
In SIAM Journal on Scientific Computing21 (1999), pp. 67–87.

Using Path Induction to Evaluate
Sequential Allocation Procedures

Janis P. Hardwick Quentin F. Stout
Statistics Department EECS Department

University of Michigan, Ann Arbor, MI 48109

Abstract: Path induction is a technique used to speed the process of making multiple exact evaluations of
a sequential allocation procedure, where the options are discrete and their outcomes follow a discrete distri-
bution. Multiple evaluations are needed for determining criteria such as maxima or minima over parameter
regions (where the location of the extremal value is unknown in advance), for visualizing characteristics
such as robustness, or for obtaining the distribution of a statistic rather than just its mean. By using an
initial phase to determine the number of paths reaching each terminal state, the subsequent evaluations are
far faster than repeated use of standard evaluation techniques. Algorithms are given for fully sequential and
staged sequential procedures, and the procedures can be either deterministic or random. The procedures can
be generated by any technique (including dynamic programming or ad hoc approaches), and the evaluations
performed can be quite flexible and need not be related to the method of obtaining the procedure. While the
emphasis is on path induction, the techniques used to speed up the analyses of staged allocation procedures
can also be used to improve backward induction for such procedures. If multiple evaluations need to be car-
ried out, however, path induction will still be far superior. For each parameter configuration to be evaluated,
one reduces the time by a factor ofn, wheren is the size of the experiment, by using path induction rather
than the standard technique of backward induction. In some settings the savings is significantly greater than
n.

Keywords: backward induction, adaptive allocation, stage, group sampling, path counting, forward induc-
tion, Bayesian, bandit problems, stochastic optimization, design of experiments, machine learning

AMS Classifications: 62L10, 90C35, 68Q25, 62A15

Copyright c
1999, 1997. Last modified: 13 Aug 1999.

Research supported in part by National Science Foundation grants DMS-9157715 and DMS-9504980.

1 Introduction

Sequential allocation procedures use accruing data to control their decisions, rather than making all decisions
in advance of any data collection. For example, allocating jobs to servers based on observed queue lengths
is a sequential allocation procedure. Another important example, which motivates the work in this paper,
is the use of sequential allocation procedures to determine how best to assign patients to treatments in a
clinical trial. Conventional clinical trial designs use fixed allocation schemes in which, for example, half of
the patients are assigned to each of two treatments. Such methods, while excellent from a statistical point
of view, may interfere with other trial criteria such as minimizing losses to patients. Sequential procedures
allow researchers to address a variety of trial goals that would be impossible to accommodate under fixed
allocation schemes.

To keep the example simple, let us assume that each patient response is an independent Bernoulli random
variable, with outcomes either “live” or “die”. Next, suppose that we want to design a trial in which we
gather sufficient experimental information to arrive at a terminal decision regarding the best treatment while
simultaneously reducing the average number of patients who die during the experiment itself. LetT1 andT2
be two therapies each having an unknown probabilitypi, i = 1; 2, that any given patient will live or die. It
is assumed that the patient responses are independent both of the therapies to which they are assigned and
of one another. If we are allowed to utilize patient outcomes as the trial ensues, then our ability to direct
more patients to the apparently better therapy increases over time. Thus, a goal such as minimizing patient
deaths is now addressable. Similarly, in industrial settings one may utilize adaptive allocation procedures to
address estimation problems where there are also cost considerations that vary with the options or outcomes.

Unfortunately, while the adaptive features of sequential procedures make them more flexible and, often,
more efficient than fixed allocation procedures, they also make them more complex to analyze and opti-
mize. Due to analytical difficulties, sequential procedures are often overlooked, even when they can offer
substantial benefits. Fortunately, advances in computer technology are making computational analyses more
practicable and are expanding the range of sequential procedures that can be considered. The well-known
techniques of dynamic programming and backward induction, both of which proceed from the end of the
experiment toward the front, can be used for optimization and evaluation, respectively, when the options and
outcomes are finite.

Still, there are many situations that remain computationally challenging. For example, suppose that in
our clinical trial experiment, we have determined how to allocate the patients to minimize the expected
number of deaths, and we now want to evaluate a characteristic of the procedure such as the probability
that we will correctly identify the better therapy at the termination of the trial provided that the two success
probabilities differ by at leastÆ > 0. This problem combines the goals of two well-known design problems
as well as both frequentist and Bayesian viewpoints. The first problem is the finite horizon, Bernoullitwo-
armed banditproblem(2-AB), an allocation procedure of considerable vintage [4, 6]. In this problem one
samples sequentially from either of two dichotomous populations (“arms”) in an attempt to maximize the
number of successes garnered after having taken a total ofn observations. Bandit problems are typically
approached from a Bayesian framework, that is, one in which it is assumed that the unknown parameters are
themselves random variables. The distributions for the parameters are referred to as beingprior distributions,
and in the present problem it’s quite common, at least initially, to assume that these distributions are uniform.

In this scenario, the problem that is combined with the bandit problem is a classicalbest selection
problem, in which one seeks to optimize the probability of correctly selecting the population with the higher
success probability (theprobability of correct selection(P(CS))). The P(CS) is based on having observed a
total of n responses and the assumption that the probabilities differ by at leastÆ; see [3] for more details

1

0.0 0.2 0.4 0.6 0.8 1.0

P2 = P1 + 0.1

0.75

0.80

0.85

0.90

0.95

1.00

P
ro

ba
bi

lit
y

of
 C

or
re

ct
 S

el
ec

tio
n

P

P

P

P

P
P

P
P P P P P

P
P

P

P

P

P

PB

B

B

B

B

B

B
B

B B B B B B B
B

B
B

B

B=Bandit

P=Play the Winner

Sample sizen=100, bandit prior distributions are uniform.

Figure 1: An Example Requiring Multiple Evaluations.

on these problems. In this best choice problem, it is known that one is least likely to make a correct
selection when the success probabilities differ by exactlyÆ. However, in general, it is not known which
pair of probabilities achieves the minimum. Thus, it is necessary to evaluate some collection of success
probabilities until the minimum has been located to sufficient accuracy. One curve in Figure 1 represents
the P(CSj p1; p2) for the optimal 2-AB strategy asp1 andp2 vary, subject top2�p1 = 0:1. The other curve
in Figure 1 represents P(CSj p1; p2) for the simple ad hoc scheme “play the winner” (see Section 6.1). Note
that each point in these plots represents a new evaluation of an allocation procedure.

