

Adaptive Blocks: A High Performance Data
Structure
Quentin F. Stout

Electrical Engineering and Computer Science
Center for Parallel Computing

University of Michigan
Ann Arbor, MI 48109-2122

qstout@umich.edu
http://www.eecs.umich.edu/~qstout/

Darren L. De Zeeuw
Space Physics Research Laboratory

Department of Atmospheric, Oceanic and Space Sciences
The University of Michigan
Ann Arbor, MI 48109-2143

darrens@umich.edu
http://www-personal.engin.umich.edu/~darrens

Tamas I. Gombosi
Space Physics Research Laboratory

Department of Atmospheric, Oceanic and Space Sciences
The University of Michigan
Ann Arbor, MI 48109-2143

tamas@umich.edu
http://www-personal.engin.umich.edu/~tamas

Clinton P. T. Groth
Space Physics Research Laboratory

Department of Atmospheric, Oceanic and Space Sciences
The University of Michigan
Ann Arbor, MI 48109-2143

groth@umich.edu
http://www-personal.engin.umich.edu/~groth

Hal G. Marshall
Center for Parallel Computing

Laboratory for Scientific Computation
The University of Michigan
Ann Arbor, MI 48109-2094

idaho@umich.edu
http://www-personal.engin.umich.edu/~idaho

Kenneth G. Powell
Department of Aerospace Engineering

The University of Michigan
Ann Arbor, MI 48109-2118

powell@umich.edu
http://www-personal.engin.umich.edu/~powell

Abstract:
We examine a data structure which uses flexible "adaptivity" to obtain high
performance for both serial and parallel computers. The data structure is an adaptive
grid which partitions a given region into regular cells. Its closest relatives are
cell-based tree decompositions, but there are several important differences which
lead to significant performance advantages. Using this block data structure to
support adaptive mesh refinement (AMR), we were able to sustain 17 GFLOPS in
ideal magnetohydrodynamic (MHD) simulations of the solar wind emanating from
the base of the solar corona, using a 512 processor Cray T3D at NASA Goddard.

Keywords:
adaptive mesh refinement (AMR), spatial decomposition, adaptive blocks, quadtree,
octree, dynamic data structure, high performance computing, parallel computing,
magnetohydrodynamics (MHD)

Introduction

One significant advance in computational simulation of dynamic phenomena is the use of
adaptive mesh refinement (AMR) ([1]). AMR allows one to focus computations on
regions of interest, instead of computing over a region using a uniform fixed mesh. For
example, AMR allows one to faithfully track shock waves and other discontinuities with
high resolution ([4]), while areas of lesser interest are kept at lower resolution.
Adaptive-mesh techniques can be far more efficient than fixed uniform grid approaches,
providing savings in both the computational time needed and data storage required.

However, there is overhead associated with AMR, in terms of deciding when and how to
adapt, and in keeping track of the evolving mesh. One data structure which has been used
for AMR is the cell-based tree, which is very flexible and provides a systematic way to
keep track of the mesh. However, since each node of a cell-based tree data structure is a
single cell, computations suffer from significant overhead due to indirect addressing and
lower FLOP rates are achieved. Similar performance issues arise when general
unstructured grids are used in place of tree data structures.

For improved computational performance, we have developed adaptive blocks as an
alternative data structure to overcome the disadvantages of cell-based trees and
unstructured meshes, while still permitting flexible AMR. Adaptive blocks are
particularly well suited to high-performance machines, both serial and parallel. For
example, our NASA Grand Challenge Team has made use of this data structure in ideal
MHD simulations of the solar wind and inner heliosphere ([2]), achieving 16 GFLOPS
performance on a 512 node Cray T3D. Figure 1 shows the results of a coronal mass
ejection (CME) simulation obtained using the block adaptive MHD model. An adaptive
block structure was also used in the first accurate numerical modeling of the recently
observed x-ray emissions from comets ([3]),, where these calculations were performed on
a workstation.. Other applications and illustrations can be found at our group’s web site,
http://hpcc.engin.umich.edu/HPCC/. The web site also provides pointers to numerous
papers utilizing AMR.

Figure 1: Constant Mach surface and magnetic field lines for a coronal mass
ejection (CME).

Adaptive Blocks

Figure 2 shows an adaptive block decomposition of a two-dimensional rectangular
region. On the left side there are four non-overlapping blocks, each of which is
decomposed into a regular 3 x 4 array of cells. On the left side, one of the blocks has
been refined into four children, each of which again is decomposed into a regular 3 x 4
array of cells. If the children are coarsened, then the decomposition would revert to the
original.

Figure 2: A two dimensional Adaptive Block Decomposition

In general adaptive block approach, d-dimensional non-overlapping blocks are used to
partition d-dimensional regions of interest. Each block is decomposed into a regular m1 x

m2 x ... x md array of cells. When a block is refined, it is replaced by 2d children, each

again decomposed into a regular m1 x m2 x ... x md array. In each dimension, the extent of

a child’s cell is half that of the parent’s cell. Coarsening is achieved by reversing this
process and replacing the 2d children by their parent. An adaptive block decomposition
of a three-dimensional spatial domain is illustrated in Figure 3.

Figure 3: A three-dimensional adaptive block decomposition.

In contrast to adaptive blocks, Figure 4 illustrates a quadtree decomposition. In this
cell-based tree decomposition, when a cell is subdivided, the child cells are created and
the parent remains, so that the region of the original cell now has two representations.
Generalized quadtrees and octrees have been widely used for a variety of two- and
three-dimensional applications involving spatial decomposition ([5]). Note that the
adaptive blocks for a decomposition of a two-dimensional domain are similar to the
leaves of a quadtree decomposition, and in general the adaptive block decomposition of a
d-dimensional domain are similar to the leaves of a d-dimensional generalized tree.

Figure 4: A quadtree decomposition.
Leaves are shown in green. Lines indicate parent-child links.

In the adaptive block data structure, inter-block connectivity is defined using pointers.
Each block has pointers to the neighboring blocks with which it shares a face (in other
implementations, one may also need pointers to blocks sharing lower dimensional
‘‘faces’’ such as edges and corners). Thus neighbor information is maintained explicitly.
This is similar to the explicit maintenance of neighbor information in unstructured grids.
In contrast, quadtree and octree data structures explicitly maintain only parent-child
information and neighbor information must be obtained by a tree traversal.

Note that a block may have many neighbors along a given face, depending on the number
of times refinement has occurred among the neighbors. In our applications, we restrict
refinement so that neighboring blocks differ by at most one level of resolution. For
example, in Figure 2 note the right hand side; if the upper right small block was refined it
would cause the upper right large block to also be refined. Refinement can potentially
cascade across the grid. For adaptive blocks with at most one level of resolution change
between adjacent blocks, there are at most 2d-1 blocks sharing a given face. If k levels of

resolution change are permitted, then there can be as many as 2k (d-1) blocks sharing a
given face.

In our implementation of the adaptive block data structure, ‘‘ghost’’ cells are added
around each block, to store values of cells in the neighboring blocks. For first-order
accurate spatial operators only one layer of ghost cells is needed; for so-called
‘‘higher-resolution methods’’ ([6]), more layers of ghost cells are needed. Prolongation
operations are used to determine ghost-cell values when the neighbor block is coarser
than the block of interest; restriction operations are used when the neighbor is finer.

Adaptive Blocks versus Trees and Unstructured Grids

While adaptive blocks, unstructured grids, and cell-based trees can all be used to support
adaptive mesh refinement (the approaches have other uses as well), the adaptive block
approach has several pronounced advantages. These include

Loop and cache optimizations can be performed over the arrays of cells in an
adaptive block data structure. This is difficult, if not possible, with cell-based tree
structures or unstructured grids. The use of ghost cells further enhances this
advantage for calculations which depend on neighboring cell values.
Adaptive blocks amortize the costs of neighbor pointers (both time and space) over
entire arrays, and their ghost cell to computational cell ratio is far superior to other
data structures.
On parallel computers, adaptive blocks amortize the overhead of communication
over entire blocks of cells, instead of over single cells as in tree data structures and
unstructured grids.
Adaptive blocks locate neighbors directly, as do unstructured grids, rather than using
parent/child tree traversals to locate them as required in standard tree structures.
Because adaptive blocks permit the refinement of larger multi-cell regions at one
time, mesh adaptation need not occur as frequently as for data structures based on
single cells. This reduces computational overhead.

