Selection on the Reconfigurable Mesh*
Eric Haof Philip D. MacKenziet Quentin F. Stout?

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

Abstract

Our main result is a ©(logn) time algorithm to select the kth smallest element
in a set of n elements on a reconfigurable mesh with n processors. This improves
on the previous fastest algorithm’s running time by a factor of logn. We also show
that some variants of this problem can be solved even faster. First we show that a
good approximation to the median of n elements can be found in ©(loglogn) time.
This can be used to solve two-dimensional linear programming over n equations in
©(log nloglogn) time, an improvement of log n/ log logn time over the previous fastest
algorithm. Next, we show that, for any constant ¢ > 0, selecting the kth smallest
element in a set of n'~¢ elements evenly spaced throughout the mesh can be done
in constant time. We also show that one can select the kth smallest element from
n b-bit words in O((b/logb) max{log*n — log* b,1}) time, which implies that if the
elements come from a polynomial range, one can select the kth smallest element in
©(logn/loglogn) time. In addition, we show that the expected time to select the kth
smallest element from n elements, assuming that all possible orderings of the elements
are equally likely, is the time to perform bit-addition, which is currently known to be
O(log* n). Finally, we show an 2(loglogn) time lower bound for finding the maximum
of n elements on the rmesh. This implies an ©(log logn) time lower bound for selection,
and is the first known non-trivial lower bound on the rmesh which does not rely on
the bandwidth constraints of the mesh and does not restrict the instruction sets of the
Pprocessors.

* A preliminary version of this paper appeared in the /th Symposium on the Frontiers of Massively Parallel
Computation.

TSupported by a University of Michigan College of Engineering Benton Fellowship.

*Supported by an AT&T Fellowship and by NSF/DARPA grant CCR-9004727.

§Supported by NSF/DARPA grant CCR-9004727.

1 Introduction

A reconfigurable mesh, or rmesh, consists of a bus in the shape of a mesh which connects a
set, of processors, but which can be split dynamically by local switches at each processor. By
setting these switches, the processors partition the bus into a number of subbusses through
which the processors can then communicate. Thus the communication pattern between
processors is flexible, and moreover, it can be adjusted during the execution of an algorithm.

The rmesh has begun to receive a great deal of attention as both a practical machine to
build, and a good theoretical model of parallel computation. On the practical side, rmeshes
have been constructed for use in vision and VLSI applications (see [9]). On the theoretical
side, the rmesh has been shown to be able to solve some fundamental theoretical problems
very quickly. In fact, the rmesh can solve some problems faster than the PRAM, the model
most often used for theoretical parallel computation. For instance, an n processor rmesh
can find the parity of n bits in constant time [10], which is significantly faster than an n
processor PRAM, which requires €2(log n/loglogn) time [1]. Of course the rmesh still suffers
from the bandwidth constraints of the standard mesh, so that an n processor rmesh needs
Q(y/n) time to sort n items, whereas an n processor PRAM can sort n items in ©(logn)
time.

In this paper, we will examine the problem of selection on the rmesh. The selection
problem is to find the kth smallest element from a totally ordered set of n elements. A special
case of this problem is to find the median. The first linear time sequential algorithm for
selection was given by Blum et. al. [2]. Parallel solutions were explored in [4, 5, 18, 19, 20, 21].
Of these, E1Gindy and Wegrowicz [5] obtained the best previous running time on the rmesh,
O(log? n). Their algorithm is a parallelization of the serial selection algorithm of Munro and
Paterson [15]. The main bottleneck in their algorithm is the time to find good approximations
to the kth element. Using the special properties of the reconfigurable mesh, we dramatically
improve the time to find good approximations. Furthermore, we also improve the accuracy of
these approximations. Thus we are able to reduce the running time of the selection algorithm
to O(logn).

We also show that one can find an approximate median in ©(loglogn) time. As mentioned
in [5], an approximate median can be used in place of an exact median in a parallelized version
of Megiddo’s two-dimensional linear programming algorithm [12]. ElGindy and Wegrowicz
[5] find an approximate median in ©(logn) time, which gives a ©(log”>n) time algorithm
for two-dimensional linear programming. Our faster algorithm for finding an approximate
median results in a ©(logn loglog n) time algorithm for two-dimensional linear programming.

We also examine the selection problem when the number of processors is greater than
the number of inputs. Specifically, for any constant € > 0, given n' ¢ elements spaced evenly
throughout the mesh, we present a constant time selection algorithm.

We also present an algorithm to select the kth smallest element from n b-bit words that
works in O((b/logb) max{log” n — log" b,1}) time, which implies that if the elements come
from a polynomial range, then one can select the kth smallest element in ©(logn/loglogn)
time.

Next, we examine the selection problem when the number of inputs equals the number
of processors and all input orderings are equally likely. In this case, we present a selection
algorithm which is guaranteed with high probability to run in the time to perform bit-

O Processor

Switch

Reconfigurable
Bus

D—P—
S—S5—O

P—P——9
P—D—

S—S5—

Figure 1: The Reconfigurable Mesh Architecture.

addition. The known O(log*n) time algorithm for bit-addition thus implies a ©(log" n)
expected time algorithm for selection.

Finally, we show that the proof of the Q(loglogn) time lower bound for finding the
maximum on the PRAM given in Fich, Meyer auf der Heide, Ragde and Wigderson [6]
can be converted to give an equivalent lower bound proof for the rmesh. This implies an
Q(loglogn) time lower bound for selection, and is the first known lower bound on the rmesh
which does not rely on the bandwidth constraints of the mesh and does not restrict the
instruction sets of the processors.

2 Reconfigurable Mesh

The reconfigurable mesh [13] of size n consists of a reconfigurable bus in the shape of a
V/n x /n grid, with four switches at each intersection point of the grid (three for points
on the sides, and two for points in the corners) and a processor at each intersection point
which controls the switches and can read data from or write data to the bus. See Figure 1.
By dynamically setting the switches, the bus can be subdivided into independent connected
components called subbusses. All processors connected to a subbus can read the data on it,
but only one processor can write data to a subbus at a time.
The processors operate synchronously. In one time step a processor may

e perform a single operation on words of size O(logn),

e set any of its switches, or

e write or read data from the bus.
Data placed on a bus reaches all processors connected to the bus in unit time. When
the processors in the rmesh can independently connect their north-south switches together

and their east-west switches together at the same time, we call this the cross-over model.
Otherwise we call it the non-cross-over model. Li and Stout [9] discuss the difference between

3

O|1]2]|3 O|1|2]|3 0|1|14]15
41516 |7 716| 5|4 3|12 |13]|12
819|10|11 819110|11 41718 |11
1211314 | 15 15| 14| 13| 12 5169110
Row-major Snake-like Proximity

Figure 2: Three Orderings for Mesh Processors.

these two models, and MacKenzie [11] proves an (log"n) time separation between them.
Unless otherwise stated, we will assume the non-cross-over model.

We assume each processor knows its row and column indices. In addition we will also
want, processors to know their rank in some total ordering on the mesh. For our algorithms,
we will use three types of orderings, row major ordering, snake-like ordering, and proximity
ordering. In row major ordering, we number processors in each row left to right, beginning
with the top row, and ending with the bottom row. In snake-like ordering we simply reverse
every other row, so that processors with consecutive indices are adjacent. In proximity
ordering, we are guaranteed that processors with consecutive indices are adjacent, and that
the first quarter of the processors are in the first quadrant, the second quarter in the second
quadrant, and so on, and that this property holds recursively (with a suitable change in
axes) within the quadrants. See Figure 2.

Often it is assumed that a processor initially knows its position in row-major order,
snake-like order, and proximity order. If not, a processor can compute its rank in row-major
order or snake-like order from its indices in constant time and its rank in proximity order
from its indices in O(logn) time. Also, by working together, the processors in the rmesh can
compute their ranks in proximity order from their indices in ©(loglogn) time.

We now list some known algorithms for the \/n x /n rmesh which will be used in our
selection algorithm.

e One processor can broadcast a value to all other processors in constant time.

e Two lists of size O(y/n) can be merged in constant time.

e /n elements can be sorted in constant time provided they are located in a single row
or column, or are located on the diagonal [8, 17].

e 1 elements can be sorted into row-major order in ©(y/n) time using a standard mesh
sorting algorithm [21].

e Prefix bit-addition over n bits stored one per processor can be performed in O(loglogn)
time, using a \/n divide-and-conquer technique similar to the one given for finding the
minmum of n values in Miller, Prasanna-Kumar, Reisis and Stout [14].

e Bit-addition over n bits stored one per processor can be accomplished in ©(log" n) time
on the cross-over model [7, 16].

e A histogram over h values stored one per processor counts the number of occurances
of each value. (We assume h is less than \/n and that a histogram is stored in a single
row.) Assuming the mesh has been preprocessed so that each submesh of size h* x h?
contains a histogram of its own processors’ values, then a histogram for the whole mesh
can be found in O(max{log*n — log" h,1}) time on the cross-over model [7].

3 Selection Algorithm

Our algorithm is based on the rmesh algorithm of El Gindy and Wegrowicz [5], which is
in turn based on the serial algorithm of Munro and Paterson [15]. Munro and Paterson’s
algorithm was designed to be very frugal in memory usage. Though we do not need to worry
about memory usage on the rmesh, it turns out their algorithm parallelizes very well. Here
we give a simplified explanation of the algorithm of Munro and Paterson.

3.1 Serial Selection Algorithm

This algorithm runs in O(logn) phases. Each phase is designed to reduce by a constant
fraction the number of elements which still have to be considered in selecting the kth ele-
ment. This is done by forming a sorted sample of size s = O(logn) from which two good
approximations to the kth element can be taken, one which is guaranteed to be below the kth
element, and one which is guaranteed to be above the kth element. These approximations
will be called the low and high filters. To find the sample, first we partition the elements into
sublists of size s and sort those sublists. Then we perform a procedure similar to a mergesort
on these sublists, except that as sublists are merged, they are also thinned by removing every
second element. Thus the sizes of the sorted sublists remains at s. For n = s27, there are
r levels of merges. Munro and Paterson show that the elements [k/2"] — r and [k/2"] in
the final sample can be used as the filters, and that the number of elements between these
filters is at most (2r — 1)2". For s = 4logn, this is less than 3n.

3.2 New Parallel Selection Algorithm

Now we give our rmesh algorithm for selection. We assume that we have a set of elements
distributed at most one per processor on an rmesh with n processors, and would like to find
the kth element of this set. Initially all the processors contain an element and are active.
As elements are eliminated as possible candidates, the processors which hold them become
inactive.

Let s =logn. Procedure Select will iterate until the number of active elements becomes
less than s2, at which time it will sort the remaining elements, and choose the correct
candidate.

Procedure Select (k)

Stage 1 Split the mesh into n/s? submeshes of size s X s and sort the elements in these
submeshes into row major order. This step takes O(s) time using the sorting algorithm
of Thompson and Kung [21].

Stage 2 Number the active processors in row major order within the s X s submeshes and
in proximity order between submeshes. This can be done using a prefix bit-addition
to find the proximity ordered ranks, and then altering the ranks within each submesh
to correspond to the row-major order. We notice that the ranks of the active elements
in each submesh are contiguous in the row-major order, which makes this alteration
very simple. The time required by this step is determined by the time to perform
prefix bit addition, which is ©(loglogn). Let m be the number of active processors. If
m mod 2s% # 0, add enough active processors with value oo so that m mod 2s? = 0.

Stage 3 If m = 2s?, then arrange the m processors along the first row in O(s) time, sort
them in constant time, pick the kth element, and exit.

Stage 4 Compute the sample by calling procedure Sample(k).

Stage 5 Choose the filters and broadcast them to all the processors. Perform a prefix bit
addition algorithm to find how many active elements fell below the low filter. Call this
value b. Make each processor which contains an element below the low filter or above
the high filter inactive.

Stage 6 Let k < k — b and go to stage 2.

End Select

To compute the sample, we will first partition the active elements into consecutive groups
of size s according to the numbering performed in step 2. These groups will form the base
of our “merge tree.” We proceed as described below.

Procedure Sample(k)

Stage 1 Partition the elements into consecutive groups of size s. Move the items of a group
to the submesh which contains the first element of that group. We do this by moving
elements using subbusses formed along the proximity ordering between the submeshes.
Note that we have enough bandwidth to do this, and that the items can be moved
to the correct busses because they are arranged linearly in each submesh. Now each
submesh has an integral multiple of s elements.

Stage 2 If a submesh contains new data (at most s —1 new elements), then it can sort these
elements in constant time. Thus all the groups it contains are sorted.

Stage 3 For 1 + log s steps, we will thin and merge consecutive pairs of groups in parallel,
just as Munro and Paterson did in serial. We will merge the first and second groups in
the submesh where the first group resides, the third and fourth group in the submesh
where the third group resides, and so on. Any two groups which originally resided
in the submesh are already sorted, so we thin and merge them by simply selecting
every other item from them. When one of the two groups or part of one of the two
groups originally resided in another submesh, we must thin and merge these using the
constant time merge algorithm. Note that this can only occur with the last group (and
thus at most one group) in each submesh. When the second group in the pair which
needs to be merged is not in the submesh, it will need to be transported there from

its own submesh. It can get there by the busses which travel in proximity ordering
between the submeshes, and it can be merged in constant time as above. Thus each of
these thinning and merging steps takes constant time, and after 1 + log s steps, every
consecutive pair of submeshes will have at most one group of s items.

Stage 4 (The basic structure of this stage is similar to other O(loglogn) algorithms, such
as finding the maximum [14].) For loglog(m/s®) steps, at each step i merge 2%
consecutive groups of elements and use every 22" 'th element for the new group, thus
thinning the large sorted list down to a new sorted group of s elements. We do this
as follows. Form m/ 25222""" gupergroups, each consisting of 227" consecutive groups.
Also form n/s*2% super-submeshes, each of size 22" s x 227 5. We would like to move
each supergroup of elements into the super-submesh which contains the first group in
the supergroup. To do this, in each super-submesh, we sort all elements which have
their leader in the super-submesh where they reside. Then we sort those which will
need to travel to another super-submesh. Now we simply put the traveling elements
onto the correct subbusses formed in proximity order between these super-submeshes
Each super-submesh will then have the correct 22 groups of elements, and it can sort
and thin these in constant time.

End Sample

Stages 1 and 2 in the procedure Sample take constant time. Stage 3 uses 1 + logs =
O(loglog n) steps which each take constant time, and stage 4 uses loglog(m/s?) = O(loglogn)
steps which each take constant time. Thus, procedure Sample takes O(loglogn) time. We
now analyze how good the resulting sample is. Let L;; and M;; be the least and most number
of elements which can precede element j at step i of stage 3. From Munro and Paterson [15],
L;; = j2' — 1 and M;; = (i + j — 1)2°. Then at the start of the stage 4, Lijiogs; = 2j5 — 1
and Miyiogs,; = 25(log s + j).

Now let Lj; and Mj; be the least and most number of elements which can precede element
J at step ¢ of stage 4. We present the following lemma.

Lemma 3.1 L}; = js2% — 1 and Mj; < (i+j +log 5)s2%

Proof: Obviously Lj; = 2js — 1 and Mp; = 2s(j + log s). From the way we construct these
groups in the algorithm, we can see that

L =min{L_, , +L_ +...+L 422 1 | prApat A pp =22

i—1,p> —1717221‘—1

p1 > 0;p27p37 v 7p22i—1 Z 0}
and
i—1
Milj - maX{Mi’_laPl + Mi’—l,pz+1 +... Mz‘,—l,pﬂi_l +1 | pit+pet...+ Dgai-1 = 2? Js
D> O;p27p37 ey Dogi-t > O}

From these equations, the lemma follows inductively. O

Now let r = loglog(m/s?®), the number of steps in Stage 4. We must choose the low and
high filters from the sample after step r of Stage 4. We will call these u and v respectively.
We must have

k—1>M = (r+u+logs)s2?
and
kE—1<L, =vs2* —1,

so we will choose u = [(k —1)/s2%] —logs —r, and v = [k/s2%]. The kth element must
then be one of u or v or lie between them in the order. Given s = logn, the number of
elements between the uth and vth elements is at most

M, —L,—1 = (r+logs+uv—u)s2”
= 2(r +logs)s2® +1
< 2(loglog @2 + log s)% +1
s s

< O(m/ylogn)

Theorem 3.1 In O(logn) time, one can select the kth of n items on an n processor recon-
figurable mesh.

Proof: Use procedure Select. Each iteration of the main loop in procedure Select, which
includes the call to Sample and a constant number of prefix bit-additions, takes O(loglogn)
time, and reduces the number of active elements by a factor of y/logn. Therefore this loop
is executed O(logn/loglogn) times, giving a total of O(logn) time. Stages 1 and 3 of Select
are each executed only once, and each takes ©(logn) time. Therefore the procedure Select
is completed in ©(logn) time. O

Theorem 3.2 Given m elements stored at most one per processor on a \/n X \/n rmesh,
an approximate median (an element with rank between m/4 and 3m/4) can be found in
O(loglogn) time.

Proof: First partition the mesh into submeshes of size 8 loglogn x 8 loglogn and sort them.
Then use procedure Sample, but with s = 8loglogn. Now examine how many elements are
below and above element s/2 in the sample after step r = loglogm/s?.

L = (/252 1
= m/2-1

and

2 = (r+(s/2)+log 5)s2%
< 3m/4

Thus at least m/4 elements are below and m/4 elements are above element s/2 in the sam-
ple. We choose this element to be the approximate median, and the theorem follows. O

Theorem 3.3 We can solve the two-dimensional linear programming problem with n equa-
tions on an n processor rmesh in ©(lognloglogn) time.

Proof: We use a simple parallelization of Megiddo’s algorithm [12] for two-dimensional
linear programming. This results in O(logn) calls to a median algorithm. This median
algorithm is simply used to remove a constant fraction of the equations from consideration.
Thus we can also use an approximate median, namely, an element which is guaranteed to
have a fixed fraction of inputs below it, and a fixed fraction above it, in the total order.
ElGindy and Wegrowicz [5] also use an approximate median in place of an exact median
in their algorithm. From the previous theorem, we can find this approximate median in
O©(loglogn) time, which results in a ©(lognloglogn) time algorithm for two-dimensional
linear programming. O

We say m elements are evenly spaced throughout the rmesh if there is one element in

each \/n/m X \/n/m submesh. We examine here the case of the selection problem, when
the number of elements is much fewer then the number of processors, and these elements are
evenly spaced throughout the rmesh. It turns out that in this case we can perform selection
much faster.

Theorem 3.4 For any constant € > 0, one can select the kth of n'=¢ items on an n processor
reconfigurable mesh in constant time, assuming the items are spaced evenly throughout the
mesh.

Proof: First we note that we can count the active items in constant time. To do this we
simply count the active items inside all n¢ x n® submeshes in parallel in constant time, since
there are < n¢ items initially evenly spaced in each. Then we start the ©(loglogn) time
bit-addition algorithm from the point where the subsquares are of size n® x n®. Then in
log(1/2¢) steps, the algorithm will be finished.

The selection algorithm proceeds similar to procedure Select except groups of n¢ can
initially be sorted in constant time, and we will use a sample of size n/? in a modified Sample
procedure. We will omit Stage 3 from procedure Sample, and begin Stage 4 by merging n®
groups together. Note that procedure Sample will then take log(logm/elogn) < log(+ —1)
steps. The corresponding equations for L{; and M;; will be

L;] — n€(2l—1)ne/2j _ 1

and _
_ . —€/2\,.€(2"—1), €/2
M= (j+i—n)@ =1pe/2,

Now let r = log(logm/elogn). We must choose the low and high filters from the sample
after step r of Stage 4. We will call these v and v respectively. We must have

k — 1 Z M;_u = (7“ + U — nff/Z)n€/2n€(2rfl)

and
k—1<L, =n® nd2y 1,

so we will choose u = [(k — 1)/n“/?n @ =D —n=</2 —y and v = [k/n“? ~Yn/2]. The kth
element must then be one of u or v or lie between them in the order. The number of elements
between the uth and vth elements is at most

M, —L.,—1 = (r—n"" 4 —un@p?

2(r — n~ /) p? 41
2(logm/elogn — n~/*)mn=</? + 1
O(mn~/3)

<
<

Thus each iteration, which takes a constant number of steps, reduces the number of active
elements by a factor of n“/3. Therefore this loop is executed < 2(1 — €) times, and thus the
whole procedure takes constant time. O

4 Selection on b-bit words

To select the kth of n b-bit words, we can use a different type of algorithm. This algorithm
will find the kth word in 5b/logb stages by honing in on the kth word (logb)/5 bits at a
time. Using a preprocessing phase which takes ©(b/logb) time, we can set up the rmesh
so that each of the 5b/logb stages takes O(max{log"n — log" b, 1}) time (in the cross-over
model). Thus the time of the algorithm will be O((b/logb) max{log"n — log" b,1}). This
is asymptotically faster than the comparison based selection algorithm in Section 3 when
b = o(lognloglogn). For the special case of b = O(logn) (i.e. the words come from a
polynomial range), the algorithm takes O(logn/loglogn) time.

Our algorithm is outlined in procedure Selectword, which consists of four stages. Stages 1,
2 and 3 are involved in preprocessing. This preprocessing divides the rmesh into submeshes
and does all the rest of its work in parallel in each submesh. Its purpose is to create records
in each submesh which will be useful in stage 4. These records are formed as follows. For
each level i from 1 to 5b/ log b consider the elements of each submesh partitioned into groups
according to their top i(logb)/5 bits. From one level to the next, one can think of groups as
subdividing into one or more groups depending on the next (logb)/5 bits. The preprocessing
phase forms records which store the number of elements which belong to each group at each
level 7. Because of the limited storage in the submesh, we will only form records for those
groups with more than 5b/ log b elements. If a group doesn’t subdivide at some level, we will
not form a new record for that group at that level, but simply modify the record from the
previous level to indicate that the group has not subdivided. The records we create will be of
the form [level,bits,number,hold]. The level field indicates to which level this record belongs,
from 1 to 5b/logb. The bits field indicates the group to which this record belongs. The
number field indicates how many elements in the submesh are in this group, and the hold
field indicates for how many levels this group has gone without changing. Zero records are
formed in stage 4 to fill in for groups which have no elements in the submesh. A zero record
at level 7 has the form [i, z, 0, 0], where z is a b-bit word with the correct top (i —1)(logb)/5
bits of the kth word plus one of the b'/® possibilities for the next (logb)/5 bits, depending
on which group the record is used for.

10

Stage 4 hones in on the kth word (logb)/5 bits at a time. At each iteration i of stage
4, for all the elements with the same upper (i — 1)(logb)/5 bits of the kth element, we will
form a histogram over the b'/° possible values of the next (logb)/5 bits. We use the records
created in the first three stages to form the required histogram within each submesh quickly,
and then use the algorithm of Jang, Park, and Prasanna [7] to form the histogram for the
whole mesh. By performing a prefix calculation over this histogram, we can decide between
which values the kth element would fall, and thus we can discover the next (logb)/5 bits of
the kth element.

Procedure Selectword(k, b)

Stage 1 Let s = 5b/logb and h = (logb)/5. Split the mesh into n/s* submeshes of size
s X s and sort the elements in each submesh in parallel into snake-like ordering. Let
the element at processor ¢ be e;. Let all the processors be active.

Stage 2 For i =1 to 5b/logb perform stages 2a and 2b.

Stage 2a Within each submesh, form a bus between the processors in the snake-like
order. Then disconnect the processors into groups according to the top 7h bits of
their stored elements, and perform the rest of stage 2a and stage 2b in parallel
in each disconnected group. Let j and j' be the highest and lowest indices of
processors in the group, respectively. Have processor j’ send its index to processor
j, and let d = j — j' + 1. Then in this group, the highest processor knows that
there are d processors containing elements with the same upper ¢h bits as its
element, e;.

Stage 2b If processor j in the group is active, then do the following.

If d < 5b/logb, then store a new record [i,e;,d,0] and send a deactivate
message to all the processors in the group. This processor and all other processors
in this group now make themselves inactive.

If d > 5b/logb and there is no record stored at this processor, then create a
new record [i, e;,d, 0].

If d > 5b/logb and there is already a record R stored in this processor, check
to see if R.number = d. If so, then simply increment R.hold. If R.number # d,
then send a message along the bus for all the processors with a record to move it
to its predecessor. The records can be moved to their predecessors in one step.
Then create a new record, [i, ¢;, d, 0], at the highest processor.

Stage 3 Sort all the records in each submesh into row-major order by the first two fields.
This guarantees that the records for each level will be spread out enough so that they
can be accessed quickly when needed.

Stage 4 For i = 1 to 5b/ log b perform stages 4a to 4c. After the jth iteration, we will know
the top jh bits of the kth word, and this information will be used in Stage 4a to decide
which groups to consider at the next iteration. After all iterations we will know all the
bits of the kth word.

Stage 4a Stage 4a is performed in each s x s submesh in parallel. For each position
¢ in the first b'/°(= 2") positions along the bottom row of the submesh, we will
place a record which contains the number of elements in the submesh which have

11

the same top (i —1)h bits as the kth word and whose next h bits equal ¢ in binary
form.

If ¢« = 1, we simply move the first level records to the positions on the bottom
row corresponding to the top h bits of their number fields. Note that these records
can be moved in constant time because no two records originate from the same
column. (This will apply to all the records which need to be moved at any level.)
Now we fill the remaining processors on the bottom row with zero records.

If 2 > 1, then assume the record at the previous iteration which contained the
correct (i — 1)h bits of the kth word is R. If R.number = 0, then this submesh
does not have any elements with the same upper (i — 1)h bits as the kth element,
so we fill in all the processors on the bottom row with zero records.

If R.number # 0, then what we need to do can be broken up into separate
cases, depending on other fields of .

Case 1: (R.hold # 0) The processor which holds R should decrement this hold
field. Then this record should be sent to the processor determined by the next
h bits in its bits field corresponding to this level. All the other processors in
the first b'/® locations along the bottom row should create zero records.

Case 2: (R.hold = 0 and R.number > s) Consider those records for this group
found in stage 2 and sorted in stage 3. Move them to their correct places
along the bottom row and create zero records at the unfilled positions.

Case 3: (R.hold =0 and R.number < s) There are at most 5b/ log b remaining
elements in this category. Using the sorted elements from the first stage of
preprocessing, find the number of elements for each group of elements with
different next h bits by splitting the elements into groups as in Stage 2a and
simply creating a record with the correct number of items in the group at the
highest processor in the group. Then move the records to the correct places
along the bottom row, and fill in the rest of the positions with zero records.

Stage 4b Use the data in the b'/® records formed in stage 4a along the bottom row in
each submesh as a histogram. This gives the number of elements with the correct
top (i — 1)h bits and the b'/® different possible next bits. Compute the histogram
for the whole mesh using the algorithm given in Jang, Park and Prasanna [7],
starting from the b'/® values in each submesh of size 5b/logb x 5b/ logb.

Stage 4c Perform a prefix sum on the b'/° resulting values using Lemma 1 in Jang,
Park and Prasanna [7]. For prefix sums p;, where 1 < i < b'/® and py = 0, the kth
element will be in the group j where p;_; < k < p;. Let the new k be k — p;_;.
Then broadcast j and the new £ to all the processors. In each submesh, the jth
processor along the bottom row will hold the record which contains the next h
bits of the kth word. In other words, the next h bits of the kth word are the
binary representation of j.

End Selectword
Proving the correctness of the Selectword procedure is relatively straightforward, except

for showing that the records formed in Stage 2 are stored in such a way that they can be
sorted in Stage 3. The following lemma provides this fact.

12

Lemma 4.1 After Stage 2, each processor will hold at most two records, one with a number
field greater than 5b/logb and one with a number field less than 5b/ logb.

Proof: Obviously, once a processor forms a record with a number field less than 5b/ log b, it
becomes inactive and never gets another record. For the records with number fields greater
than 5b/log b, a simple proof by induction shows that at any step ¢, at most i records of this
type will be stored in any active group, and they will be stored at the highest processors
in the group. The fact that each active group has > 5b/logb processors implies that these
records will be stored at most 1 per processor. O

Now we analyze the time of the procedure Selectword. Stage 1 is a sort which takes
©(b/logb) time. Stage 2 performs 5b/ log b steps, each of which takes constant time. Stage
3 is another sort which takes ©(b/logb) time. Stage 4 perform 5b/ logb steps, each of which
involve a histogram procedure and a prefix sum. The histogram is over b'/° elements and
starts with a histogram in each submesh of size 5b/ log bx 5b/ log b, so it takes O(max{log" n—
log* b, 1}) time in the cross-over model. The prefix sum is over b'/° numbers of at most b bits
each. This takes constant time by Lemma 1 from Jang, Park and Prasanna [7]. Therefore
Stage 4 takes a total of ©((b/logb) max{log" n —log"b,1}) time.

The analysis above proves the following theorem.

Theorem 4.1 One can select the kth of n b-bit words in ©((b/ logb) max{log” n—1log*b,1})
time on a \/n X \/n rmesh in the cross-over model.

5 Average Case Selection

Here we show how to find the kth element of a set of n elements stored one per processor on
a y/n X y/n rmesh, in which all the possible orderings of elements are equally likely. In this
section, we define “high probability” as probability > 1 — 1/n. First we present some useful
lemmas.

Lemma 5.1 Given a sorted sample of r elements chosen randomly from s ordered elements,
the probability that the kth of the s elements is not

1. below element log® s in the random sample if k < (s/r)log”s, or

2. between element rk/s — \/rk/slogs and element rk/s + \/rk/slogs in the random
sample if k > (s/r)log’ s

is < s73.

Proof: The probability of a randomly chosen element of s being equal to or below the
kth is k/s. Thus the number of items in our random sample below the kth element will
behave like the probability distribution X = B(r,k/s). If rk/s < log’s, then by Cher-
noff’s bound, P(X > log®s) < 271065 < §73_ If rk/s > log®s, then by Chernoff’s bound

P(X < (1 —/s/rklogs)rk/s) < e (o9*)/2 < s=3/9 and P(X > (1+ \/s/rklogs)rk/s) <
ef(logzs)/?) < 873/2. O

13

Lemma 5.2 (Clarkson, [3]) Let S be a set of elements of size s, and let R be a sorted
random sample of S of size r. Then the probability that over O(slogs/r) elements of S fall
between any two adjacent elements of R is < s 3

Proof: Consider all pairs of points in R that define an interval in which > as elements of S
fall. For each of these intervals the probability of no other points in R falling in that interval
is (1 — a)" "2 Then the probability that any of these intervals are defined by two adjacent
points of R is less than O(r?)(1—«)" 2. By setting o = 5(log s)/(r—2), the lemma follows. O

Lemma 5.3 Given s elements, for large enough k, if we select each element with probability
s~(40) " then the probability that k/b elements will be chosen is < s7*.

Proof: The probability of choosing k/b elements is < (k‘;b)s*(k/”)(l“’) <s* O

The algorithm works as follows. The input is a set S of at most n®,.5 < a < 1 ordered
items distributed at most one per processor on a /n x y/n rmesh, with each row having
O(n®=%) items, and any order of the items equally likely. The AverageSelect procedure finds,
with high probability, a reduction of the selection problem on its input to either

1. if @ > .6, an equivalently constrained selection problem with « replaced by o — .1, or

2. if @ < .6 an equivalently constrained selection problem with « replaced by o — .1 but
with at most a constant number of items per row.

Then it recursively calls itself until & < .5 (at most five times), at which point it simply
sorts the remaining items and outputs the correct answer.

Procedure AverageSelect(S, k)

Stage 1 Count the items in S using bit-addition. Let s be the number of items, and let
a =logs/logn. If k <0 or k > s, then revert to the deterministic selection algorithm
of the previous section. (Note that this condition can only occur on recursive calls to
AverageSelect.)

Stage 2 If a < .5, then there should be at most a constant number of items per row. If
so, then sort these items, output item k, and exit. If not, revert to the deterministic
selection algorithm of the previous section.

Stage 3 Have each processor with an item in S choose its item to be in the random sample
with probability n-3~®. By lemma 5.3, with high probability at most a constant num-
ber of items will be chosen in each row. If not, revert to the deterministic selection
algorithm of the previous section. If so, then compress, count, and sort these items.
Let 7 be the number of chosen items. By Chernoff’s bound, r = O(n?) with high
probability.

Stage 4 In this stage, we first broadcast the low filter, and then broadcast the high filter.
If k < (s/r)log®s, then

1. broadcast —oo,

14

2. if log’ s < r — 1 broadcast the value at this rank in the random sample, else
broadcast +oo.

else

1. If |rk/s —y/rk/slogs] > 0, then broadcast the value at this rank in the random
sample, else broadcast —oo,

2. If [rk/s + \/rk/slogs| < r — 1, broadcast the value at this rank in the random
sample, else broadcast +oo.

Stage 5 Count the number of items below the low approximation using bit-addition, and
let b be this sum. Let S’ be the set of items between the two approximations.

Stage 6 Call AverageSelect(S’, k — b).

End AverageSelect

By lemma 5.1, the median is guaranteed to be between the two approximations with
high probability. Also, since k£ < s and s < n, we see that the number of items between the
approximations is at most 2y/7logs < O(n'®logn). By lemma 5.2, with high probability
there will be at most O(n® 3 logn) items between any two consecutive items in the random
sample, and thus with high probability there will be at most O(n®* > log®n) < O(n*~!)
items between the two approximations.

Since the original items were ordered arbitrarily among the processors they occupied, the
items between the approximations will be too, and it is not too hard to check using Chernoff
bounds and lemma 5.3 that the conditions on the number of items per row are also satisfied.

The procedure and analysis above proves the following theorem.

Theorem 5.1 Given a totally ordered set of n items which are stored one per processor on
an rmesh, and in which all possible orderings are equally likely, then with high probability,
the time required to select the kth item 1s the time required to perform bit-addition.

The O(loglogn) algorithm for bit-addition thus implies a O(loglogn) time expected time
algorithm for selection in the non-cross-over model. The ©O(log* n) time algorithm for bit-
addition implies a ©(log" n) expected time algorithm for selection in the cross-over model.

6 Lower Bound

Here we prove a lower bound of (loglogn) time on finding the maximum of n elements
on an n processor rmesh. This implies an equivalent lower bound on the selection problem.
We mention that Valiant [22] showed that any comparison-based algorithm for finding the
maximum requires 2(loglogn) time. The lower bound presented here places no restrictions
on the instruction sets of the processors. We also mention that the maximum of n elements
can be found in O(loglogn) time on an n processor rmesh, so the lower bound is tight.

Theorem 6.1 Given n elements distributed one per processor on an n processor rmesh,
finding the maximum of these elements requires Q(loglogn) time on the cross-over model.

15

To prove this theorem we apply the techniques and analysis of Fich, Meyer auf der Heide,
Ragde and Wigderson [6], in which the equivalent lower bound is proven for the CRCW
PRAM. This lower bound makes no restrictions on the instruction sets of the processors,
and is simply a lower bound on the number of communication steps required to find the
maximum. The proof is actually simpler for the rmesh because one doesn’t have to deal
with infinite memory, where processors might have read and write functions with infinite
ranges. A processor in the rmesh only has a constant number of possible actions at each
step, namely, which local switches to set, and whether to write or not. Because of this, the
Ramsey Theoretic arguments in the PRAM proof can all be replaced by simple Pigeonhole
Principle arguments. The proof proceeds as follows.

Let MAX be any algorithm which finds the maximum of n inputs on a y/n x y/n rmesh.
We will show that MAX requires Q(loglogn) steps by an adversary argument. At each step,
the adversary will fix the values of certain inputs and maintain a set of allowed values for
the non-fixed inputs such that each processor will know only one non-fixed input. We make
this more precise as follows.

Consider step t of MAX. Let V; C {1,...,n} be the set of indices of inputs which
could still be the maximum. These are the live inputs. Let S; C N = {1,2,...} be the
set of possible values for the live inputs, restricted by the adversary. Let F, = {f;|i €
{1,...,n} — Vi} be the adversary’s assignment of values to fixed variables.

At the start of the algorithm, V5 = {1,...,n}, Sy = N and F;, = (). Now we state the
main lemma.

Lemma 6.1 We can construct an adversary such that after step t of MAX, the following
properties hold.

1 Vi C Viy, and V)| > Viea 2/ (Vier | + 20).

2. Each processor knows only one variable in V.
3. Sy € S;_1 and S; is infinite.

4. Fi1 CF,CN =5,

First we show why this lemma implies the theorem. For MAX to be finished in T steps, it
must be the case that Vi = 1. Then by property 1 of the lemma,

Vir_i|?
)

3n
since V; < n for any t. By recursively applying property 1 of the lemma, we get

1=|Vr| >

P L S
= (3n)2T—1 - (3n)2T—1 g2t

Then 32" ' > n, which implies T = Q(loglog).
Before we prove the lemma, we state the Pigeonhole Principle (which is a special case of
the Ramsey Theory lemma used in [6]) and Turdn’s Theorem.

Pigeonhole Principle Let f : W — D be any function defined on an infinite domain W
and finite range D. Then there is an infinite subset W’ C W such that f|y- is constant.

16

Turan’s Theorem Given a finite graph G(V, E), there exists an independent set of vertices
of size |[V|2/(|V| + 2|E]).

Proof: (of Lemma 6.1) We prove the lemma by induction. Assume the lemma holds for all
steps before step t. Then in step ¢, a processor P; either writes or does not write depending
on the live input it knows, and connects to its neighbors depending on this same input.
Call the write functions and connect functions w! and ¢! respectively. Each is a function
from an infinite domain S; ; to a constant range. By applying the Pigeonhole Principle to
each write function and connect function in turn, for all 7 from 1 to n, the adversary can
restrict the allowed inputs such that all write functions and connect functions are constant.
Let S C S;_; be this restriction. This fixes the communication pattern on the rmesh. Each
processor connected to a bus then learns only the variable which was known by the processor
which wrote to that bus. Note that if more than one processor wrote to the bus, they must
have written the same value, so no more information can be gained then by a single processor
writing to the bus.

At this point each processor knows at most two inputs in V;_;. Now consider the graph
G(V;_1, F) with (i,j) € E if and only if a processor knows both input ¢ and input j. We
know |E| < n, and thus by Turdn’s theorem, we can construct an independent set of size
\Vio1|?/(|Vie1] + 2n). Let V; C Vi be this independent set. This satisfies properties 1 and
2. Now for each i € V,_; — V}, let f; be the smallest value s € S’, and add this to F;_; to
get Fy. Alsolet Sy = S"—{s}. This satisfies properties 3 and 4, and thus the lemma holds. O

Plaxton [18] gives a lower bound of Q((n/p)loglogp + logp) for selection on a fixed
network of p processors which satisfies a particular low expansion property. His proof assumes
that each processor can only compare or copy keys, so it is not as general as the proof above.
Also, the logp term does not apply to the rmesh because that term comes from the diameter
of the network, which for the rmesh is constant. Thus there is still a large separation between
the upper and lower bounds on the selection problem. Narrowing this gap is an open problem.

References

[1] P. Beame and J. Hastad. Optimal bounds for decision problems on the CRCW PRAM.
J. Assoc. Comput. Mach., 36(3):643-670, July 1989.

[2] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for
selection. J. Comput. System Sci., 7(4):448-461, 1972.

3] K. L. Clarkson. New applications of random sampling in computational geometry.
Discrete Comput. Geom., pages 195-222, 1987.

[4] R. Cole. An optimally efficient selection algorithm. Inform. Process. Lett., 26:295-299,
1988.

[5] H. ElGindy and P. Wegrowicz. Selection on the reconfigurable mesh. In Proc. 20th Intl.
Conf. on Parallel Processing, pages 111 26-33, 1991.

17

(6]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

F. E. Fich, F. Meyer auf der Heide, P. Ragde, and A. Wigderson. One, two, three
...infinity: Lower bounds for parallel computation. In Proc. 17th Symp. on Theory of
Computing, pages 48-58, 1985.

J. Jang, H. Park, and V. K. Prasanna. A fast algorithm for computing histogram on
reconfigurable mesh. Technical Report IRIS#290, Univerisity of Southern California,
1992.

J. Jang and V. K. Prasanna. An optimal sorting algorithm on reconfigurable mesh.
Technical Report IRIS#277, Univerisity of Southern California, 1991.

H. Li and Q. F. Stout. Reconfigurable Massively Parallel Computers. Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

H. Li and Q. F. Stout. Reconfigurable SIMD massively parallel computers. Proceedings
of the IEEE, pages 429-443, 1991.

P. D. MacKenzie. A separation between reconfigurable mesh models. in preparation.

N. Megiddo. Linear time algorithm for linear programming in R* and related problems.
SIAM J. Comput., 12(4):759-776, 1983.

R. Miller, V. K. Prasanna-Kumar, D. I. Reisis, and Q. F. Stout. Data movement
operations and applications on reconfigurable VLSI arrays. In Proc. 17th Intl. Conf. on
Parallel Processing, volume 1, pages 205-208, 1988.

R. Miller, V. K. Prasanna-Kumar, D. I. Reisis, and Q. F. Stout. Parallel computations
on reconfigurable meshes. IEEFE Trans. Comput., 41, 1992. to appear.

J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. Theor.
Comput. Sci., 12:315-323, 1980.

K. Nakano, T. Masuzawa, and N. Tokura. A sub-logarithmic time sorting algorithm on
a reconfigurable array. IEICE Transactions, E74(11):3894-3901, 1991.

M. Nigam and S. Sahni. Sorting n numbers on n x n reconfigurable meshes with buses.
Technical Report TR-92-04, Univerisity of Florida, 1992.

C. G. Plaxton. On the network complexity of selection. In Proc. 30th Symp. on Found.
of Comp. Sci., pages 396—401, 1989.

V. K. Prasanna-Kumar and C. S. Raghavendra. Array processors with multiple broad-
casting. J. Parallel and Distributed Comput., 4:173-190, 1987.

Q. F. Stout. Mesh-connected computers with broadcasting. IEEE Trans. Comput.,
32(9):826-830, September 1983.

C. D. Thompson and H. T. Kung. Sorting on a mesh connected parallel computer.
Comm. ACM, 20(4):263-271, 1977.

L. G. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4:348-355, 1975.

18