Furthermore, note that the measure represented by the 2-AB curve is a frequentist analysis of a Bayesian
bandit design. Had the P(CSj p1; p2) been integrated with respect to the prior distributions ofp1; p2 or both,
then the design and the analysis parts of the problem would be considered Bayesian. We emphasize the
difference between design and analysis assumptions for a couple of reasons. First it shows that investigators
can analyze their experimental data independently of the Bayesian assumptions used to generate the optimal
design. Note that the design being evaluated may also be based on an ad hoc approach. Second, frequentist
analyses of sequential designs often require very different computational approaches than do Bayesian anal-
yses. While it has occasionally been possible to perform the sort of multiple evaluations needed for Figure 1
by using exact analytical expressions, this is quite rare and has tended to limit investigators to using simple
procedures that are optimized for analytical tractability rather than for usefulness. Historically, the stan-
dard approach for obtaining exact results has been simply to run backward induction multiple times, once
per evaluation. This approach can be quite time consuming and severely limits the number of evaluations
attempted and/or the size of experiment that researchers can analyze. Typically, in fact, investigators will
carry out only a single evaluation and obtain only a single output such as the minimum risk achievable when
following an optimal strategy. This information, by itself, is of limited use in practice. It’s true that such
outputs are useful in allowing investigators to evaluate how close specific procedures are to the optimum
and also to evaluate how close asymptotic approximations are to the true value. On the other hand, bringing
adaptive techniques into practical use requires that researchers gain a significantly better understanding of
the characteristics not only of the optimal procedures but also of the suboptimal procedures that may have

2

 0
0.2

0.4
0.6

0.8
1

p1
 0

0.2

0.4

0.6

0.8

1

p2

 0
1

2
3

E
xp

ec
te

d
S

uc
ce

ss
es

 L
os

t

Expected successes lost, for solution to two-armed Bernoulli bandit problem with
sample sizen = 100 and uniform priors onp1 andp2 (function is symmetric, only 1/2 shown).

Figure 2: An Example Requiring Multiple Evaluations.

other features to recommend them. This is wherepath induction, a far more efficient algorithm, comes into
play. Path induction supplies a method for efficiently obtaining multiple evaluations of a procedure, inde-
pendent of the method used in generating the procedure. This allows us to rapidly compute the information
shown in Figure 1.

Another example of an operating characteristic made readily accessible by path induction is given in
Figure 2, where we show a surface plot of the expected successes lost asp1 andp2 vary over the parameter
space, for the optimal solution to the 2-AB problem.Expected successes lostrefers to the expected number
of successes that would occur if the better arm were used exclusively, minus the number that occurred using
the procedure. Issues related to the generation of Figure 2 are that the criterion needed to be evaluated
multiple times to produce the desired resolution, that analytical evaluations are apparently impossible, and
that all calculations (including the determination of the solution to the 2-AB) took less than one minute.

Unlike some other forward techniques, path induction consists of two phases: initialization and evalua-
tion. The initialization phase works from the front of the experiment toward its conclusion, determining the
number of paths that reach each terminal state. The evaluation phase then performs each evaluation using
only the terminal states and the path counts. Because only the evaluation phase needs to be reiterated when
evaluating a procedure for a variety of different parameter configurations, path induction requires signifi-
cantly fewer calculations than forward methods that are direct counterparts of backward induction. Such
methods require repeating the entire process each time a new parameter configuration is evaluated.

In earlier work, we have referred to the technique of path induction asforward induction, an appropriate
name but one that we have found can cause confusion. There are a number of scenarios that call for forward
algorithmic procedures, any of which may reasonably be called forward induction. For example, Gittins’s
procedure for solving certain multiarmed bandit problems has also been termed forward induction [8]. This
is a procedure in which a dynamic allocation index for each arm is calculated at each stage and the next
experiment chosen is the one corresponding to the highest allocation index. Gittins’s technique was a major

3

breakthrough in the theory of bandit problems since it defined scenarios in which one could obtain optimal
solutions by moving forward rather than backward through the state space. “Forward induction” arguments
are also sometimes used to prove that various adaptive algorithms, such as queuing algorithms, make optimal
choices. Similarly, there is a variety of other algorithmic techniques that utilize path computation and state
indexing. For example, thenetwork algorithmsused for computing exact distributions in the statistical
package STATXACT use paths and states [13]. However, these algorithms are quite different from those
discussed here. A simulation study is yet another forward process, and in an effort to decrease the variance
of a simulation or Monte Carlo study, some researchers utilize an initial forward induction stage to get the
exact probability of reaching each state near the beginning, and take it on from there with the simulation
study. This variance-reduction approach reduces the time needed to achieve a given accuracy. Still, it does
not have the time-saving features of the path induction approach, since each change in parameters requires
redoing the forward process.

Path induction is exact and applicable to a wide range of procedures, analyses and criteria. While the
technique will be explained in the context of deterministic procedures, it can easily be adapted to randomized
procedures as well (see Section 6.4). The primary requirements for its use are that there be a finite number
of alternatives being allocated (calledarms), each of which has a finite number of possible outcomes (the
set of outcomes on different arms need not be the same), and that all observations be independent of each
other. Throughout this paper, these conditions are assumed.

The implementation details, and relative advantages, of path induction depend upon the procedure being
evaluated. Path induction will first be described in a fairly general setting in Section 2, and then specialized
to fully sequential procedures (Section 3) and staged sequential procedures (Section 5). A few extensions of
various forms are discussed in Section 6. This list of variations is not exhaustive, but indicates many useful
approaches.

Throughout, the time and space requirements will be analyzed using standard “generalized O-notation”,
so that

� f(n) = �(g(n)) means that there exist positive constantsC,D,N such thatCg(n) � f(n) � Dg(n)
for all n � N ;

� f(n) = O(g(n)) means that there exist positive constantsD, N such thatf(n) � Dg(n) for all
n � N ;

� f(n) = o(g(n)) means that for every positiveD (no matter how small), there exists a positive constant
ND such thatf(n) � Dg(n) for all n � ND.

2 General Case

To describe path induction, one needs the notion of thestatesof an experiment. Basically, a state is just a
set of sufficient statistics describing a possible outcome (either intermediate or final) of the experiment. For
example, if there are two arms, one of which is a coin and the other a die, then a state is just an 8-tuple
consisting of the number of heads observed, the number of tails observed, and the number of times each
face of the die was observed.

In general, one wants the state space to be as concise as possible. However, in some cases one needs
states with information beyond that of the sufficient statistics. For example, consider the following proce-
dure:

4

0

(3,0)

(2,1)

TTH

THT

HTT

(0,3)

(4,0)

(3,1)

(2,2)

(1,3)

(0,4)

4

3

2

1

0
1

.6

.4

.6

.4

.6
.6

.4
.4

.6

.4

3.6

2.6

1.6

1.6

.6

2.3424

.216

.432

.096

.096

.096

.064

Numbers on arrows: prob(,)
Numbers on states: E(heads)

Figure 3: Backward Induction Evaluation of E(# Heads) inE , Where prob(head)=0.6

ProcedureE : Flip a coin three times. If the outcome is a head followed by two tails, then stop;
otherwise flip once more and stop.

In E , the number of heads observed and number of tails observed is a sufficient statistic, but is not adequate
to describe the workings of the experiment since this treats head-tail-tail the same as tail-head-tail, while
the procedure treats them differently. Therefore states need to have enough information to describe the
statistical outcome and to determine the actions of the procedure. ForE , one might choose the state space
to be the initial state 0 (this will be used throughout to denote the state where no observations have yet been
taken), states (3,0), (2,1), (0,3), TTH, THT, and HTT to represent the results of the initial flips, and states
(4,0), (3,1), (2,2), (1,3), and (0,4) to represent the outcomes after the fourth flip, where(h; t) denotes the fact
thath heads andt tails were observed. Of these states, HTT, (4,0), (3,1), (2,2), (1,3), and (0,4) are terminal.