However, adaptive blocks can also have some disadvantages when compared to the
alternatives. When the size of the array of cells per block is very large, then

Load balance on parallel computers is harder to maintain when refinement and
coarsening occur dynamically and when there are far fewer blocks than cells such
that there a small number of blocks assigned to each processor element. If the
average number of blocks per processor is small and there are a large number of
cells per block, then any processor having a number of blocks above the average
will be doing significantly more work, causing the other processors to be delayed.

Excessive numbers of refined cells can be created (i.e., typically more than the
corresponding number of cells used in cell-based tree data structures) thereby
increasing the amount of time and storage space needed.

The values of the m1, ..., md parameters can be chosen to best trade off the advantages

versus the disadvantages. For example, in our three-dimensional MHD implementation
on the T3D, the values m1 = m2 = m3 =16 were chosen as a reasonable compromise.

Figure 5: Time per cell as a function of block size.

Figure 5 shows a plot of time per cell as a function of the number of cells per block for
this implementation. (The smallest block is 2x2x2, rather than a single cell, because it
would have required significant rewriting of code to time a true octree.) As can be seen,
there is dramatic improvement initially as the size of the blocks increases, but then little
additional improvement occurs. The initial improvement is the effect of loop
optimizations, and the fact that consecutive cells are brought into cache together. As we
had expected, this effect is very significant, more than a factor of 3 improvement over the
2x2x2 case (and far greater over the single cell case). Such improvement was the
motivating factor in developing adaptive blocks. These types of loop optimizations are of

use on a variety of high performance architectures.

The local maxima shown in the figure are believed to be caused by cache effects on the
T3D. For example, the peak at 123 can be removed by padding the array with an
additional surface of cells. The peak at 323 can be reduced by data mining the larger
blocks into smaller ones; this yields better cache performance and is optimal at sub-block
size 163.

Parallel Performance

One aspect of adaptive blocks that leads to high efficiency is the use of explicit neighbor
pointers, as opposed to the tree traversal techniques needed to locate neighbors when only
parent/child links are maintained. In a cell-based tree, one may need to visit several cells
before a neighbor is located. In a parallel system these cells may be located on different
processors, so that extensive interprocessor communication would be required. This
could induce significant overhead and delay.

However, an aspect of adaptive blocks that is less favorable for parallel computation is
the fact that there are far fewer blocks than cells. As noted above, for a given simulation
this may result in a small average number of blocks per processor. In such a situation, any
processor exceeding the average by only a small number of blocks will have a significant
load imbalance, which will reduce parallel efficiency. Choosing overly large blocks will
exacerbate this problem. Whenever refinement or coarsening occurs, load re-balancing
should be performed to insure high performance.

One critical test of a data structure intended for parallel computers is the achieved scaling
as the number of processors increases. In Figure 6 we show the scaleup achieved on the
solar wind simulation ([2]) as the problem size was scaled linearly with the number of
processors on a Cray T3D.

Figure 6: Parallel efficiency, scaling problem size with processors.

The efficiency is extremely high, even up to 512 processors. Further, the parallel
efficiency is being compared to a single processor running adaptive blocks, which is
significantly faster than a single processor solving the same problem using a cell based
tree.

Another test of the parallel efficiency is the speedup for a fixed size problem. In Figure 7
we show this speedup. Note that it would have been impossible to test this problem on a
single processor, because no single processor would have sufficient memory. The
speedup here is relative to the 64 processor speed.

Figure 7: Parallel efficiency, fixed problem size.

Generalizations

Adaptive blocks are a very flexible data structure with a wide range of variations
possible. Options include

various orders of spatial accuracy can be achieved by varying the number of ghost
cells around each block;
the neighbor pointers can be extended to include blocks sharing low dimensional
boundaries;
the constraint on the relative refinements of neighbors can be loosened, allowing
refinement level differences greater than one;
the initial block configuration need not be Cartesian.

Note that these are all options concerning the structure itself. Meanwhile, there are a vast
array of options within the field of adaptive mesh refinement. One can vary the
refinement/coarsening criteria, the extent of refinement/coarsening, the frequency of
checking criteria, etc. Most of these variations can be implemented as naturally with

adaptive blocks as they can be implemented on cell-based trees or any other dynamic
structures.

Finally, while our use of adaptive blocks has been motivated by their use in adaptive
mesh refinement, the approach can be used for a variety of other problems involving
spatial decomposition. Most of their performance advantages would carry over to a wide
range of applications, especially when the block size is properly tuned.

Acknowledgment

This work was supported by the NASA HPCC ESS project under Cooperative Agreement
Number CAN NCCS5-146.

References

1. M. J. Berger and A. Jameson, Automatic adaptive grid refinement for the Euler
Equations, AIAA Journal 23, 1985.

2. T. I. Gombosi, K. G. Powell, Q. F. Stout, E. S. Davidson, D. L. De Zeeuw, L. A. Fisk,
C. P. T. Groth, T. J. Linde, H. G. Marshall, P. L. Roe, B. van Leer, Multiscale modeling
of heliospheric plasmas, High Performance Computing 1997.

3. R. M. Haberli, T. I. Gombosi, D. L. De Zeeuw, M. Combi, K. G. Powell, Modeling of
cometary x-rays caused by solar wind minor ions, Science 8, May 1997.

4. J. Quirk, An Adaptive Grid Algorithm for Computational Shock Hydrodynamics ,
Ph.D. thesis, Canfield Institute of Technology, 1991.

5. H. Samet, The quadtree and related hierarchical data structures, Computing
Surveys 16 (2), 1984.

6. B. van Leer, Towards the ultimate conservative difference scheme. V. A second
order sequel to Godunov’s method, Journal of Computational Physics 32, 1979.

Author Biographies

Quentin F. Stout is Professor of Computer Science. His research interests are in parallel
computing, especially in the areas of scalable parallel algorithms and in overcoming
inefficiencies caused by interactions among communication, synchronization, and load
imbalance. This work has been applied to a variety of industrial and scientific parallel
computing problems, as well as to fundamental problems in areas such as sorting, graph

theory, and geometry. He is Co-Principal Investigator of the NASA HPCC ESS
Computational Grand Challenge Investigator Team at the University of Michigan. Home
Page.

Darren L. De Zeeuw is Assistant Research Scientist at the Space Physics Research
Laboratory. His interests involve the development and implementation of algorithms to
solve the multidimensional Euler and MHD equations using octree-based unstructured
Cartesian grids with adaptive refinement and multigrid convergence acceleration. He is
one of the primary developers of the code described in this paper. Home Page.

Tamas I. Gombosi is Professor of Space Science and Professor of Aerospace
Engineering. He has extensive experience in solar system astrophysics. His research areas
include generalized transport theory, modeling of planetary environments, heliospheric
physics, and more recently, multiscale MHD modeling of solar system plasmas. He is
Interdisciplinary Scientist of the Cassini/Huygens mission to Saturn and its moon, Titan.
Professor Gombosi is Senior Editor of the Journal of Geophysical Research Space
Physics. He is Program Director and Co-Principal Investigator of the NASA HPCC ESS
Computational Grand Challlenge Investigator Team at the University of Michigan. Home
Page.

Clinton P.T. Groth is Assistant Research Scientist at the Space Physics Research
Laboratory. His research interests involve generalized transport theory and the
development of higher-order moment closures for the solution of the Boltzmann equation
via advanced numerical methods with applications to both rarefied gaseous and
anisotropic plasma flows. This research has led to a new hierarchy of moment closures
with many desirable mathematical features that appears to offer improved modeling of
transitional rarefied flows. Home Page.

Hal G. Marshall is Associate Research Scientist at the Center for Parallel Computing
and the Lab for Scientific Computation. He has interests in scientific computing using
massively parallel computers. He is one of the primary developers of the code described
in this paper. Home Page.

Kenneth G. Powell is Associate Professor of Aerospace Engineering. His research areas
include: solution-adaptive schemes, genuinely multidimensional schemes for
compressible flows, and, most recently, numerical methods for magnetohydrodynamics.
He was a National Science Foundation Presidential Young Investigator from 1988-1994.
He is Co-Principal Investigator of the NASA HPCC ESS Computational Grand
Challlenge Investigator Team at the University of Michigan. Home Page.

