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3. ~ ~ Q ~  

There i~ a lot of practical and theo- 
retical interest in designing algorithms 
to process digital pictures, of particu- 
lar interest are prcbl~ms arising when 
one starts with an nxn array of pixels 
and stgres it, one pixel per processor, 
in some sort of array-like parallel com- 
puter. One of the e~rliest systematic 
exasinations of such problems was Beyer's 
thesis [I], in which he gave several 
algorithms for a computer we call a mesh 
automaton (defined below). One of the 
problems he considered was topological 
matching, in which one is given two pic- 
tures and is (rouqhly) asked if it is 
possible to stretch one picture so that 
it looks like the other. (A precise 
definition is qiwen below.) Beyer gave 
several solutions, one of which required 
@(n~) time, and Dietz and Kosaraju [2] 
later gave a @(n*~2) solution. In this 
paper we qive an optimal @(n) time solu- 
tion, based on a simpler 8(n) time solu- 
tion for a more powerful computer called 

mesh computer. B~yer sugqested that 
this problem was ~ prime candidate for a 
non-linear recognition problem, but our 
result shows that this is not true. 

Our dfqitized pictures are given in 
the fdrm of an nxn array of Ei~2!~, where 
each pixel is either black or white. 
Pixe!s ar~ located at positions (i,j), 
with 1<i,j<n, and the entir~ array is 
called a f~e. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or  specific permission. 

We need to define the notion of a con- 
nected component, which is made slightly 
confusing by the digitization. In order 
to hawe such standard results as the Jor- 
dan Curve Theorem, we need to use 
slightly different definitions for black 
and white. (See Rosenfeld [10,11].) Two 
black [white) pixels at (a,b) and (c,d) 
are adjacent if and only if 

I = I a-c I + { b-d I 
(I = max[{ a-c ~, I b-d [] ) , 

and are cQnn~c~d if and only if there is 
a path of adjacent black (white) pixels 
from one to the other. Given any pixel, 
the set of all pixels connected to it is 
called a comR~ent. To simplify discus- 
sion, from now on we will assume that the 
pixels on the edge of the figure are all 
white, and their component is called the 

A component C' is ~2~i~ed in a com- 
ponent C if C'~C and any path of adjacent 
pixels (using either definition of adja- 
cency, with the path being allowed to 
contain both colors) from C' to the edge 
must contain a pixel in C. C' is a son 
of C, and C is the Z~h~ of c', if c' is 
contained in C and for any other compo- 
nent D, if C' is contained in D then so 
is C. Notice that sons of white compo- 
nents are black, and vice versa. The son 
relation forms a rooted tree whose root 
is th~ backqround. Figure I shows a sam- 
ple figure and its component tree. 

Beyer [I] defined the ~ ! ~ i ~ !  
~ h ! ~  ~ d i ~  on pairs of figures F 
and G to be true if an~ only if F's com- 
ponent tree is isomorphic (as a rooted 
tree) to G's. This predicate captures 
the correct digit~i version of homotopy 
of two-dimensional figures, in that two 
figures are equival~nt only if one can be 
changed into the oth~r by stretching 
without ripping. It i~ therefore a very 
basic predicate, although it has yet to 
receive much attention. 
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Figure I. 

Our machine models are ~sed on arrays 
of processors. A ~h ~R~!~K ~ ~i~ 
n~=2 consists of n~2 copies of a proces- 
sor P, with these copies located at posi- 
tions (i,j), where 1<i,j<n. Processors 
(i,j) and (k,l) have a unit-time communi- 
cat ion link if and only if I = I i-k I + 
I j-I ] . All operations take unit time, 
and P is assumed to have only a fixed 
number of registers, independent of n, 
each of which holds on~ word. If we 
assume tha~ the sor,~size is fixed to be 
independent of n then ~ur model is equi- 
valent to assuming that P is a finite 
state automaton, and the resulting array 
machine is called a mesh autom~!on. Mesh 
automata were among the first types of 
"parallel machines to b9 investigated 
[1,3,5,11], while r~centl~ there has been 
greater interest in a more powerful 
machine. In ~= the_ more powerful model, 
which we call simply a ~h ~9~@~, the 
wordsize of P is 8(loq(n)). In a mesh 
computer each processor can stor~ its 
coordinates, which is impossible with a 
mesh automaton. ~esh computers have 
appeared in [6,7,~,13,1~] and many o.h.. 
places. 

Borer worked cn the problem of comput- 
ing the topological matching predicate on 
a mesh autcmaten, wher~ a figure is 
stored so that pixel (i,j) is in proces- 
sor {i°j). He gave sever~l solutions, 
one of which compun~d • binary string 
r=presentation of the fiqur~'s componont 
tree. The representation was chosen so 
that the string uniquely identifies the 
isomorphism claEs of the tree. It is 
easy to see that strings can be compared 
in e(n) time, so th~ problem reduces to 
the pzobl@m of rapidly computing a string 
representation. 99v;nr's string genera- 
tion procedure r~quired e(n~-~) time, and 
Dietz and Kosaraju [2] found an algorithm 
requiring e(n*=2) time. We will reduce 
the m~sh automaton time to e(n), which is 
the b~st possibl~, we first qivo a e(n) 
algorithm for a mesh cgmputer, and then 
convert this to ere for a mesh automaton. 
As far as we c~n dez~rmine, no one had 
previously considered performing topo!o- 
qical matching on a mesh computer. 

~e fill follow 89yer's lead an~ com- 
pute the topological m~tching predicate 
by transforming e~ch figure into its tree 
and then applying a map e from rooted 
trees to binary strings, where e has 
the property that ~[T)=e(T') if and only 
if T and T' are isomorphic. Let T be a 
rooted tree, and let i T I denote the 
size of T {i.e., the number of nodes in 
T). e{T) will be such ~h~, 

!enqthie{T)) = 2=I T I , 
and it is defined as follows: 

~ I T I =I then ~ (T) =01 
~Isl let TI, ..., Tk be the subtrees 

whose roots are the sons of the 
root of T. Sort 9(TI), ..., 
e(Tk) by lenq:h, lon~est strings 
first, and among strings of the 
same length, sort numerically. 
Let S d~note the concatenation 
of the sorted lists. Then 
e(T)=0S1. 

For example, if T is the ~ree in Figure 
I, then 

e{T) = 0000011011100011011011 . 
It is easy to see that e(T)=e(T I ) if an(] 
only if T and I. are isomorphic, and 
J~gth(~(T)) < n~=2 for any tree T aris- 
ing from an nxn £iqure (n>1). 

The algorithm has two parts: initiali- 
zation and string formation. During ini- 
tialization, for each component a record 
is created which represents the component 
and which moves about during string for- 
mation. This record contains the compo- 
rent's label, which is the smallest row- 
major index of any pix~l in th~ 
component. {The row-major index of pixel 
{i,j) is (i-1)*nfj.) It also contains 
the component's depth in the component 
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tree, the size of the subtree that i+ is 
the root of, its parent's label, and the 
size of ~he largest of its sons' sub- 
trees. In the Initializa-ion section we 
show that this can be constructed in 
S{n) time. 

Strinq formation is somewhat more com- 
plicated. We recursiv~ly construct the 
strinq, storing I bit per processor. We 
initially "assign" processors I through 
2~(size of the component tr~e) to the 
entire tree. In g~neral, given a tree T 
with root p, which has been assigned pro- 
cessors A through B, we first put ~ 0 in 
A and a I in B. There are three situa- 
tions which can occur: 

I. IT i = 1, in which case we are fin- 
ished. 
2. The larqest son of p has a subtree 
of size <0.5.~ T ~ , in which case pro- 
cessors ~+I through 8-I are divided 
into blocks among the subtrees whose 
roots are sons of p, each subtree 
receiving twice as many processors as 
the size of the subtree. These 
blocks are assiqne~ so that larger 
trees come first, with ties broken 
arbitrarily. Each node of T, except 
for P, determines which block to move 
to and moves there. Then the strings 
in each block are determined, and 
when finished strings in blocks of 
the same size are sorted numerically. 
3. The largest son of p has a subtree 
of size >0.5'I T ] , in which case 
there is a unique node g, with larg- 
est son r, such that 

~ Tree|q) ~ > 0.5~I T i ~nd 
I Tree(r) ~ < 0.5=~ T ~, 

where Tr~e(q) is the subtree with 
root q. Nodes on :he path from p to 
q are called "spine.' nodes, and each 
spine node determines where its block 
is. (Except for p, each spine node's 
block is within another's.) Each 
spine node puts a 0 at the front of 
its block, a I at the end, and helps 
its sons determine their subblocks. 
Each node moves to an appropriate 
block, in which the strings are gen- 
erated. Then strings of the same 
length corresponding to sons of the 
same spine node are sorted numeri- 
cally, completing the processing for 
T. Notice that even though a spine 
node s is a son of a spine node t, 
s's strinq is not compared that of 
any other son of t since all other 
sons have shorter strings. 

In the String Generation section we show 
that given a tre~ of N nodes, all of the 
processinq in cases 2 ~r 3, except for 
the qeneration of substrinqs, can be 
accomplished in e(N~*0.5) time. The role 
of the ~pine nodes is to guarantee that 
each suhblock, which is where the recur- 

sire strinq formation occurs, is no lar- 
ger than one-half of the oriqinal. If 
S(N) denotes ~he worst-case time to g Dn- 
orate the strinq for a tree of N nodes, 
qiven that initialization has been done, 
then S will satisfy: 

S(I) = C 
S(N) = D~N=~0.5 + S (N/i) 

which gives S (N)=B (N=~0.5) • Since 
N<n~2 , we have 

TheQK~N ~ Using a mesh computer of size 
n*~2, our alqorithm derides topological 
matchinq in 8(n) tlm~. 

Both the initializauion and string 
formation algorithms use simulated random 
access reads and writes. In a random 
~GqZZ~ E[~ there are several processors, 
each of which needs to fetch a word of 
data in some source processor. TheTe may 
be several different source processors, 
and for any source there may be several 
processors trying to r~ad from it. Each 
processor knows the coordinates of th~ 
source processor it is tryinq to read 
from. In a random acq~s~ ~Ki~i there are 
processors which are trying to writ% a 
word of data to some t~rqet processor, 
where ther~ may be multiple targets and 
multiple processors trying to writ9 to 
the same target. Writing introduces an 
addition complication in that one must 
specify how conflicts ~re to be resolved, 
since two or more processors may try to 
write different values into the same tar- 
qet. Sometimes we want the maximum value 
being sent, and sometimes we want the 
sum. By utilizing sorting, random access 
reads and writes can ~9 performed in @(n) 
time on a mesh computer of siz~ n**2, 
assuming that the conflict resolution for 
the writes is reasonable [9]. (Reason- 
able resolutions include any of the ones 
used here.) 

We need to show hew to create th= 
record used to represent a component in 
the strinq formation phase. First we 
label each component, as described in 
Nassimi and Sahni [7]. (B~cause of the 
different definitions of ccnnectedn~ess, 
we must use slightly different procedures 
for white and black components.) The 
label of e component is the smallest 
row-major number of any pixel in it, and 
at the e~d each processor knows the label 
of its component. For each component, 
the pixel who s~ ~ow-major index equals 
that of its component is called the com- 
ponent's ~ R ~ ~ X ~  and is responsi- 
ble for creati~q the component's record. 

First each representative finds the 
label in the processor to its left, which 
is the label of the component's parent. 
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Now each processor does a random access 
read, readin~ from its component's repre- 
sentative the label of the component's 

parent. Then each processor creates a 
record containinq its label, that of its 
compenent's parent, and a counter which 
is initially 0. In each row these 
records are rotated from left to right, 
with only the representatives really 
using them. Each representative also 
keeps a depth counter, which is initiall~ 
0. The first ti~e the representative 
receives a record which starts with its 
parent's label, it adds I to its depth 
counter, adds I to the record's counter, 
remembers its qrandparent's label, and 
then passes the record on. The first 
time it receives a record starting with 
its qrandparent's label it adds I to its 
depth counter, adds I ~o ~he record's 
counter, remembers i~s greatgrandparent's 
label, passes the record on, and so on. 
This continues until each processor 
receiv{s bac~ the record it started, at 
which time each representative's depth 
counter has the correct value. 

~ach processor now does a random 
access write to its component's represen- 
tative, writing the counter in the record 
circulated above, with these values being 
summed by the write operation. When fin- 
ished each representative knows the size 
of its subtree, and with a few more ran- 
dom access reads an4 writes each repre- 
sentative can complete the record it is 
creating for its component. The total 
time for this pa~t is @(n). 

1 2 15 16 17 20 21 22 

4 3 14 13 18 19 24 23 

5 8 9 12 31 30 25 26 

6 7 i0 11 32 29 28 27 

59 58 55 54 33 36 37 38 

60 57 56 53 34 35 40 39 

61 62 51 52 47 46 41 42 

64 63 50 49 48 45 44 43 

Processor Number ing 

The Recursive Pattern 

Figure 2. Proximity Ordering 

~-~ ~ ~Q~A~ZQ~ 

we need to use an ordering which com- 
bines some of the best features of 
snake-like ordering and shuffled row-ma- 
jor ordering [7,14]. Figure 2 illus- 
trates this recursively constructed ord- 
ering, where we assume n is a power of 2. 
While we have not seen this ordering used 
elsewhere, we suspect that perhaps it has 
been since it is fairly natural. It has 
the property that there is a constant c<~ 
such that processors numbered i and j are 
no more than C-J i-j ]~*0.5 communication 
links ~part, and for this reason we c~l! 
it a ~ i ~ X  - Q ~ .  Further, there 
is a constant D such that any block of 
processors i..j contains a square of 
edqelenqth D~(j-i)~e0.5 . This enables 
us to treat any block as if it were a 
square since we can always move all the 
required data to this subsquare, in 
O((j-i)-.0.5) time, putting only I/D 
items per processor. An important point 
is that we need not iterate this, that 
is, we never encounter a situation where 
we must compress data into a square and 
then while processing it we create a sub- 
block which in turn must compress the 

data. Any time data is compressed we 
then uncompress it before performing a~y 
operations on subblocks. We use this 
proximity ordering throuqhout string for- 
mation, and also omit any further ~xpli- 
cit discussion of when to compress. 

We need to show that if a tree T, with 
root p, has h~en assigned processors A 
through B (where 8-A+I = 2~ T J ), and 
all nodes of T are in this block, then 
for either case 2 or 3, in @(l T J*~0.5) 
time the subblocks can be determined and 
each node can move to the appropriate 
subbiock. The root p knows which case 
holds, so by a random access read each 
node will know. 

First suppose case 2 holds. In A..B 
we sort the nodes so that p is first, 
followed by its sons, followed by all 
others. The sons of p are sorted in 
decreasing order of the size of their 
subtree. Since A..B is approximately a 
square, we sweep accross e~ch row to find 
the sum of the sizes of p's sons' sub- 
trees. We then go down the first column, 
assigning space to each row, and then 
back accross each row assigning subblocks 
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to p's sons. 8¥ usinq path comprgssion, 
as in Nassimi and $ahni [7], each node 
determines which son of p it is beneath. 
Now each node does a random access read 
to read from this son the subblock to 
move to. 

Cas~ 3 is quit~ similar, except that 
first ~ach node needs to determine if it 
is a spine node. It does this by reading 
p's subtr~e's si2~ ~nd comparing it to 
its own. If q is a spine node and g'~ 
depth is k larger than p's, then 
Tree(q) 's block go gs from A+k to 
A+k-1÷2-] Tree (q) I . If q's largest son 

is not a spine node (recall that q knows 
the size of its largest son) then all 
nodes in its subtrge move to q's block, 
while if q has a spine node for a son 
then q computes the region where all 
node~ under q, but not under its spine 
son, should move to. If S is the size of 
q's spine son's tree then :he region goes 
from A+k+I+S tc A+k-]+2*l Tree(q) ] . 
Once each spine node has computed this 
information, each node determines (via 
path compression) its nearest ancestor 
which is a spine node, and from this det- 
ermines what region to move to. Once 
there, no{-spine node sons of a spine 
node calculate their subblocks, and then 
all nodes move to the proper subblock. 

Whichever case holds, the total time 
is at most 8(IT ]**0.5) . After the 
strings for th~ subblocks have been 
fgrmed there may be a final sort phaso, 
which also takes at most 8(~ T ]~0.5) 
time. This finishes the proof that 
strinq formation t~kes no more than S(n) 
time on a mesh computer of siz~ n~2, 
which in turn finishes the proof of Theo- 

To convert the previous algorithm into 
one for a mesh autgmaton we will use 
clerks to simulate the processors of the 
mesh :omputer. Clerks are just a syste- 
matic form of counting, and counter-based 
solutions have b£~n given fo~ many mesh 
automaton problems [3,11]. Clerks are. 
described in [ 12.13], and use @(log(n)) 
processors to simulate one processor of a 
mesh computer, with unit-time operations 
being s~mulated in 8(!oq(n)) time. At 
most 8(n$~2/loq(n)) processors can be 
simulated so we must reduce the number 
necessary. 

We do this by dividing the nzn array 
into squares of edgelength K, where 
K=S(log(n)~2). There are 4~K-~ proces- 
sors on the edge of each square, and in 
each square we create an equal number of 
clerks, as in Figure 3. In each square 
we set up a 1-I correspondence between 
the edge pixels and the clerks, and from 

r 

c._ltrk 

C t ~,'k 

K 

I c,,,k I "" [c,,,k > SCIogC.,D 

I I " " 1  c , , .k  - 

C l,.,..l,c 

Figure 3. Clerks in a Square 

now on when we speak of edge pixels doing 
some calculation we mean their associated 
clerk. The clerks form a 8(n/log(n)) x 
Sln/log(n)) array, so any major opera- 
tion, such as sorting or random access 
reads, which takes 8(n) time on a mesh 
computer of size n*~2 will take 
e(n/log(n)) steps on the clerks. Since 
each step takes 8(log(n)) time, the total 
time remains 8(n). 

First a procedure similar to that in 
[13] is used to label each component 
which includes an edge of some square, 
where the label is the minimum row-major 
index of any edge pixel in the component, 
and where only edge pixels know of the 
label. We call any such component a 
!~i~ ~e~aea~n~, and all others are 
~!~I~ ~s~aaa~. Note that unla- 
beled components lie entirely within a 
KxK square, and ~ence are the root of a 
subtree of size lass than K$~2. Any com- 
ponent which is the root of a tree with 
fewer than K**2 nodes is cal~ed sm~ll, 
and all others are I~S~. -~-- All large com- 
ponents are labeled, but small components 
may be either labeled or unlabeled. Pro- 
cessing of large components will closely 
follow the mesh ccm~uter algorithm, but a 
different procedur~ is needed for small 
ones. 

We divide the mesh automaton algorithm 
intothree parts: initialization, string 
formation for small components, and 
string formaticn for large components. 
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Once the clerks have been formed and 
the labeled comBcnents determined (taking 
e(n) time), we need to find essentially 
the same information as was found in the 
initialization section for mesh compu- 
ters. When we determine the size of a 
node's subtree w~ will separately count 
the number of labeled and unlabeled 
descendants, and we must be a bit more 
careful when determining depth. Within a 
square there may be several edge pixels 
in the same labeled component. Once 
labeling is completed we need only one of 
these per square, so we use the one of 
minimal row-major index, and from now on 
the rest are iqncred. 

In each square each edge pixel first 
counts its unlabeled descendants within 
the square, not counting descendants of 
labeled offspring. Any simple procedure 
can be used since the squares are so 
small. Each pixel then writes its count 
to its component,s representative, with 
these values beinq summed. In 8(n) time 
each component k~ows the number of unla- 
beled components in its subtree, not 
countinq ones beneath labeled offspring. 

Each component representative deter- 
mines its compen~nt's parent, and by a 
random access read each edge pixel reads 
this. To determine the component's depth 
and size we circulate information as 
before, but now entire squares are moved. 
Notice that if a compcnent's representa- 
tive tried to add to the counter of each 
of its ancestors then it may have to do 
this B(n) times, resulting in e(n*log(n)) 
total time. To avoid this, first each 
edge pixel forms a record containing its 
label, the label of the closest ancestor 
which does not intersect its square, Zhe 
difference in depth between it and this 
ancestor, and a counter which is ini- 
tially 0. (It finds the closest ancestor 
outside the square by finding the the 
qreatest ancestor touching the square and 
using its parent.) Now this information 
is rotated, squales moving together. As 
before, as each square arrives each 
representative is looking for a recor~ 
corresponding to a specific ancestor. If 
that ancestor is present th~n the repre- 
sentative adds its count of unlabeled 
descendants, plus I, to the ancestor's 
counter. It then takes note of the next 
ancestor to search for (in later squares) 
and adds the depth information to its own 
depth counter. This takes 8(K) time per 
square, for a total time of e(n) before 
each square's records return to it. 

Now each edge pixel adds to its coun- 
ter the counts of all edge pixels lying 
in the sguare which are in descendant 
components. All ~dqe pixels do a random 
access write to their representative, 

writing their counter, with these values 
beinq summed. At this point all repre- 
sentatives of labeled components know 
their depth and the size of their sub- 
tree, and the rest of initialization is 
as before. 

For small string formation we think of 
the region below one clerk and above 
another as being a ,'bag,, attached to the 
top clerk. A bag has 8(Iog(n)*~2) pro- 
cessors and is used to store string 
representations cf small components, 
storing one bit ~er processor. Bags are 
less passive than their name implies for 
they occasionally help their clerk per- 
form operations. 

In each square a ~ S @  is prepared 
by each edge pixel which is in a compo- 
nent having unlabeled sons in the square. 
The package contains the string represen- 
tations of all u~lab~led sons in the 
square, and also some header information. 
The strings are in the bag, and the 
header is in the clerk. Some packages 
are too big for a s!nqle b~q, in which 
case several clerks help carry them. One 
can show that there is enough room for 
all the packages. 

Th~ header contains the package's 
size, which component it is in, and a 
~e~. If the component is large then 
it is the target, but if it is small then 
the target is th~ component's greatest 
ancestor which is small. By path com- 
pression each component can determine its 
target. Also, each small component 
representative plepares a p~ckaqe with no 
strings, but which has a h~ader with the 
component, its parent, and its tarqet. 

We now sort packages by their tarqet. 
If the tarqet is small than all of its 
packages are used tc form the component's 
strinq. Any simpl~ procedure can be used 
since the size and number of packages is 
o(loq(n)t*~). The strinq is put into a 
new packaqe with the component's parent 
as target, and a second sort by target 
occurs. 

The only targets remaininq are large 
components. A larqe component may 
receive many packaqes, with O(n~*2) total 
size, but each string they contain is no 
lonqer than O|Ioq(n)~4). This fact can 
be used to order and then concatenate all 
the strinqs in Cln) time. The result is 
packed into baqs with a he~der giving its 
length and the label of the component, 
and the entire assembly is called a ~a~ 
laB- 
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To finish ~he small component string 
formation phase, w~ now sort the cara- 
vans, with longer caravans first and, 
among equal lenqths, sorting numerically. 
There may be groups of caravans which are 
equivalent, and 0ow the clerk holding the 
header of a caravan does a random access 
write to the component, telling it the 
start of aIl equivalent caravans. This 
completes this section, taking 8(n) total 
time. we should mention that, while all 
of the clerks may have been involved in 
the forming of the strings for the small 
components, they also retained all of the 
information about the edge pixel they 
represent. 

S.~ L~RS~ ~JS ~Q~A~!Q! 

The large s#rinq formation is almost 
identical to that for the mesh computer, 
and now we are only generating a bit per 
clerk, instead of the bit per processor 
used in the packets and caravans. One 
difference is that we only count the num- 
ber of large descendants when we assign 
zpace. 

If a tree T has large sons SI, ..., 
St, if the string part of its caravan is 
R, and if the sons a~e ordered so that 
I Sj ~> S{j+I) I o~ else I Sj H S(j÷I) I and 
efSi)"<"e(S(~+1)), then e(T) will be 
0e(S1) ..e (St) RI. Here the ordering "<" 
is slightly different than before. As we 
are comparing st=ings, if they are equal 
up to a point and then one stops because 
the rest is in a caravan, while the other 
one still has more bits arising from 
larqe components, then the second one is 
judged larger, while if they both stop we 
compare the ~cint~rs back to the caravans 
to finish the comparison. This has 
changed cur e function, but does not 
chanqe the fact that it preserves tree 
isomorphism for t~ees generated from fig- 
ures of the same size. One deficiency is 
that the sam~ tre~ can have different 
string representations when it arises 
from figures of different sizes (this 
occurs because the definition of small 
depends on the figure size). While this 
does not alter cuz ablilit~ ~o cempute 
the topoloqical matching predicate, it is 
not desirable. The deficiency can be 
corrected, in e(n) time, by fairly 
straightforward techniques which we omit. 

To comDleze the algorithm we need to 
insert the c~ravans into the large compo- 
nent strings, storing everything as I 
bit/processor. This can be done in 8(n) 
time, which completes our proof of the 
followinq theorem. 

~ K ~  ~ On a mesh automaton of size 
n~*2, our algorithm decides topoloqical 
matching in 8(n) tim~. 

Following Beyer's lead, we have com- 
pUted the topological matching predicate 
by transforming a figure into a binary 
string which identifies the isomorphism 
class of the figure's component tree. 
Since we have shown that such a string 
representation can be computed in linear 
time on either a mesh automaton or a mesh 
computer, we can give linear time solu- 
tions to several other topological prob- 
lems. For example, it is easy to show 
that the string can be processed in 
linear time to d~cide if the figure is 
connected, or simply connected, or to 
determine the figure's genus. Linear 
time sqlutions were already known for 
these problems [3,11], but our algorithm 
provides a systematic, albeit compli- 
cated, approach which presumably can be 
used for related problems. 

Since the ccm~onent tree captures the 
notion of homotopy for two-dimensional 
digital figures, it is natural to con- 
sider higher dimensions. Our algorithms 
can be extended to hiqher dimensional 
mesh computers and automata, remaining 
linear in the edqelenqth, but unfortu- 
nately the component tree is not as use- 
ful in hiqher dimensions. For example, 
if one three-dimensional figure consists 
of two disjoint solid black tort in a 
white background, and a second figure has 
the two tort disjoint but linked, then 
the teo figures will have equivalent com- 
ponent trees, even though they are not 
homotopic. 

Beyer's thesis included a large number 
of open problems, most of which have now 
been solved [3,11,13]o The labeling 
technique used in our mesh automaton 
algorithm can be used to solve two more 
of these, namely the "representative" 
problem and the "qold plate" problem. 
(This labelinq technique for mesh autom- 
ata was introduced in [ 13], but I forgot 
to mention that it also solved these 
problems.) In the representative problem 
exactly one Dixel in each black component 
is to be changed to red. To do this, 
just have what we called the representa- 
tive in the mesh automaton solution act 
as the representative here. This solves 
the problem for all labeled components, 
and in each square we can use a simple 
8(K*~2) alqorithm to pick the representa- 
tives for the unlabeled ones. In the 
gold plate problem one component has a 
qold pixel and we are to make the rest of 
its component golden also. If it is an 
unlabeled component we use a @(K~2) 
alqorithm, while if it is labeled we 
notify all edge ~ixels in that component~ 
and they in turn propogate the gold 
throuqhout their square. 

30 



The one remaining open problem from 
Bever's thesis is to determine a minimal 
distance solution to a maze. In this 
problem one is given a solvable black/ 
white maze with designated start and stop 
positions and is to mark a minimal dis- 
tance path between them. Beyer showed 
that one could decide if the maze was 
solvable or not in linear time, but to 
date no linear time algorithm has been 
found for marking the path. Linear time 
algorithms for d~ciding the solvability 
of mazes on higher dimensional mesh 
automata appear in [4,13], and a linear 
time algorithm for marking a minimal path 
on a (2-dimensional) mesh computer 
appears in [6]. Determining if there is 
a linear time algorithm for marking a 
minimal path is a particularly intrigue- 
inq question. 
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