To evaluate a criteria via dynamic programming or backward induction, one proceeds from the end
towards the beginning of the procedure. For example, in the above experiment, suppose that the goal is to
find the expected number of heads observed. LetC(�) denote the expected value of the criteria, given that
state� occurred. The goal, therefore, is to evaluateC(0). For any terminal state(h; t), C(h; t) = h, and for
the terminal stateHTT , C(HTT) = 1. Once the value is known for all immediate successors of a state�,
then it can be evaluated for that state by

C(�) =
X
fprob(�; �0) � C(�0) : �0 a successor of �g; (1)

whereprob(�; �0) is the probability of reaching�0 from � without passing through any other states along
the way. One keeps applying this formula recursively until the initial state 0 is evaluated. This is illustrated
in Figure 3, where it is assumed that a single flip of the (biased) coin has probability 0.6 of being a head.

For path induction, one first determines the number of paths from 0 to each terminal node, where the
number of paths is counted in a state model where observations occur one at a time, even if the original state
model does not contain all such intermediate states. Thus, for example, there are 3 paths from 0 to (2,1).
Path calculations proceed in the reverse order of backward induction. UsingP (�) to denote the number of
paths to state�, one starts withP (0) = 1. Once theP values are known for the predecessors of state�, its

5

0

(3,0)

(2,1)

TTH

THT

HTT

(0,3)

(4,0)

(3,1)

(2,2)

(1,3)

(0,4)

1

1

3

1

1

1

1
1

3

5

4

11

3

1

1

1

1

1

1

1
1
1
1

1
1
1

1

Numbers on arrows: paths()
Numbers on states: P()

Initialization Phase

0

HTT

(4,0)

(3,1)

(2,2)

(1,3)

(0,4)

2.3424

.1296

.0864

.0576

.0384

.0256

.096

1*

4*

5*

3*

1*

1*

4

3

2

1

0

1

Numbers on paths: P()*path−prob(,)
Numbers on states: E(# heads)

Evaluation Phase

Figure 4: Path Induction Evaluation ofE

ownP value can be determined via

P (�) =
X
fpaths(�0; �) � P (�0) : �0 a predecessor of �g; (2)

wherepaths(�0; �) is the number of paths from�0 to � that do not pass through any other states. The
calculation ofP values for procedureE is shown in Figure 4, and an algorithm for the general case is given
in Figure 5.

In Figure 5, the condition “ifP (�0) evaluated” means that all predecessors of�0 have added their contri-
bution toP (�0). A similar condition, checking that all successors have contributed, would also occur in an
implementation of backward induction. Usually it is trivial to determine if all successors or all predecessors
of a state have been evaluated, since typically calculations proceed level by level, where thelevelof a state
is the total number of observations. There might be cases where this is not appropriate, but then one could
use standard traversal techniques for acyclic directed graphs to make such determinations, using space and
time proportional to the number of states. (This is the same as the problem of determining a linear ordering
compatible with a given partial ordering, a processes sometimes calledtopological sorting.) In the algorithm
given in Figure 5, it is assumed merely that one has some efficient way of determining when all predecessors
have contributed.

The second phase of path induction is to use the path counts to make evaluations. Using the notation
above, this can be computed as

C(0) =
X
fP (�) � pathprob(�) � C(�) : � terminalg; (3)

wherepathprob(�) denotes the probability that the experiment followed any single path from 0 to�. For
example,pathprob(h; t) = ph(1 � p)t, wherep is the probability of getting a head. This is shown in
Figure 4, again for the case whereC is the expected number of heads observed and the probability of a head
is 0.6. One of the assumptions of path induction is that the probability of a path from 0 to� depends only
on�, although this can be relaxed in certain circumstances (see Section 6.4).

To illustrate the use of path induction, suppose that one wanted to plot the expected number of heads
observed inE , as a function of the probabilityp of observing a head on a single toss of the coin (ignoring

6

for all states �, P (�) = 0
P (0) = 1
put initial state 0 in set C
while C nonempty do fC contains nonterminal states for whichP has been determinedg

remove an arbitrary state � from C
for all successors �0 of �

P (�0) = P (�0) + paths(�0; �) � P (�)
if P (�0) completed, and �0 nonterminal, then add �0 to C

endwhile
fAll terminal states now have their correctP valuesg

Figure 5: DeterminingP Values, General Case

the fact that in this trivial problem the function can be determined exactly). To use backward induction, one
would use Equation 1 to run through all states to computeC, repeating the entire process for eachp being
evaluated. One could also use a forward induction process which fixes a value ofp and goes from the start
state to the terminal states, finding the exact probability of reaching each state. As in backward induction,
this entire process would be repeated for each value ofp. Using path induction, one first computesP by
running through all the nodes using Equation 2. Then, for eachp value, one computesC using Equation 3,
which involves only terminal nodes. The advantages of path induction include the facts that there are fewer
terminal states than total states and that only a single graph traversal occurs.

Note thatpathprob(�) can be computed from� alone, as canC(�). Throughout this paper, the
time/space analyses assume that these can be computed for all terminal states in time that is proportional
to the number of terminal states, perhaps with the aid of additional memory which is at most proportional
to the number of terminal states. For example, for eachp one may compute and storepi and(1 � p)i for
i = 0; : : : ; 4 to speed up the evaluation ofpathprob. It is also assumed that the set of successors or prede-
cessors of any given state can be determined in time proportional to the size of the set, as can the values of
prob(�; �) andpaths(�; �).

The evaluations being performed can be frequentist, as described above, or Bayesian. In the Bayesian
casepathprob(�), and perhapsC(�), would be an integral. For example, recall that a random variablex
has abetadistribution with parameters(a; b) if x has the following density function:

f(x) =
�(a+ b)

�(a)�(b)
xa�1(1� x)b�1 for 0 < x < 1 and a; b > 0:

Note that when(a; b) = (1; 1), the beta distribution is simply a uniform distribution. Now, suppose that we
havea Bernoulli arms and that the success probability for theith arm is modeled as beta with parameters
(ci; di). Then

pathprob(s1; f1; : : : ; sa; fa) =
aY

i=1

csii d
fi
i

(ci + di)si+fi

wherexk = x � (x+ 1) � � � (x+ k � 1).
Analyzing the time and space of repeated backward induction versus forward induction, one arrives at

the following result:

7

Theorem 2.1 To performv evaluations of a deterministic procedure withs states andu successors per
state, witht of the states being terminal, takes

Time Space

Initialization �(s � u) �(s)

Evaluation �(v � t) �(t)

using path induction, versus
Time Space

Evaluation �(v � s � u) �(s)

using simple backward induction.

Proof: For a single pass through the graph (for either backward or path induction), there ares �u edges, each
of which requires a constant amount of work. The initialization of path induction requires only one such
pass, but backward induction will requirev passes, which gives the time bounds. As for space bounds, at
most a constant amount of space per state is needed for a pass through the graph (beyond the space, if any,
needed to store the graph itself), and this space is reused if multiple passes are needed. For the evaluation
phase of path induction, only a constant amount of space per terminal state is needed. These space and
time analyses are based on the assumptions mentioned earlier concerning the computational requirements
for paths, prob, andpathprob. 2

Comparing the total time of path induction,�(s �u+v � t), with that of backward induction,�(v � s �u),
and noting thatt � s (and that all parameters are� 1), one sees that path induction is never slower than
backward induction and in general should be far faster. Path induction is particularly advantageous when
t � s or u � 1. Both situations are quite common in practice, and hence path induction typically exhibits
significant savings even when evaluating procedures of modest size. For example, for two Bernoulli arms
and a sample size ofn, it is shown that fully sequential procedures havet = �(s=n) (Section 3) and that
few-stage procedures haveu = �(n2) (Section 5). Furthermore, in Section 6.4 cases of random allocation
are given whereu = �(n4). Typical applications might haven in the hundreds andv in the tens or hundreds,
and thus path induction can be several orders of magnitude faster.

Theorem 2.1 is quite general, but overly pessimistic for many important classes of procedures. In the
following sections the classes of fully sequential and staged sequential procedures will be considered, and it
will be shown that both path and backward induction can be implemented more efficiently.

3 Fully Sequential Procedures

A fully sequentialprocedure is one in which allocation decisions are made one observation at a time. This
includes the most efficient procedures possible, such as those found by dynamic programming. To simplify
analysis and description, a fixed sample sizen will be assumed and only the case of two Bernoulli arms will
be considered. Extensions to other numbers and types of arms are trivial, and extensions to variable sample
sizes are discussed in Section 6.2.

For two Bernoulli arms, there is a well-known approach for indexing the states and keeping the storage
space small. The natural states are(s1; f1; s2; f2), denoting the number of successes and failures observed
on each arm. This forms an index into a 4-dimensional array, where each dimension has extent0 : : : n.
However, due to the constraint thats1+ f1+ s1+ f2 � n, only a corner of the array is utilized. To compute

8

the values ofP , it is easiest to go level by level, from level 0 to leveln. If m is the level of the states currently
being examined, thenf2 = m� s1 � f1 � s2; thus one need specify onlys1, f1, ands2. This allows one to
reduce to a 3-dimensional array, rather than a 4-dimensional array, where entries are reused between levels.
It is still true that only a corner of this array is being utilized, and by a slightly more complicated mapping
from this corner onto a 1-dimensional array one could eliminate unused entries, reducing from(n + 1)3

entries to approximatelyn3=6. However, this will not be detailed here. This approach can be used for
dynamic programming, backward induction, or path induction.

One must be a bit careful not to overwrite entries before their values have been used, and this requires
that the loops fors1, f1, ands2 in Figure 6 go in reverse order. These three loops can be nested in any
order, as long as the upper limits are properly adjusted. The specific order used should be determined by
the language, since cache performance is best if the innermost loop moves through items stored in adjacent
locations. For Fortran that means that it should be the first index of the array, while for C it would mean the
last index. The algorithm in Figure 6 assumes Fortran ordering.

Note that one simplification for fully sequential procedures is thatpaths(�0; �) = 1 if �0 is a successor
of �.

Once theP values have been determined for the terminal states, then evaluations can proceed as before.
Terminal states are those at leveln, so there are only approximatelyn3=6 of them, compared to the approx-
imatelyn4=24 total states. Assuming both path and backward induction use the space-reduction scheme
described above gives the following result:

Theorem 3.1 For a fully sequential procedure of sample sizen, where there are two Bernoulli arms,v
evaluations can be completed in

Time Space

Initialization �(n4) �(n3)

Evaluation �(v � n3) �(n3)

by using path induction, versus

Time Space

Evaluation �(v � n4) �(n3)

by using backward induction.2

4 Example of Robustness Analysis Using Path Induction

Since procedures resulting from the assumptions imposed by a Bayesian design are directly tied to the
choice of prior distribution, it is useful to be able to evaluate the impact of the initial assumptions on the
data analysis process. We noted in Section 1 that uniform distributions are often assumed as priors of the
parameters of Bernoulli random variables. One can assess the “robustness” of such an assumption by re-
evaluating the procedure using several different priors. If important characteristics of the procedure remain
virtually unchanged, then the initial choice of prior would not be deemed a sensitive design parameter. This
is useful because results obtained using Bayesian designs are often criticized as being overly dependent on
the assumptions in the prior distribution. Here we show how path induction can be used to help appraise the
robustness of the prior assumptions, and we apply the approach to a nonlinear estimation problem.

9

P (0; 0; 0) = 1
do m = 0, n� 1 fgo through states in levels, from start to endg

fP values are correct for all states at levelmg
do s2 = m, 0, �1

do f1 = m� s2, 0, �1
do s1 = m� s2 � f1, 0, �1

f2 = m� s2 � f1 � s1
if decision(s1; f1; s2; f2) = arm 1then

P (s1+1; f1; s2) = P (s1+1; f1; s2) + P (s1; f1; s2)
P (s1; f1+1; s2) = P (s1; f1+1; s2) + P (s1; f1; s2)
P (s1; f1; s2) = 0

else fdecision = arm 2g
P (s1; f1; s2+1) = P (s1; f1; s2+1) + P (s1; f1; s2)
fP (s1; f1; s2) retains its valueg

Figure 6: DeterminingP for Deterministic Fully Sequential Allocation (Fortran loop ordering)

In this problem, we wish to estimate the mean of some polynomial function of the parameters of two
Bernoulli populations. (The polynomial used in Figure 7 is the productp1 �p2.) Problems of this nature may
arise, for example, when estimating the fault tolerance of a system by testing its components individually.
Since it is rarely optimal to test an equal number of components from each population, the question of how
to gather a sample of fixed sizen arises. Here, as in the clinical trial example, we assume that population
parameters,p1 and p2, are independent beta random variables. Suppose that we take�(p1; p2) to be a
polynomial function of the population parameters and we use the Bayes estimator (i.e., the posterior mean
of � given the data),̂�, to estimate�, then our remaining problem is to determine how to sample from the
different populations to minimize the integrated mean squared error (orBayes risk) of �̂.

As in the 2-AB example, the optimal sampling procedure for this problem can be generated via dynamic
programming. However, the evaluation of operating characteristics of the procedure, such as its sensitivity to
the design parameters, are better carried out using path induction. This type of evaluation involves two sets
of prior parameters: thedesignorD–parameters= [(D1;D2); (D3;D4)] and theanalysisorA–parameters
= [(A1;A2); (A3;A4)], where the subscripts 1 and 2 refer to the beta parameters for arm one and 3 and 4
refer to the beta parameters for arm 2. The efficiency analysis goes as follows:

(1) Generate the optimal procedure for theD–parameters.

(2) For eachA–parameter configuration,

(2.1) compute the operating characteristic (in this case, the Bayes risk) of the procedure from (1),
relative to theA–parameter.

(2.2) Generate the optimal procedure for theA–parameter and compute its Bayes risk.

(2.3) Define therelative efficiencyto be the ratio of the risk obtained in (2.1) with that obtained in
(2.2).

We determined an optimal procedure for the problem of estimating the product using theD–parameters
set equal to[(1; 1); (1; 1)]. Then, using path induction, we computed the relative efficiency, (2.3), for 25

10

a_1

b_
1

.01 .1 1 10 100

.0
1

.1
1

10
10

0

0.7
0.75
0.8
0.85

0.9 0.95

Relative efficiency of solution to nonlinear estimation problem
with sample sizen = 100 when analysis prior differs from design prior.

Figure 7: An Example of a Robustness Analysis

different versions of theA–parameter configurations:A1 = 0:01, 0.1, 1, 10, 100 A2 = 0:01, 0.1, 1,
10, 100 A3 = 1 A4 = 1. Figure 7 is an interpolated surface plot based on the relative efficiencies
for the 25 grid points. The data point .865 in Figure 7, for example, which corresponds toA1 = 0:01,
A2 = 0:01, A3 = 1, A4 = 1 represents the relative efficiency of the procedure generated assuming
the uniform distribution but evaluated using the specifiedA–parameters versus the optimal procedure both
generated and evaluated using theA–parameters.

The standard approach (namely backward induction) used for undertaking the repeated evaluations
needed for step (2.1) requires 25 iterations of an algorithm taking�(N4) time. Using the path induc-
tion algorithm requires only a single run of an initialization phase, taking�(N4) time, and 25 iterations of
an evaluation phase taking only�(N3) time. This difference can be a significant help as the sample sizes
grow.

5 Staged Allocations

Fully sequential procedures are the most powerful but are often rejected due to various concerns. For exam-
ple, they require knowing the outcomes of previous allocations before the next allocation can be decided,
and this prohibits the use of concurrent observations. Also, they are often difficult to randomize, which
introduces possibilities such as selection bias [2]. Due to these concerns, investigators often prefer to use
procedures that proceed in stages, where outcomes from previous stages are used to decide the number of
observations from each arm for the next stage. Within a stage, however, one can incorporate concurrency
and constrained randomization. Typically the number of stages is quite small, three or fewer.

Despite the basic simplicity of such procedures, their optimization and analysis is surprisingly compli-
cated. Some design optimization issues were addressed in [10], and analysis is addressed here. To simplify
analyses, the total sample sizen will be fixed, and it is assumed that there arek stages, withk � n. This is

11

the case of interest, and by restricting things in this manner, one needn’t consider cases such ask = n (i.e.,
fully sequential allocation), which are approached slightly differently.

In a 1-stage allocation, the only decision is the number of observationsni to be taken on each armi,
where

P
ni = n. In ak-stage allocation, k > 1, there is an initial allocation of the number of observations

n1i on each armi during the first stage. After these observations have occurred, they can be utilized to make
the allocation decisions in the remaining(k � 1)-stage allocation with sample sizen �

P
n1i . Note that

stage sizes, as well as the number of observations on each arm, can depend on the accruing observations.
However, often investigators prefer to know the stage sizes in advance, even if the allocation within each
stage is data dependent. This restricted allocation is calledallocation with fixed stage sizes, in contrast to
the generalallocation with arbitrary stage sizes.

One of the important differences between fully sequential and staged allocation is the number of succes-
sors of each stage. For example, fora Bernoulli arms, in the fully sequential case each state has two succes-
sors, while in staged allocation, if the allocation at some state isni observations on armi, for i 2 f1; : : : ; ag,
then that state has

Q
(ni+1) successors, which can be�((n=a)a). As was noted in Section 2, large numbers

of successors make path induction particularly attractive. Fork-stage allocation with two Bernoulli arms,
the total number of states can be�(k � n4), so Theorem 2.1 shows that path induction can be initialized in
�(k �n6) time and evaluated in�(v �n3) time, versus�(v �k �n6) time needed for evaluation via backward
induction. While the evaluation time of path induction cannot be reduced in the general case, the initializa-
tion time can be. To simplify discussion, for the rest of this section only the case of two Bernoulli arms will
be analyzed.

First, fork = 1 or k = 2, the state space is greatly reduced. Whenk = 1, which corresponds to fixed
allocation, there are only�(n2) terminal stages. There is essentially no difference between backward or
path induction, with both completingv evaluations in�(v � n2) time. Fork = 2, the stage sizes are fixed,
and while there may be�(n3) terminal states, there are only�(n2) states at the end of the first stage. Thus
backward induction can be completed in�(v � n4) time, using only�(n2) storage, while a very simple
implementation of path induction would take�(n4) time and�(n3) space for initialization and�(v � n3)
time and�(n3) space for evaluation.

To reduce the initialization time of path induction whenk > 2, some notation will prove useful. Let
nji (�) denote the number of observations assigned to armi when thejth stage starts at state�, and letSj

denote the set of states at the end of stagej (equivalently,Sj is the set of states at the start of stagej + 1),
whereS0 is defined to be state 0. As will be shown, the savings possible will depend on whether the stage
sizes are fixed.

Algorithms will be given showing more efficient ways to determineP values. Note, however, that by
reversing the order of calculation, one would also have new algorithms for performing a single evaluation
of backward induction. In the algorithm analyses,simple backward inductionrefers to the process of com-
putingC for Sk, thenSk�1, and so on untilS0 is reached, where at each stage one computesC for all states
by using Equation 1 of Section 2. It appears that this is the technique most commonly used in practice, as
we know of no literature showing better algorithms. Animproved implementation of backward induction
refers to one based on reversing the order of evaluation of the path induction initiation. A single evaluation
of an improved backward induction algorithm has the same time and space requirements as a path induction
initialization algorithm, except that it does not need space to store theP values for the terminal states. The
details of such an implementation are not given but follow in a straightforward manner.

12

P (0) = 1
for j = 1 to k do fgo through stages from start to endg
fP has been determined for all states inSj�1g

sort � 2 Sj�1 by i = nj2(�) into lists Sj�1(i)
for all states � of level mj�1, P 0(�) = 0 fP 0 used for path counts in midstageg
for all states � 2 Sj�1(mj �mj�1), P 0(�) = P (�)
for i = mj �mj�1 � 1 downto 0 do fdetermineP 0 for levelmj � ig

fpaths inP 0 will undergoi+ 1 more observations on arm 2g
m = mj � i
for s2 = m downto 0 do fadd an observation on arm 2g

for f1 = m� s2 downto 0 do
for s1 = m� s2 � f1 downto 0 do

P 0(s1; f1; s2+1) = P 0(s1; f1; s2+1) + P 0(s1; f1; s2)
fP 0(s1; f1; s2) retains its valueg

t = m�mj�1

for all states (s1; f1; s2; f2) 2 Sj�1(i) fmaket observations on arm 1g
for s = 0 to t do

P 0(s1+s; f1+t�s; s2) = P 0(s1+s; f1+t�s; s2) +
�t
s

�
P (s1; f1; s2)

for all states � 2 Sj, P (�) = P 0(�)

Figure 8: Deterministic Staged Allocation, Fixed Stage Sizes

5.1 Fixed Stage Sizes

When the stage sizes are fixed, one can greatly reduce the time and space required to an amount below that
given by Theorem 2.1. Letmj denote the level of the end of stagej, i.e., the number of observations in the
jth stage ismj�mj�1, wherem0 is defined to be 0. At the end of the evaluation of stagej�1, theP values
have been determined for all states inSj�1. To determine theP values for thejth stage, additional states
are utilized, representing intermediate results. These states are identical to those used in the fully sequential
case, but are used in a slightly different manner. An arrayP 0 is used to compute the path counts for these
states during the middle of the stage, and then at the end the counts for the states inSj are copied toP .

Conceptually the evaluation of each stage can be viewed as having two steps, one representing obser-
vations on arm 1, followed by one representing observations on arm 2. In the first step, for each state
� = (s1; f1; s2; f2) in Sj�1, let t = nj1(�). Then, for alls 2 f0; : : : ; tg,

�t
s

�
P (�) is added toP 0(�s), for

�s = (s1+s; f1 + t�s; s2; f2). Note that�s represents starting at� and obtaining allt of the required
observations on arm 1, of whichs are successes, while obtaining no observations on arm 2.

After the first step is finished, only observations on arm 2 are needed. One proceeds as in the fully
sequential case, updating counts fromSj�1 throughSj , except that at each intermediate state the updates
occur as if the procedure selected arm 2. When the second step is finished, theP values for all states inSj

are correct.
The actual implementation, shown in Figure 8, is a bit more complicated, due to the desire to minimize

space as well as time. Steps 1 and 2 are intermingled, as opposed to being in sequence. This is discussed in
the proof of the following theorem.

Theorem 5.1 For a k-stage deterministic procedure with two Bernoulli arms,k � 2, with fixed sample size

13

n and fixed stage sizes,v evaluations can be completed using

Time Space

Initialization �(n4) �(n3)

Evaluation �(v � n3) �(n3)

by using path induction, versus

Time Space

Evaluation (k = 2) �(v � n4) �(n2)

Evaluation (k � 3) �(v � n5) �(n3)

by using simple backward induction, or

Time Space

Evaluation �(v � n4) �(n3)

by using an improved implementation of backward induction.

Proof: For the initialization phase of path induction, if at each stage one did step 1 and then step 2, one
would need�(n4) space to store the results of step 1. To reduce this to�(n3), during thejth stage the
i-loop of Figure 8 effectively proceeds from levelmj�1 through levelmj , performing step 2. As each new
level l is reached, path counts are added for those states which would have added their arm 1 observations
to level l during step 1. Thus the step 1 contributions are added only as they would have been reached. This
requires creating the listsSj�1(i), but by using bin sorting this can be done in�(jSj�1j+mj�mj�1) time
and�(mj �mj�1) space (in addition to a pointer per state, used for the lists).

The total time of all stages for step 2 is�(n4), since the step is essentially identical to the fully sequential
case. For step 1 (i.e., the loops corresponding to making arm 1 observations), at stagej it can take time
proportional to the number of states at levelmj�1 times the length of the stage. This product is proportional
to the number of states in the fully sequential model from levelmj tomj+1. Thus the time of step 1 also is
at most proportional to the time of fully sequential allocation, as was claimed.

Note that the evaluation phase of path induction is exactly the same as for the fully sequential case, and
hence the time and space are as in Theorem 3.1.

For backward induction, with the exception of the time analysis of simple backward induction fork � 3,
all of the analyses follow immediately from Theorem 2.1 or the observations concerning reversing path
induction. For the remaining entry, since a stage can have length�(n), each initial state may have�(n2)
successors. There can be�(n3) states at the start of the stage, yielding stages taking�(n5) time. Thus
one might conclude that a single evaluation could be as bad as�(k � n5), rather than the�(n5) claimed.
However, this does not occur because, forn � 2, no matter how largek is, the sum over all states of the
number of successors is less thann5, which implies that the time is�(n5). This simple observation can be
proven by induction.2

5.2 Arbitrary Stage Sizes

When the stage sizes are data dependent, there is far less information that can be exploited. One can use
the basic approach employed for fixed stage sizes, but must make significant changes to account for two
difficulties:

14

P (0) = 1
for j = 1 to k do fgo through stages from start to endg
fP has been determined for all states inSj�1g

sort � 2 Sj�1 by i = nj2(�) into lists Sj�1(i)
for all states � of all levels, P 0(�) = 0 fP 0 used for path counts in midstageg
for all states � 2 Sj�1

n , P 0(�) = P (�)
for i = n� 1 downto 0 do fall paths inP 0 needi+ 1 observations on arm 2g

for m = n� 1 downto 0 do fupdateP 0 for all states using arm 2 observationsg
for all states (s1; f1; s2; f2) of level m do

P 0(s1; f1; s2+1; f2) = P 0(s1; f1; s2+1; f2) + P 0(s1; f1; s2; f2)
P 0(s1; f1; s2; f2+1) = P 0(s1; f1; s2; f2+1) + P 0(s1; f1; s2; f2)

for all states � = (s1; f1; s2; f2) 2 Sj�1(i) fadd arm 1 observations from�g
t = nj1(�)
for s = 0 to t do

P 0(s1+s; f1+t�s; s2; f2) = P 0(s1+s; f1+t�s; s2; f2) +
�t
s

�
P (s1; f1; s2; f2)

for all states � 2 Sj, P (�) = P 0(�)

Figure 9: Deterministic Staged Allocation, Arbitrary Stage Sizes,k � 4

1. One can reach the same set of observations at different stages.

2. During a single stage, different paths can reach the same intermediate set of observations but continue
on for different number of observations on arm 2.

Many procedures with arbitrary stage sizes exhibit neither difficulty, but to handle all possible procedures
the algorithm herein must take them into account.

Because of the first difficulty, the specification of a state must incorporate stages as well as sufficient
statistics. This will be done implicitly, since only the set of states corresponding to the current stage will be
represented at any one time. This allows storage to be reused, just as the fact that fully sequential evaluation
proceeds level by level allows one to reuse space there. However, since essentially any set of sufficient
statistics might be the outcome (or intermediate state) of a given stage, the space must accommodate all
possible states, not just those at a specified level.

Next, because of the second difficulty, during a stage it is not possible to do just a single pass through the
levels of the states, making arm 2 observations for all states and adding arm 1 observations when their level
is reached. Instead, thei-loop in Figure 9 counts down through the number of arm 2 observations needed,
which can be arbitrary and which are made for all stages at each iteration, not just the stages at a given level.
For a state� in Sj�1, the arm 1 observations from� are added to the path counts wheni = nj2(�). Thus
each stage takes�(n4) space, and�(n5) time.

Figure 9 represents the general case, withk � 4. If k = 1 or k = 2, then the procedure must have fixed
stage sizes, and thus the results of Section 5.1 apply. The case ofk = 3 is intermediate between the fixed
stage size and arbitrary stage size situations since each stage has either a fixed beginning or a fixed ending.
This can be exploited, as is shown in the following theorem.

Theorem 5.2 For a k-stage deterministic procedure with two Bernoulli arms,k � 3, with fixed sample size

15

n and arbitrary stage sizes,v evaluations can be completed using

Time Space

Initialization (k = 3) �(n4) �(n4)

Initialization (k � 4) �(k � n5) �(n4)

Evaluation �(v � n3) �(n3)

by using path induction, versus

Time Space

Evaluation �(v � k � n6) �(n4)

by using simple backward induction, or

Time Space

Evaluation (k = 3) �(v � n4) �(n4)

Evaluation (k � 4) �(v � k � n5) �(n4)

by using a more sophisticated implementation of backward induction.

Proof: For path induction, fork = 3, a straightforward implementation can determine the path counts for
all states inS1 in �(n2) time and for all states inS2 in �(n4) time and space. To finish the path counts
for the last stage, an approach similar to that used for the fixed stages can be used. Becausek = 3 and the
total sample size is fixed,n32(�) determines the level from which only arm 2 observations are added until
the end of the experiment, no matter what level the stage 2 state� was on. This is almost the same as the
information for fixed stage sizes. Thus one can proceed as in the fixed stage size case, going level by level
toward leveln. However, when arm 1 observations from state� are added to the intermediate path counts,
the number of such observations is determined byn31(�), not by the level at which they are added. The
intermediate space needed is again only�(n3), but the total space is�(n4) because that is how many states
there may be inS2.

Fork � 4, the analysis follows by the comments preceding the theorem.2

The algorithm in Figure 9 was written to emphasize conciseness and does not incorporate the simplifi-
cations for the first, second, and last stages mentioned in the proof of the theorem. While this does not affect
the O-notational time and space fork � 4, in practice one may notice significant savings by incorporating
such simplifications.

6 Extensions

Beyond those mentioned above, there is a variety of refinements and extensions possible for path induction.
In this section, a few of the more important ones will be considered.

6.1 State Reduction

In practice, one of the most useful refinements is the elimination of unreachable states. For example, for the
fully sequential strategy known as “play the winner” [14, 17] (or, more accurately, “play the winner/switch
on a loser”) for two Bernoulli arms, if a success occurs on one arm, then the arm is repeated, while if a failure

16

occurs, then the other arm is tried. For this strategy, the number of failures on the two arms cannot differ by
more than one, and hence there are only�(m2) possible states at levelm, rather than the�(m3) possible
in the general case. By incorporating this knowledge, the initialization and evaluation algorithms can be
improved by a factor ofn. Additional state reductions can occur if there are stopping rules, as discussed in
the following section.

6.2 Stopping Rules

Often one needs to be able to evaluate allocations with variable sample sizes, rather than the fixed sample
sizes analyzed above. This can occur for both multiarm and single arm designs (without optional stopping,
single arm procedures are just fixed allocations). The use of stopping rules can easily be incorporated into
the algorithms of the proceeding sections, lthough they may affect the time and space analyses. For example,
while it seems that all practical stopping rules haveO(n3) terminal states, there exist peculiar ones, such as
“stop if both arms have an even number of successes, or leveln has been reached”, that have�(n4) terminal
states. Since the time of the evaluation phase of path induction is proportional to the number of terminal
states, this implies that there are (unuseful) procedures that will take�(v � n4) time for evaluation.

In some cases, stopping rules can reduce the number of terminal states too(n3), which, when coupled
with the state reduction approach mentioned above, results in faster evaluation. For example, suppose one
is evaluating vector-at-a-time allocation (taking one observation from each arm at each step) and a stopping
rule that halts if the number of successes on one arm isr more than on the other arm, or if leveln is reached
(see [3, 7]). Here the number of terminal states is only�(r �n), which permits dramatically faster evaluation
by path induction.

6.3 Expanding Sample Size

One unusual feature of path induction, as compared to backward induction or dynamic programming, is
that it can occasionally be used to help design allocation procedures where the sample size is not known
in advance. For example, one may have some criteria, such as a specified level of power or a specified
width of a confidence interval, that one is trying to attain by adjusting the sample size. Often this is done by
evaluating successively larger sample sizes until a size having the desired criteria is reached. The simplest
way to do this is to start over for each larger sample size, but this may be quite time-consuming, especially
if each sample size requires multiple evaluations.

Fortunately, many ad hoc sequential allocation rules, such as alternating allocation, play the winner (Sec-
tion 6.1), randomized play the winner (Section 6.4), vector-at-a-time (Section 6.2), Thompson’s rule [15],
and most myopic rules, have the property that the allocation decision at a given state is independent of the
sample size. For such rules, calculations ofP for small sample sizes can be continued for larger sample
sizes so that one need not start over for each new sample size. In the general case, to determineP for a
sample size-independent rule at sample sizesn1 < n2 < � � � < nt takes only�(n4t) time, as opposed to the
�(
Pt

i=1 n
4
i) time that would be required if one started anew for each larger sample size.

Neither backward induction nor dynamic programming seems capable of expanding from small sample
sizes to larger ones, and thus the relative advantage of path induction is magnified in such settings.

6.4 Random Allocation

For some allocation procedures, the successors of a given state are not deterministic. This requires some
adjustments because the paths to a given state need not all have the same probability and the number of

17

successors of a given state may be greatly enlarged.
To illustrate the former effect, in a simple version of randomized play the winner [16], there is an urn

with balls marked “arm 1” and “arm 2”. A ball is randomly selected and returned to the urn, and that arm is
tried. If the arm succeeds, then another ball of the same type is added to the urn while if it fails, then a ball
of the opposite type is added. In this model, if the urn starts with 1 ball of each type, then the state (1,0,0,1)
can be reached via an arm 1 ball followed by an arm 2 ball, or via arm 2 and arm 1. In the former case the
probability is 1

2
� p1 �

1

3
� (1� p2), while in the latter case it is1

2
� (1� p2) �

2

3
� p1. The unequal probabilities

can be dealt with by adjusting the path updating rules to account for the extra source of randomization. At
state�, if there is probabilityq(�; i) of trying armi, thenq(�; i)P (�) is added to the states representing an
additional success or failure on armi.

The expansion in the number of successors is also straightforward to accommodate, but it can greatly
increase the time required to analyze staged allocation. (The time for randomized fully sequential allocation
with a arms is at mosta times larger than for the deterministic case.) For example, for two Bernoulli arms,
if the first stage size is fixed atm, but the number of observations on arm 1 is a random function varying
from 0 tom, then all�(m3) states at levelm are successors of the initial state 0, as opposed to the�(m2)
successors that occur for deterministic allocation. If the stage length is also random in0 : : : m, then the
number of successors can reach�(m4). These increases in the number of successors cause corresponding
increases in the time required.

Note that when the stage length is random one can encounter situations where� is an immediate suc-
cessor of�, and there is a state�0 which is an immediate successor of� and an immediate predecessor of� .
Such situations cannot exist when deterministic allocation is used, but in this more general setting one must
be careful to defineprob(�; �) andpaths(�; �) with respect to reaching� in a single stage, without passing
through�0.

6.5 Switching Costs

One of the assumptions in the above analyses is that the criterion to be evaluated is determined by the
terminal state. However, if the natural states are used, then there are criteria such as switching costs which
cannot be evaluated. In a basicswitching cost model[1, 12], there is a fixed cost every time the experiment
switches from one arm to another. For example, in a two-armed Bernoulli experiment, one might reach state
(2,0,2,0) via 1, 2, or 3 switches, and the costs would vary correspondingly. Thus the natural state space is
inadequate to determine the costs.

To evaluate such criteria, the state space needs to be expanded, much as it is expanded to handle alloca-
tion procedures that depend on the path taken to a given state. One natural approach is to add to each state
information concerning the arm most recently tried and the number of switches that have occurred so far.
Thus the (2,0,2,0) state might be replaced by the six states

(2,0,2,0: arm 1, 1) (2,0,2,0: arm 1, 2) (2,0,2,0: arm 1, 3)
(2,0,2,0: arm 2, 1) (2,0,2,0: arm 2, 2) (2,0,2,0: arm 2, 3).

The resulting evaluations for path or backward induction would be straightforward but would suffer because
the state space has been greatly expanded. For example, for a fully sequential two-armed Bernoulli ex-
periment of sample sizen, there would be�(n5) states, with�(n4) of them being terminal. This would
increase the time and space requirements by a factor ofn.

A better approach for evaluating mean switching costs, which only expands the time and space by
constant factors, is to add the information about the arm most recently tried to each state and to keep two
path counts. One path count,P , is as before, and the other,Pw, is a weighted path count, where each path

18

is multiplied by the number of switches that occurred. Thus, at any state�, Pw(�)=P (�) is the average
number of switches occurring on a path from 0 to�. To determinePw, suppose one is at state�i and is
updating information for a successor�j, where the subscript indicates the arm most recently tried. Then

Pw(�j) =

(
Pw(�j) + paths(�; �) � Pw(�i) if i = j i:e:; no switch occurred
Pw(�j) + paths(�; �) � (Pw(�i) + P (�i)) otherwise

Higher order moments can be computed similarly, adding one new array per degree.

19

7 Final Remarks

Path induction is an aid to evaluating sequential procedures and complements other approaches such as exact
or asymptotic analyses, backward induction, and dynamic programming.

Path induction is fairly flexible and is suitable for a variety of procedures (frequentist/Bayesian, fully
sequential/staged sequential, fixed sample size/optional stopping, deterministic/randomized) and a variety
of evaluation criteria. Several of these have been discussed here, along with various algorithms optimized
for the worst case. In many situations, additional information about a procedure can be used to significantly
improve upon the worst-case analyses given here. All worst-case analyses assumed that the maximum
possible number of states needed to be considered, but often this is not true. Any major reduction in the
number of states examined will allow a corresponding reduction in the time or space required.

Depending on the procedure and sample size, path induction can be orders of magnitude faster than
previous exact computational approaches for performing multiple evaluations of a procedure. For example,
for several years now we have been able to use path induction on workstations [9] to perform calculations
that had previously been done using backward induction on supercomputers [5]. This speed encourages
more extensive analysis and visualization of designs, helping users achieve better optimizations and tradeoffs
among multiple criteria.

As another example of the restrictiveness of the computational space and time constraints, Jones [11], in
1992, computed results for the 2-AB problem that we described in Section 1. In this paper [11], the author
acknowledges that his calculations could only be carried out for a sample of sizen = 25 and he explicitly
noted that this was due to computational constraints. Working contemporaneously, the we obtained the
results in [9] forn = 150. These results were for a sequential model nearly identical to the one used
by Jones, although the calculations for [9] included criteria that required approximately 100 evaluations
per procedure, while the former required only a couple of evaluations per procedure. Thus, in terms of
the algorithms used in [11], the work in [9] solved problems approximately(150=25)4 � 100 � 100; 000
times harder.1 While an advantage of a factor of 10 or so was obtained by using a workstation (a modest
Sun 3/60) as opposed to a (presumed) personal computer, and some advantage was obtained by having an
implementation that tried to maximize processor efficiency, most of the advantage came from using a far
more efficient algorithm, namely path induction instead of backward induction.

Finally, although the emphasis here has been to show the utility of path induction over backward in-
duction whenever multiple evaluations are required, we also show how to improve the implementation of
backward induction for analyzing staged allocation procedures. The algorithms for determiningP values
appearing in Section 5 can be reversed to yield algorithms for backward induction. These algorithms are
faster than standard implementations by a factor ofn or more, and apparently are superior to any previously
appearing in the literature. However, it will still be true that one should use path induction, instead of the
improved backward induction, if multiple evaluations are required.

1Note that the algorithms used in [11] were essentially the same as those used by all other researchers. Our only reasons for
singling out this paper are that the results can be directly compared and that the paper explicitly noted that the sample size was
limited by computational constraints.

20

References

[1] Agrawal, R., Hegde, M.V., and Teneketzis, D. (1988), “Asymptotically efficient adaptive allocation
rules for the multiarmed bandit problem with switching costs”,IEEE Trans. Auto. Control33, pp. 899–
906.

[2] Bather, J. (1995), “Response adaptive allocation and selection bias”,Adaptive Designs, N. Flournoy
and W.F. Rosenberger, eds., IMS Lecture Notes-Monograph Series25, pp. 23–35.

[3] Bechhofer, R.E., Kiefer, J., and Sobel, M. (1968),Sequential Identification and Ranking Procedures,
Univ. Chicago Press.

[4] Bellman, R. (1961),Adaptive Control Processes: A Guided Tour, Princeton Univ. Press.

[5] Berry, D.A. and Eick, S.G. (1995), “Adaptive assignment versus balanced randomization in clinical
trials— a decision-analysis”,Stat. in Medicine14, pp. 231–246.

[6] Bradt, R.N., Johnson, S.M. and Karlin, S. (1956), “On sequential designs for maximizing the sum of
n observations”,Ann. Math. Stat.27, pp. 1060–1074.

[7] Buringer, H., Martin, H. and Schriever, K.H. (1980),Nonparametric Sequential Selection Procedures,
Birkhauser.

[8] Gittins, J.C. (1979) “Bandit processes and dynamic allocation indices”,J. Roy. Statist. Soc. Ser. B41,
pp. 148–177.

[9] Hardwick, J. and Stout, Q.F. (1991), “Bandit strategies for ethical sequential allocation”,Computing
Science and Statistics23, pp. 421–424.

[10] Hardwick, J. and Stout, Q.F. (1995), “Determining optimal few-stage allocation rules”,Computing
Science and Statistics27 (1995), pp. 342–346.

[11] Jones, P.W. (1992), “Multiobjective Bayesian bandits”,Bayesian Statistics 4, J.M. Bernardo, J.O.
Berger, A.P. Dawid, and A.F.M. Smith, eds., Oxford Univ. Press.

[12] Kolonko, M. and Benzing, H. (1985), “The sequential design of Bernoulli experiments including
switching costs”,Operations Research33, pp. 412–426.

[13] Mehta, C. and Patel, N. (1983) “A network algorithm for performing Fisher’s exact test inr � c
contingency tables”,J. Amer. Statist. Assoc.78, pp. 427–434.

[14] Robbins, H. (1952), “Some aspects of the sequential design of experiments”,Bull. Amer. Math. Soc.
58, pp. 527–535.

[15] Thompson, W.R. (1933), “On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples”,Biometrika25, pp. 275–294.

[16] Wei, L.J. and Durham, S. (1978), “The randomized play the winner rule in medical trials”,J. Amer.
Statist. Assoc.73, pp. 840–843.

[17] Zelen, M. (1969), “Play-the-winner rule and the controlled clinical trial”,J. Amer. Statist. Assoc.64,
pp. 131–146.

21

