in stage � to �ll in for groups which have no elements in the submesh� A zero record
at level i has the form �i� x� 
� 
�� where x is a b�bit word with the correct top �i� �	�log b	��
bits of the kth word plus one of the b��� possibilities for the next �log b	�� bits� depending
on which group the record is used for�

�




Stage � hones in on the kth word �log b	�� bits at a time� At each iteration i of stage
�� for all the elements with the same upper �i� �	�log b	�� bits of the kth element� we will
form a histogram over the b��� possible values of the next �log b	�� bits� We use the records
created in the �rst three stages to form the required histogram within each submesh quickly�
and then use the algorithm of Jang� Park� and Prasanna ��� to form the histogram for the
whole mesh� By performing a pre�x calculation over this histogram� we can decide between
which values the kth element would fall� and thus we can discover the next �log b	�� bits of
the kth element�

Procedure Selectword�k� b	

Stage � Let s � �b� log b and h � �log b	��� Split the mesh into n�s� submeshes of size
s � s and sort the elements in each submesh in parallel into snake�like ordering� Let
the element at processor i be ei� Let all the processors be active�

Stage � For i � � to �b� log b perform stages �a and �b�

Stage �a Within each submesh� form a bus between the processors in the snake�like
order� Then disconnect the processors into groups according to the top ih bits of
their stored elements� and perform the rest of stage �a and stage �b in parallel
in each disconnected group� Let j and j � be the highest and lowest indices of
processors in the group� respectively� Have processor j � send its index to processor
j� and let d � j � j � � �� Then in this group� the highest processor knows that
there are d processors containing elements with the same upper ih bits as its
element� ej�

Stage �b If processor j in the group is active� then do the following�
If d � �b� log b� then store a new record �i� ej� d� 
� and send a deactivate

message to all the processors in the group� This processor and all other processors
in this group now make themselves inactive�
If d � �b� log b and there is no record stored at this processor� then create a

new record �i� ej� d� 
��
If d � �b� log b and there is already a record R stored in this processor� check

to see if R�number � d� If so� then simply increment R�hold� If R�number �� d�
then send a message along the bus for all the processors with a record to move it
to its predecessor� The records can be moved to their predecessors in one step�
Then create a new record� �i� ej� d� 
�� at the highest processor�

Stage � Sort all the records in each submesh into row�major order by the �rst two �elds�
This guarantees that the records for each level will be spread out enough so that they
can be accessed quickly when needed�

Stage � For i � � to �b� log b perform stages �a to �c� After the jth iteration� we will know
the top jh bits of the kth word� and this information will be used in Stage �a to decide
which groups to consider at the next iteration� After all iterations we will know all the
bits of the kth word�

Stage �a Stage �a is performed in each s � s submesh in parallel� For each position
q in the �rst b����� �h	 positions along the bottom row of the submesh� we will
place a record which contains the number of elements in the submesh which have

��



the same top �i��	h bits as the kth word and whose next h bits equal q in binary
form�
If i � �� we simply move the �rst level records to the positions on the bottom

row corresponding to the top h bits of their number �elds� Note that these records
can be moved in constant time because no two records originate from the same
column� �This will apply to all the records which need to be moved at any level�	
Now we �ll the remaining processors on the bottom row with zero records�
If i � �� then assume the record at the previous iteration which contained the

correct �i � �	h bits of the kth word is R� If R�number � 
� then this submesh
does not have any elements with the same upper �i� �	h bits as the kth element�
so we �ll in all the processors on the bottom row with zero records�
If R�number �� 
� then what we need to do can be broken up into separate

cases� depending on other �elds of R�

Case �� �R�hold �� 
	 The processor which holds R should decrement this hold
�eld� Then this record should be sent to the processor determined by the next
h bits in its bits �eld corresponding to this level� All the other processors in
the �rst b��� locations along the bottom row should create zero records�

Case �� �R�hold � 
 and R�number � s	 Consider those records for this group
found in stage � and sorted in stage �� Move them to their correct places
along the bottom row and create zero records at the un�lled positions�

Case �� �R�hold � 
 and R�number � s	 There are at most �b� log b remaining
elements in this category� Using the sorted elements from the �rst stage of
preprocessing� �nd the number of elements for each group of elements with
di�erent next h bits by splitting the elements into groups as in Stage �a and
simply creating a record with the correct number of items in the group at the
highest processor in the group� Then move the records to the correct places
along the bottom row� and �ll in the rest of the positions with zero records�

Stage �b Use the data in the b��� records formed in stage �a along the bottom row in
each submesh as a histogram� This gives the number of elements with the correct
top �i� �	h bits and the b��� di�erent possible next bits� Compute the histogram
for the whole mesh using the algorithm given in Jang� Park and Prasanna ����
starting from the b��� values in each submesh of size �b� log b� �b� log b�

Stage �c Perform a pre�x sum on the b��� resulting values using Lemma � in Jang�
Park and Prasanna ���� For pre�x sums pi� where � � i � b��� and p� � 
� the kth
element will be in the group j where pj�� � k � pj� Let the new k be k � pj���
Then broadcast j and the new k to all the processors� In each submesh� the jth
processor along the bottom row will hold the record which contains the next h
bits of the kth word� In other words� the next h bits of the kth word are the
binary representation of j�

End Selectword

Proving the correctness of the Selectword procedure is relatively straightforward� except
for showing that the records formed in Stage � are stored in such a way that they can be
sorted in Stage �� The following lemma provides this fact�

��



Lemma ��� After Stage �� each processor will hold at most two records� one with a number
�eld greater than �b� log b and one with a number �eld less than �b� log b�

Proof� Obviously� once a processor forms a record with a number �eld less than �b� log b� it
becomes inactive and never gets another record� For the records with number �elds greater
than �b� log b� a simple proof by induction shows that at any step i� at most i records of this
type will be stored in any active group� and they will be stored at the highest processors
in the group� The fact that each active group has � �b� log b processors implies that these
records will be stored at most � per processor� �

Now we analyze the time of the procedure Selectword� Stage � is a sort which takes

�b� log b	 time� Stage � performs �b� log b steps� each of which takes constant time� Stage
� is another sort which takes 
�b� log b	 time� Stage � perform �b� log b steps� each of which
involve a histogram procedure and a pre�x sum� The histogram is over b��� elements and
starts with a histogram in each submesh of size �b� log b��b� log b� so it takes O�maxflog� n�
log� b� �g	 time in the cross�over model� The pre�x sum is over b��� numbers of at most b bits
each� This takes constant time by Lemma � from Jang� Park and Prasanna ���� Therefore
Stage � takes a total of 
��b� log b	maxflog� n� log� b� �g	 time�
The analysis above proves the following theorem�

Theorem ��� One can select the kth of n b�bit words in 
��b� log b	maxflog� n� log� b� �g	
time on a

p
n�p

n rmesh in the cross�over model�

� Average Case Selection

Here we show how to �nd the kth element of a set of n elements stored one per processor on
a
p
n�p

n rmesh� in which all the possible orderings of elements are equally likely� In this
section� we de�ne �high probability� as probability � �� ��n� First we present some useful
lemmas�

Lemma ��� Given a sorted sample of r elements chosen randomly from s ordered elements�
the probability that the kth of the s elements is not

�� below element log� s in the random sample if k � �s�r	 log� s� or
�� between element rk�s �

q
rk�s log s and element rk�s �

q
rk�s log s in the random

sample if k � �s�r	 log� s

is � s���

Proof� The probability of a randomly chosen element of s being equal to or below the
kth is k�s� Thus the number of items in our random sample below the kth element will
behave like the probability distribution X � B�r� k�s	� If rk�s � log� s� then by Cher�
no��s bound� P �X � log� s	 � �� log� s � s��� If rk�s � log� s� then by Cherno��s bound

P �X � �� �
q
s�rk log s	rk�s	 � e��log�s��� � s����� and P �X � �� �

q
s�rk log s	rk�s	 �

e��log�s��� � s����� �

��



Lemma ��� �Clarkson
 ���	 Let S be a set of elements of size s� and let R be a sorted
random sample of S of size r� Then the probability that over O�s log s�r	 elements of S fall
between any two adjacent elements of R is � s��

Proof� Consider all pairs of points in R that de�ne an interval in which � �s elements of S
fall� For each of these intervals the probability of no other points in R falling in that interval
is �� � �	r��� Then the probability that any of these intervals are de�ned by two adjacent
points of R is less than O�r�	����	r��� By setting � � ��log s	��r��	� the lemma follows� �

Lemma ��� Given s elements� for large enough k� if we select each element with probability
s����b�� then the probability that k�b elements will be chosen is � s�k�

Proof� The probability of choosing k�b elements is �
�

s
k�b

�
s��k�b����b� � s�k� �

The algorithm works as follows� The input is a set S of at most n�� �� � � � � ordered
items distributed at most one per processor on a

p
n � p

n rmesh� with each row having
O�n����	 items� and any order of the items equally likely� The AverageSelect procedure �nds�
with high probability� a reduction of the selection problem on its input to either

�� if � � ��� an equivalently constrained selection problem with � replaced by �� ��� or

�� if � � �� an equivalently constrained selection problem with � replaced by �� �� but
with at most a constant number of items per row�

Then it recursively calls itself until � � �� �at most �ve times	� at which point it simply
sorts the remaining items and outputs the correct answer�

Procedure AverageSelect�S� k	

Stage � Count the items in S using bit�addition� Let s be the number of items� and let
� � log s� logn� If k � 
 or k � s� then revert to the deterministic selection algorithm
of the previous section� �Note that this condition can only occur on recursive calls to
AverageSelect�	

Stage � If � � ��� then there should be at most a constant number of items per row� If
so� then sort these items� output item k� and exit� If not� revert to the deterministic
selection algorithm of the previous section�

Stage � Have each processor with an item in S choose its item to be in the random sample
with probability n����� By lemma ���� with high probability at most a constant num�
ber of items will be chosen in each row� If not� revert to the deterministic selection
algorithm of the previous section� If so� then compress� count� and sort these items�
Let r be the number of chosen items� By Cherno��s bound� r � O�n��	 with high
probability�

Stage � In this stage� we �rst broadcast the low �lter� and then broadcast the high �lter�
If k � �s�r	 log� s� then
�� broadcast ���

��



�� if log� s � r � � broadcast the value at this rank in the random sample� else
broadcast ���

else

�� If brk�s�
q
rk�s log sc � 
� then broadcast the value at this rank in the random

sample� else broadcast ���
�� If drk�s �

q
rk�s log se � r � �� broadcast the value at this rank in the random

sample� else broadcast ���
Stage � Count the number of items below the low approximation using bit�addition� and

let b be this sum� Let S � be the set of items between the two approximations�

Stage � Call AverageSelect�S �� k � b	�

End AverageSelect

By lemma ���� the median is guaranteed to be between the two approximations with
high probability� Also� since k � s and s � n� we see that the number of items between the
approximations is at most �

p
r log s � O�n��� logn	� By lemma ���� with high probability

there will be at most O�n���� logn	 items between any two consecutive items in the random
sample� and thus with high probability there will be at most O�n����� log� n	 � O�n����	
items between the two approximations�
Since the original items were ordered arbitrarily among the processors they occupied� the

items between the approximations will be too� and it is not too hard to check using Cherno�
bounds and lemma ��� that the conditions on the number of items per row are also satis�ed�
The procedure and analysis above proves the following theorem�

Theorem ��� Given a totally ordered set of n items which are stored one per processor on
an rmesh� and in which all possible orderings are equally likely� then with high probability�
the time required to select the kth item is the time required to perform bit�addition�

The 
�log logn	 algorithm for bit�addition thus implies a 
�log logn	 time expected time
algorithm for selection in the non�cross�over model� The 
�log� n	 time algorithm for bit�
addition implies a 
�log� n	 expected time algorithm for selection in the cross�over model�

� Lower Bound

Here we prove a lower bound of ��log logn	 time on �nding the maximum of n elements
on an n processor rmesh� This implies an equivalent lower bound on the selection problem�
We mention that Valiant ���� showed that any comparison�based algorithm for �nding the
maximum requires ��log logn	 time� The lower bound presented here places no restrictions
on the instruction sets of the processors� We also mention that the maximum of n elements
can be found in 
�log logn	 time on an n processor rmesh� so the lower bound is tight�

Theorem ��� Given n elements distributed one per processor on an n processor rmesh�
�nding the maximum of these elements requires ��log logn	 time on the cross�over model�

��



To prove this theorem we apply the techniques and analysis of Fich� Meyer auf der Heide�
Ragde and Wigderson ���� in which the equivalent lower bound is proven for the CRCW
PRAM� This lower bound makes no restrictions on the instruction sets of the processors�
and is simply a lower bound on the number of communication steps required to �nd the
maximum� The proof is actually simpler for the rmesh because one doesn�t have to deal
with in�nite memory� where processors might have read and write functions with in�nite
ranges� A processor in the rmesh only has a constant number of possible actions at each
step� namely� which local switches to set� and whether to write or not� Because of this� the
Ramsey Theoretic arguments in the PRAM proof can all be replaced by simple Pigeonhole
Principle arguments� The proof proceeds as follows�
Let MAX be any algorithm which �nds the maximum of n inputs on a

p
n�pn rmesh�

We will show that MAX requires ��log logn	 steps by an adversary argument� At each step�
the adversary will �x the values of certain inputs and maintain a set of allowed values for
the non��xed inputs such that each processor will know only one non��xed input� We make
this more precise as follows�
Consider step t of MAX� Let Vt � f�� � � � � ng be the set of indices of inputs which

could still be the maximum� These are the live inputs� Let St � N � f�� �� � � �g be the
set of possible values for the live inputs� restricted by the adversary� Let Ft � ffiji 	
f�� � � � � ng � Vtg be the adversary�s assignment of values to �xed variables�
At the start of the algorithm� V� � f�� � � � � ng� S� � N and F� � 
� Now we state the

main lemma�

Lemma ��� We can construct an adversary such that after step t of MAX� the following
properties hold�

�� Vt � Vt��� and jVtj � jVt��j���jVt��j� �n	�
�� Each processor knows only one variable in Vt�

�� St � St�� and St is in�nite�

	� Ft�� � Ft � N � St�

First we show why this lemma implies the theorem� For MAX to be �nished in T steps� it
must be the case that VT � �� Then by property � of the lemma�

� � jVT j � jVT��j�
�n

�

since Vt � n for any t� By recursively applying property � of the lemma� we get

� � jV�j�T
��n	�T��

�
n�T

��n	�T��
�

n

��T��
�

Then ��
T
�� � n� which implies T � ��log logn	�

Before we prove the lemma� we state the Pigeonhole Principle �which is a special case of
the Ramsey Theory lemma used in ���	 and Tur�an�s Theorem�

Pigeonhole Principle Let f � W � D be any function de�ned on an in�nite domain W
and �nite range D� Then there is an in�nite subsetW � � W such that f jW � is constant�

��



Tur
an�s Theorem Given a �nite graph G�V�E	� there exists an independent set of vertices
of size jV j���jV j� �jEj	�

Proof� �of Lemma 
��	 We prove the lemma by induction� Assume the lemma holds for all
steps before step t� Then in step t� a processor Pi either writes or does not write depending
on the live input it knows� and connects to its neighbors depending on this same input�
Call the write functions and connect functions wt

i and cti respectively� Each is a function
from an in�nite domain St�� to a constant range� By applying the Pigeonhole Principle to
each write function and connect function in turn� for all i from � to n� the adversary can
restrict the allowed inputs such that all write functions and connect functions are constant�
Let S � � St�� be this restriction� This �xes the communication pattern on the rmesh� Each
processor connected to a bus then learns only the variable which was known by the processor
which wrote to that bus� Note that if more than one processor wrote to the bus� they must
have written the same value� so no more information can be gained then by a single processor
writing to the bus�
At this point each processor knows at most two inputs in Vt��� Now consider the graph

G�Vt��� E	 with �i� j	 	 E if and only if a processor knows both input i and input j� We
know jEj � n� and thus by Tur�an�s theorem� we can construct an independent set of size
jVt��j���jVt��j� �n	� Let Vt � Vt�� be this independent set� This satis�es properties � and
�� Now for each i 	 Vt�� � Vt� let fi be the smallest value s 	 S �� and add this to Ft�� to
get Ft� Also let St � S ��fsg� This satis�es properties � and �� and thus the lemma holds� �

Plaxton ���� gives a lower bound of ���n�p	 log log p � log p	 for selection on a �xed
network of p processors which satis�es a particular low expansion property� His proof assumes
that each processor can only compare or copy keys� so it is not as general as the proof above�
Also� the log p term does not apply to the rmesh because that term comes from the diameter
of the network� which for the rmesh is constant� Thus there is still a large separation between
the upper and lower bounds on the selection problem� Narrowing this gap is an open problem�

References

��� P� Beame and J� Hastad� Optimal bounds for decision problems on the CRCW PRAM�
J� Assoc� Comput� Mach�� ����	�������
� July �����

��� M� Blum� R� W� Floyd� V� R� Pratt� R� L� Rivest� and R� E� Tarjan� Time bounds for
selection� J� Comput� System Sci�� ���	��������� �����

��� K� L� Clarkson� New applications of random sampling in computational geometry�
Discrete Comput� Geom�� pages �������� �����

��� R� Cole� An optimally e cient selection algorithm� Inform� Process� Lett�� �����������
�����

��� H� ElGindy and P� W�egrowicz� Selection on the recon�gurable mesh� In Proc� ��th Intl�
Conf� on Parallel Processing� pages III ������ �����

��



��� F� E� Fich� F� Meyer auf der Heide� P� Ragde� and A� Wigderson� One� two� three
� � � in�nity� Lower bounds for parallel computation� In Proc� ��th Symp� on Theory of
Computing� pages ������ �����

��� J� Jang� H� Park� and V� K� Prasanna� A fast algorithm for computing histogram on
recon�gurable mesh� Technical Report IRIS!��
� Univerisity of Southern California�
�����

��� J� Jang and V� K� Prasanna� An optimal sorting algorithm on recon�gurable mesh�
Technical Report IRIS!���� Univerisity of Southern California� �����

��� H� Li and Q� F� Stout� Recon�gurable Massively Parallel Computers� Prentice Hall�
Englewood Cli�s� New Jersey� �����

��
� H� Li and Q� F� Stout� Recon�gurable SIMD massively parallel computers� Proceedings
of the IEEE� pages �������� �����

���� P� D� MacKenzie� A separation between recon�gurable mesh models� in preparation�

���� N� Megiddo� Linear time algorithm for linear programming in R� and related problems�
SIAM J� Comput�� ����	��������� �����

���� R� Miller� V� K� Prasanna�Kumar� D� I� Reisis� and Q� F� Stout� Data movement
operations and applications on recon�gurable VLSI arrays� In Proc� ��th Intl� Conf� on
Parallel Processing� volume �� pages �
���
�� �����

���� R� Miller� V� K� Prasanna�Kumar� D� I� Reisis� and Q� F� Stout� Parallel computations
on recon�gurable meshes� IEEE Trans� Comput�� ��� ����� to appear�

���� J� I� Munro and M� S� Paterson� Selection and sorting with limited storage� Theor�
Comput� Sci�� ����������� ���
�

���� K� Nakano� T� Masuzawa� and N� Tokura� A sub�logarithmic time sorting algorithm on
a recon�gurable array� IEICE Transactions� E�����	��������
�� �����

���� M� Nigam and S� Sahni� Sorting n numbers on n� n recon�gurable meshes with buses�
Technical Report TR����
�� Univerisity of Florida� �����

���� C� G� Plaxton� On the network complexity of selection� In Proc� ��th Symp� on Found�
of Comp� Sci�� pages �����
�� �����

���� V� K� Prasanna�Kumar and C� S� Raghavendra� Array processors with multiple broad�
casting� J� Parallel and Distributed Comput�� ��������
� �����

��
� Q� F� Stout� Mesh�connected computers with broadcasting� IEEE Trans� Comput��
����	�������
� September �����

���� C� D� Thompson and H� T� Kung� Sorting on a mesh connected parallel computer�
Comm� ACM� �
��	��������� �����

���� L� G� Valiant� Parallelism in comparison problems� SIAM J� Comput�� ���������� �����

��


