TOPOLOGICAL MATCHING

Quentin F. Stout
Mathematical Sciences
State University of New York

Binghamton, NY

1. INTBRODUCTIOHN

There is a lot of practical and thzo-
retical interest in desiqgning algorithms
to procass digital pictures. O0f particu-
lar inter=st are prcblams arising when
one starts with an nxn array cf pixels
and stores i+, one pix2l per processocr,
in some sort of array-like parallel ccn-
putar, One of the earliest systema%tic
examirations of such problems was Beyar's
thesis [1], in which h2 gave several
algorithms for a computer we call a mesh
autcmaton {defined below). One of tha
problems he considared was *opclogical
matching, in which one is giver ¢wo pic-
tures and Is (roughly) askad if it is
possiblae te stretch ons picture so tha+
it looks 1lik= the other. (A precise ’
definition is given below.) Beyer gave
several soluticns, one of which required
e (n**4) +ime, and Dietz and Kosaradju [2)]
latsr gave a 6 (n**2) solution. In this
paper w2 give an optimal 8(n) *ime solu-
tior, based onr a simpl2r 8(n) time solu-
tion for a more powerful compuiter called
a mesh computer. Beyer suggested that
this problem was a prime candidate for a
ron-lirnear recegrition problem, but our
result shows +hat this is not true.

Our digi+ized pictures are given in
cach pixel i3 either black or white.
Pixels are located at positions (i,7d),
with 1<i,j<n, and the 2n+tir: array is
called a fiquze.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-099-0/83/004/0024 $00.75

24

13901 UsA

We need to define the npotion of a con-
nected component, which is made slightly
confusing by the digitization. In order
to have such standard results as the Jor-
dan Curve Theorem, we need to use
slightly different definitions for black
and white. (See Rosenfeld [10,11).) Two
black {whi%e) pixels at (a,b) and (c,d)
are adjacent if and only if

1 =}la-cl + |b-d} .

(1 = maxfla-ci{, | b-d j}), .
and are cornnacted if and only if there is
a path of adjacent black ({whites) pixels
from one *o the cther., Given any pixel,
the set of all pixels connscted to it is
called a cemponent. To simplify discus~
sion, from now on we will assume that the
pixels on th2 2dge of the figure are all.
white, and their componant is called the
backgqround.

A component C' is cantained in a com-
ponent C if C'#C and any path of adjacent
pixels {(using either d2finiticn of adja-
cency, with the path bei

contain both colors) fro to the =sdge
must contain a pixel in C. C' is a gon
of C, and C is the father of C', if C' is
contained in C and for any othar compo-
nent D, if C' is contained in D then sco
is C. Notice that sons of white compc-
nents are black, and vice. versa. The son
relation forms a rooted tree whose root
is the background. Figure 1 shows a sam-
ple figure and its component tree.

and G *¢ be true if and only if F's conm-
penernt tree is iscomorphic (as a rooted
tr2e) to G's. This predicate captures
the correct digital versicn of homotopy
of two~dimensicnal fiqures, ir that twe
figqures are equivalant only if one can be
chang=ad into the othsr by s*retching
withou< ripping. It i3 therefore a very
basic predicate, al+hough it has yet to
receive much a++enticn.

A Figure and Its
Component Tree

Figure 1.

Our machine models are based
of processcrs. A aesh computer ¢f siz:2
n*x2 consists cof n**2 copies cf a proces-
sor P, with these ccpiss located a* posi-
+tions (i,1d), whker2 1<i,j<n. Processors
{i,7) and (k,1l) have a unit-time compuni-
cation link if and cnly if 1 = {i-k |} +
]4-14 . All operations take unit time,
and P is assumed to havs only a fixed
number of registers, indepandent of n,
each of which holds on2 word. If we
assume tha* the wordsize is fixed to be
independent of n than our model is =qui-
valert to assuming *hat P is a finite
state automaton, and the resulting array
machine is called a mgsh automaton. Mesh
automata were amcng *he first +types of
‘parallel machines tc b2 investigated
{1,3,5,111, while r2cently *here has been
greater ipterest in a more powerful
machine. In this more powerful model,
whichk we2 call sisply 2 mesh computer, the
wordsizz of P is 68(log{n)). In a mesh
compu*t2r each processor can store its
coordinates, which is impossible with a
mesh automaton, Mesh computers have
appeared in (6,7,8,13,147] and many otker
places.

on arrays

25

Beyer werked ¢n the problem of comput-
ing *hz topological matchirg predicate orn
a mesh autcmatern, whar: a figurs is
stored so *hat pix2l (i,§) is in proces-
sor {i,j). He gave ssveral solutions,
one ¢of which comrut2d4 31 binary string
rapresantation of “he fiqura's componan+
trea. The represan+ation was chosen so
that the string uriquely identifies the
isomorphism clacs of the tree., It is
easy to see that strings can be coapare
in 8(n) tim=, so *h: problam r=duces *o
the probl=m of rapidly computing a string
Tepresantation. 32y2r's siring genera-
“ion precedure raguired O (n**u4) *ime, and
Dietz and Kosaraju {21 found an algorithm
requiring 8{n*=2) *ime. We will reduce
the mash auvtcomaten +ime to ©(n), which is
the best possiblz. de first give a 8(n)
algorithm for a mash compu*ar, ard than
convert this to cne for a ma2sh automaten.
As far as w2 can de=zermins, no one had
previously considerzd performinyg topole-
gical matching on a mesh ccmputer.

3. THE MESH COMPUTER ALGORITHH

We £i11 follow Bayer's lead and com-
put2 the topclegical matching predicate
by transforming €ach figure into its “rea
and then applying a map & from roo*ted
trees to binary strings, where e has
+he property tha*t 2(T)=2(T') if and only
if T and T' are isomorphic. Let T be a

rooted +ree, and let | T| denote the
siz2 of T {i.e., *h2 numb=2r of nodes in
™. €{T) will bs such tha+*
lengch(2{T)) = 2% T},
and it is defined as follows:
If | T]=1 £han ~(T)=01
glge 12t T1, ..., Tk bz the

subtraes
whose roots ar2 *he sons of the
rcot of T, So>rt 2(T1),
e {Tk) by leng:h, longest strings
first, and among strings of tha
same lenqgth, sort numerically.
Let S d2no*+e ~h2 conca*enation
0f the sortad lis*s. Then
2 {T)=0s1.
For exanple, if T is the tree in Figure
1, *hen
e{T) = 000C011011100011011011 .,
It is easy *o sea2 *ha+ =2(T)=e(T') if
only i€ T and I' are isomorphic, and
length (e (T)) < n*=*2 for any tres T aris-
ing irom an nxn figure (>1).

e oy

and

The algorithr has *wo par*s: ini+iali-
zation and string fcrmation., During ini-
+ialization, for 2ach component a reccrd
is created which represernts the compornent
and which moves about during string fcr-
matior, This record contains the compo-
nent's label, which is thz smallest row-
naior inpdex of any pixz:l in thk=
component, {The row-major irdex of pixel
(i,4) is (i-1)*n+j.) I+ alsoc contains
the coppenentts d2pthk in the component

tree, *he scize of the subtree that i* is
the root of, its parent's label, and the
size of +*he largest of its sons' sub-

+trees., In +h2 Initializa-iorn section we
show tha% +this can be cons*%ructed in
8{n) tinme.

Strirng formation is somewhat more com-
plicatad. We rescursivaly construct the
string, storing 1 bit per processor. He
ini*tially "assign" processors 1 through
2% ({size of the ccaponsent trze) to the
entire *tree, 1In g=2neral, given a %“re2 T
wi*h root p, which has be2n assigned pro-
cessors A throuqh B, w2 first put 3 0 in
A and a 1 in B, There are three situa-
tione which can occur:

-

. 1 T}{= 1, in which case we are fin-
ished.
. The largest scn of p has a subtree
of size €0.5% T{ , in which case pro-
cessors A+l through B-1 are divided
blocks among the subtrees whose
roots ar= sons of p, each subtree
rec2iving twica as many processors as
+he size of the subtree., These
blocks are assignel so tha* lavrger
trees come first, with ties broken
arpbitrarily. FEach node of T, except
for p, determin=zs which block to movs
to and mecves there. Then *“he strings
in each block are determined, and
wher finished strings in blocks of
the sam=s size are sorted numerically,
3. The largest son of p has a subtree
of size >0.54 T] , in which case
there is a urique node g, with larg-
est sor r, such that

| Tree(q) } > J.5% T |

| Tree(r) | € 0.5% T{,
where Trae {q) is ths subiree with
root g. Nodes on the path from p to
q are called "spin2" nodes, and each
spine node det:zrmines whers its bleck
is. {Except for p, each spine node's
block is within anotha2r's.} Each
spine node puts & 0 at *he front of
its block, a 1 at *he end, and helps
its sons detsrmine *heir subblocks.
Bach ncde moves to an appropriate
block, in which ¢he strirgs are gen-
erated. Then strings of the same
length corresponding to sons of the
sam2 spine node arae sorted rumeri-
cally, completirng <h2 processing for
T. Notice that evaen though a spine
node s is a son of a spine node *,
s's string is not compared that of
any other son of t since all other
song have shortsr strings.

R L
14

inte

and

In the String Generation section we show
that given a tree of N nodes, all of the
processing in cases 2 ar 3, except for
the generation of substrings, can be
accomplished in €(N**0.5) <ime. The xzcle
of the spine nedes is +o quarantee that

each subblock, which is where the recur-

26

sive string forma*icn nccurs, is no lar-
ger than one-half of +«he original. If
S(N) denotes *+he vworst-case time +to gon-
erate the string for a tra2e of N nodes,
given that initialization has been done,
than S will satisfy:

s{1y =¢

S{N) = D*N*x0(.5 + S (N/2)
which givas S(¥)=8 (N==0.5) . Since ,
N<n*=x2 , we have

Theorem 1 Using a mosh compu*er of sizea
n¥*x2, our algorithm decidas topological
matching in ®(n) *im>a.

Beth the initializa<ion and string
formation algorithms use simulated randen
access ceads and writes. In a randonm
access read +«hare are several procassors,
each c¢f vwhich needs *o fe=ch a word of
data Iin soms sScurc2 procascsor. There
be several differsn* source processors
and fer any sourcza *here may bz sever
processcrs tvtying %o rz2ad from it, &
processor knows tha coordina*tes of “h
source procassor it is trying to read
from. In a randon there
processors which arz trying tc write 2
word of data to som2 tirget processo
where ther:z may bz multiple target
multiple processors ¢rying toc writ: o)
the same targe+t, Writing introducas an
addition ccmplication in that one nmust
specify how conflicts are £o bz resolved,
since two or more processsrs may try te
write different values into the sane
get. Sometim=zs we want the maximun valus
b2ing s2nt, and scmetimes we want the
sum, By u+tilizirg sor+ing, rardom access
reads and writes can b2 performed in 9(n)
time on a mash cemputer of siza n%=2,
assuming that the conflict resolution for
the writes is reasonabl=s [8], (Re2ason-
able resolu*ions include any of the ones
used here,)

may

tar-

W2 nesd to shcow how to create +hs
record used <o repressnt a componarnt
the string formation phase. First wa
label each component, as described in
Nassimi and Sahni [717. {B2cause of the
different definitiors of ccnnectednass,
we must use sligh«ly different procsdurss
for white and black comporents.) Tha
label 2f a compcn:nt is the smallast
rLow-major number of any pixel in i+, an
at the end each frocessor knows the label
of its component. For @ach componant,
the pixel whos2 row-major index eguals
that of its compcnant is called thes com-
ponent's represerntativz and is responsi-

ble for creating the component's record.

e

n

First sach repressntative finds tho
lab=21 in the procassor to its left, which
is the label of tke component's parent.

Now each processcr does a random access
read, resading frcm i1+*s component?’s repre-
sentative the label of the cecmponent's
» parsnt. Then each processor crea*2s a
record containing its label, that of its
compon2nt's parent, and a counter which
is initially 0. In sach row these
records are rotated from left *o right,
with only *the representa*ives really
using them. Each representative also
keeps a depth counter, which is initially
0. The first timz the representative
receives a record which starts with i¢s
parent's label, it adds 1 to its depth
counter, adds 1 to the record’s counter,
remembers its grandparent?'s label, and
+hen passes the record on. The first
time it receives a record starting with
its grandparent's label it adds 1 <o its
depth countar, adds 1 *o tre record!s
counter, remembers its grzatgrandparent's
label, passes the record on, and so on.
This continues until each processor
recaivas back +he record it started, at
which time each represontative's depth
counter has +he correct value.

2ach processor now does a randonm
access write to its component's represen-
tative, writing the counter in the record
circulated above, with these values bz2ing
summed by the write opesration., When fin-
ished ecach repres=ntative knows the size
of its subtree, and with a few more ran-
dom access reads and writes each repre-
serntative can complete the record it is
creating for its component. The total
time for this part is ©(n).

3.2 STRING PORMATION

We need
bines sone

to use an ordering which com-
of the best features of
snake~like ordering and shuffled row-ma-
jor ordering {7,147. Piqgure 2 illus-
trates this recursively constructed ord-
ering, where we assume n is a power of 2.
While we have not seen this ordering used
elsewhere, we suspect that perhaps it has
been since it is fairly natural. It has
+he property that there is a constant C<4
such *hat processors numbered i and j are
ro more than Cx* i-4 **0.5 communication
licks gpart, and for this reason we call
Further, there
is a constant D such that any block of
processcers i..3J contains a square of
edgelength D*{j-i)**%0.5 . This enables
us to treat any block as if it were a
square since ve can always move all the
required data to this subsquare, in
O({j=-1i)**0.5) time, putting only 1/D
items per processor. An important point
is that we need not iterate this, that
is, we never erccunter a situation where
we must compress data into a square and
then while processing it we create a sub-
block which in turn must compress the

27

1 2 15 16 17 20 21 22
4 3 14 13 18 19 24 23
5 8 9 12 31 30 25 26
6 7 10 11 32 29 28 27
59 58 55 54 33 36 37 38
60 57 56 53 34 35 40 39
61 62 51 52 47 46 41 42

64 63 50 49 48 45 44 43

Processor Numbering

The Recursive Pattern

Figure 2. Proximity Ordering

data. Any time data is compressed we
then uncompress it before performiag any
operations on subblocks., We use this
proximity crdering throughout string for-
mation, and also omit any further expli-
cit discussion of when to compress.

We need to shew that if a tree T, with
rqQot p, has been assigned procassors A
throuqh B (where B-A+1 = 2% T}), and
all nodes of T are in this block, ¢then
for either case 2 or 3, ir 8(T j**0.5)
time the subblccks can be determined and
each rode can move to the appropriate

subblock. Th2 rcot p knows which case
holds, so by a random access read each
rnode will know.

First suppose case 2 holds. 1In A..B
ve sort the nodes sc¢ that p is first,
followed by its scns, followed by all
others., The scns of p are sorted in
decreasing order of the size of their
subtree, Since A..8 is approximately a
square, we sweep accross =ach row to find
the sum of the sizss of p's sons' sub-
trees. We then go down the first column,
assigning space to cach row, and then
back accross each rovw assigning subblocks

to p's sons,. By using path comprassicn,
as in Nassimi and sSahni {77, each node
determin=s which son of p it is beneat*h.
Now 2ach ncde does a random access read
to read from this son the subblock to

move %o.

Case 3 is quit=: similar, except that
first 2ach node ne2ds to determine if i%
is a spine node. It does +this by re=ading
p's subtree's siz2 and comparing it te

it¢s own. If q is spina node and g's
depth iz k larger +hen p's, than
Tree {(g) 's block go=2s from A+k *o

A+k=-1+2%] Tre2(q) { .
is no* a spine ncde (recall that g knowxs
the siz2 of its larges* son) then all
nodes in its subtr2e movs *o gq's block,
while Zif q has a spine node for a son
+her g conputes the reygion where all
nodes under g, bu* nct undar i*s spin2
son, should movs *o, If S is k=2 size of
q's spine son's trez then the region go=s
from A+k+1¢S tc A+k-1+42% Tree(qg) | .
Once ecach spine node has compuied this
information, each ncde detarmines (via
path compression) its anearast ancastor
which is a spine node, anrd from this det-
armines what reqion to move tc. Once
there, non-spine node sons of a spine
node calculate thair subblocks, and then
2ll nodes move to th> proper subblock.

If q's largast scn

Whichever case holds, ths total time
is at most O T |xx0.5) . fter the
strings for the subblocks have been
formed “here may b2 a final sort phasc,
which also *takes at most @(T [**0.5)
time., This finishas the proof that
string formation takes no more than
“ime on a m2sh ccamputer of siza n%xx2,
which in *urn finishes the proof of Theo-
ra2n 1. .

8 (n}

4. THE MESH AUTOMATON ALGORITHM

To conver+ tha previous algorithm into
one £or a mesh au*tdometon we will use
clerks %0 simulatz the processors of the
m2sh computer. Clarks arz2 just a syste-
matic form of counting, and counter~based
solutions have be2n given for many mesh
automaton problems [3,11}, Clarks are,.
described in [12,131, and use 8 (log(n))
processors to sirulate onz2 processor of a
m2sh computer, with unit-time operations
being simulated in @€{log(n)) time. At
most 8(n**2/log(n)) processors can be
simulated o we must roduce the number
necessary.

We do this by dividing the anxn array
into squares of edgelenqth K, where
K=8 (log {n) **2), There are UxK~4 proces-
sors on the edge of each square, and in
each square we create an equal number of
clerks, as in Pigure 3. In each squars
we set up a 1-1 correspondence befween
the edqe pixels and the clerks, and from

28

K
— N —
Clerk | Clerk l co . ‘ Clerk
E)(lo,(n\)

Clgrk rc.!erk j "'ultrk

£ 6 leg() -
N
Clerk T Clerk J . "glerk

Figure 3. Clerks in a Square

now or when w2 speak of edge pixels doing
some calculaticn we mean their associated
clerk, The clerks form a 8(n/log{n)) x
8{n/log(n)) array, so any major opera-
tion, such as sorting or random access
reads, which takes €(n) time on a mesh
computer of size n**2 will take
8(n/log{n)) steps on the clerks. Since
each step takes 6{lcqg(n)) +time, the total
time ramains e {n).

Pirst a procedure similar to that irn
{137 is used tc label cach component
wvhich includes an edqge of some square,
where the label is *he mirimum row-major
index of any edge pixel in the component,
and where only edg2 pixels know of thz
label. W= call any such component a
labeled component, and all othars are
unlabeled compcpepts. Note that unla-
beled componen*s lie entirely within a
KxK square, and hence are the root of a
subtree of size less than K**2. Any ccm-
ponznt which is the rcot of a tree with
fewer than K+#*2 nodes is called gmall,
and all others are large. All large com-
ponants are labeled, but small componznts
may be either labeled or unlabeled. Pro-
cessing of larqge comronents will closely
follow the mesh ccmputer alqorithm, but a
different procedursz is nesded for small
ones.

We divide the mesh automaton algorithm
into three parts: initialization, string
formation for small components, and
string formaticn for large components.

4.1 INITIALIZATION

Once the clerks havs been formed and
the labeled compcnents determined (taking
8(n) time), we need to find essentially
the same information as was fourd in. *he
initialization section for mesh compu-
ters. When we determine the size of a
node's subtree we will seperately count
the number of labeled and unlabeled
descendants, and we must be a bit more
careful when determiring depth. Within a
square there may be several edge pixels
in the same labelsd component. Once
labeling is completed we nea2d only one of
these per square, SO we use the one of
minimal row-major index, and from now on
the rest are igncred.

In each square cach edge pixel first
counts its unlabeled dzscendants within
the square, not counting descendants of
labeled offspring. Any simple procedurs
can be used since the squaras are so
small. Fach pixel then writes its count
to its component's representative, with
these values being summed. 1In €{n) %time
each component krows the number of unla-
beled componen*s in its subtree, not
counting ones beneath labeled offspring.

Bach component representative deter-
mines its compocnent's parent, and by a
random access read cach edge pixel reads
this, To determine the comporent!s depth
and size we circula*e information as
before, bu* now entire squares are moved,
Notice that if a compcnent's representa-
tive tried to add tc the countar of each
of its ancestors then it may have to do
+his 8(n) times, resulting in € (n*log(n))
total time. To avoid this, first each
edge pixel forms a record containing its
label, the label of the closest ancestor
vhick does not intersect its square, *he
difference in depth between it and this
ancestor, and a counter which is ini-
tially 0. (It £finds the closest ancestor
outside the squar2a by finding the the
greatest ancestor touching the square arnd
using i*ts parent.) VNow this informatien
is rotated, squareas moving together. As
before, as =2ach square arrives each
repres2ntative is lcoking for a recori
corresponding ¢tc¢ a specific ancestor. If
that ancestor is present than the repre-
sentative adds its count of unlabeled
descendants, plus 1, to the ancestor's
counter, It then *akes note of the next
ancestor to search for (in later squares)
and adds the depth information tc its own
depth counter. This takes 8(K) time per
square, for & tctal time of ®({n) before
each square's records return to it.

Now each 2dge pixesl adds *to ‘its coun-
ter the counts c¢f all edge pixels lyin
in the squars which ar2 ir descendant
components., All sdge pixels do a randonm
access write to their representative,

29

writing their counter, with these values
being summed. At this point all repre-
sentatives of labeled components know
their depth and the size of their sub-
tree, and the rest of initialization is
as before.

4.2 SMALL COMPONENT SIRINGS

For small string formation we think of
the reqgion belcw one clerk and above
another as being a "bag" attached to the
top clerk. A taq has O (lcg(n)*%*2) pro-
cessors and is used *to store string
representations ¢£ small components,
storing one bit Fer processor, Bags are
less passive than their nam2 implies for
they occasionally help their clerk per-
form operations.

In 2ach square a package is prspared
by each edqgs pixzl which is in a compo-
nent having unlabeled sons in ¢hke square,
The package contains the string represen-
tations of all urlabeled sons in the
square, and alsc some headzr information,
The strings are in the bag, and the
header is in the clerk. Some packages
are too big for a single bag, in which
case several clerks help carry then.
can show tha*t thers is enough room for
all the packagss.,

One

The header cortains tha package's
size, which compcnernt it is in, and a
target. If the component is large ther
it is the tarqget, but if it is small then
the target is ths ccmponent'’s greatest
ancestor which is small. By path com-
pression each component can determine its
target. Also, each small component
representative prepares a package with no
strings, but which has a h=2ader with the
componeont, its parent, and its target.

We nrow sort packages by their target,
If the target is small than all of its
packages arz used tc form the component's
string. Any simplz procedure car be used
since the size and number of packages is
O(log(n)**4), The string is put into a
new package with the compon2nt's parent
as *arget, and a second sort by target
oCCcurs.

The orly targs+s remaining are large
componants. A large compcnent may
receive many packages, with O{n*%x2) *otal
size, but each string they contain is ro
longer than O{lcg(n)**4), This fact can
bz used to order and then concatenate all
the strings ir Ctn) <%ime. The result is
packed into bags wi+h a h2ader giving its
length and the label of the compon=ant,
and the entire ass=ambly is called a carar
¥an.

To finish the small comporent string
formation phase, w2 now sort the cara-
vans, vith longer caravans first and,
amonqg egqual lengths, sorting numerically.
There may be groups of caravans which are
equivalent, and now the clerk holding the
header of a caravan do2s a random access
vrite to the ccmponent, telling it the
start of all equivalent caravans. This
completes this section, taking 8(n) total
time. We should mention that, while all
of the clerks may have been involved in
the forming of the strings for the small
components, they also retained all of the
information abcut the edge pixel they
represant.

4.3 LARGE STRING FORMATION

The large st*ring formation is almost
identical to that for thes mesh computer,
and now we are only generating a bit per
clerk, irnstead of the bit par processor
used in the packets and caravans, One
difference is that we only count the num-
ber of larqge descendants when we assign
space.

If a tree T has large sons S1, eee,
Si, if the string part of its caravan is
R, and if the sons are ordered so +hat
187> S(i+1) | or else | Si | S(j+1) | and
2{Si)"<Me (S(i+1)), *hen o(T) will be
02(S1),.e{S1)R1, Here the ordering w¢»
is slightly different than before. As we
are comparing strings, if they are equal
up to a point and then one stops bacause
the rest is in a caravan, while the other
one still has more bits arising from
large compcenants, then the second one is
judged larger, while if they both stop we
compare the pcintars back to the caravans
to firnish the ccmpariscn. This has
changed cur e function, but doass not
change the fact that it preserves tree
isomorphism for trees generated from fig-
ures of the same size, One deficiency is
that the sam=2 trez car have different
string represantations when it arises
from fiqures of differ=an* sizes ({+his
occurs because th: definition of small
depends on *he figure size)., Whilz this
does not alter cur ablility <=o computs
+the topological matching predicate, it is
not desirable. The deficiency can be
correctad, in e(n) time, by fairly
straightforward techniques which we omit,

To complete the algorithm we need to
insert <he caravans into the large compo-
nen* strings, stcring everything as 1 '
bit/processor. This can be done in e(r)
time, which complates sur proof of the
following th=2o0rem.

On a mesh automaton of size
algorithm decides topological
8({n) tim=.

n¥%x2, our
matching in

30

5. CONCLUSIONS

Following Bever's lead, we have conm-
puted the topclogical matching predicate
by transforming a fiqure into a binary
string which jdentifies the isomorphism
class of the fiqure's component tree.
Since we have shown that such a string
representation can be computed in linear
time on either a mesh automaton or a mesh
computer, we can give linear time solu-
tions to several other topological prob-
lems. For exanmple, it is easy to show
that the string can be processed in
linear time to decide if the figure is
connectad, or simply connected, or to
determine the fiqure's genus. Linear
time sqlutions wers already known for
these problems [3,11], but our algorithm
provides a systematic, albeit compli-
cated, approach which presumably can be
used for related problems.

Since the ccmponant tree captures the
notion of homotopy for two-dimensional
digital fiqures, it is natural to con-
sider higher dimensions. Our algorithms
can be extended to higher dimensional
mesh computers and automata, remaining
linear in the edgelength, but unfortu-
nately the compcnent tree is not as use-
ful in hiqher dimensions. For example,
if one three-dimensional figure consists
of “vwo disjoint =clid black tori in a
white background, and a second figure has
the two tori disjoint but linked, then
the two figqures will have equivalent com-
ponent trees, even *hough they are not
homotopic,

Bever's thesis included a large number
of open problems, most of which have now
been solved [3,11,13). The labeling
technique used in our mesh automaton
algqorithm can be used to solve tvwo more
cf these, namely the "representative®
problem and the "gold plate™ problen.
(This labeling technique for mesh autom-
ata was introduced in [13], but I forgot
to men*ion that it also solved thess
problems.) In the represasrntative problem
exactly one pixel in each black component
is toc be chanqged to reil. To do this,
just have what we callad ths representa-
tive in the mesh automaton solution act
as the representative hers. This solves
the problem for all labeled components,
and in eachk square we can use a siaple
8(K**2) alqorithm to pick the representa~
tives for the unlabsled ones. In *he
gold plate problem one component has a
gold pixel and we are to make *he rest of
its component golden also., If it is an
unlabeled compcnent we use a O (K%%2)
algorithm, while if it is labeled we
notify all edqe rixels in that componen%),
and they in turn propogate the gold
throughout their square.

The one remaining open problem from
Beyer's thesis is to determine a minimal
distance scluticn to a maze. 1In this
problem one is given a solvable black/
white maze with designated start and stop
positions and is to mark a minimal dis~-
tance path between them. Beyer showed
that one could decide if the maze was
solvable or not in linesar time, but to
date no linear time algorithm has been
found for marking the path. Linear tims
algorithms for deciding the solvability
of mazes on higher dimensional mesh
automata appear in {4,131, and a linear
time algorithm for marking a minimal path
on a (2-dimensional) mesh computer
appears in {61, Determining if there is
a linear time algorithm for marking a
minimal path is a particularly intrigue-
ing questicen.

REFERENCES

1. W. T. Beyver, Facognition of topologi-
cal invariants by iteraive arrays, Ph.D.
thesis, Mathematics, MIT, 1969,

2. P, Dietz and S. R. Kosaraiju, Recogni-~
tion of topological egquivalence of pat-
terns by array automata, J. Comp. and
Sys. Sci. 20 (19€0), 111-116,

3. S. R. Kosaraiju, Cn scme open problems
in the theory of cellular autcmata, IREE
Trans, Computers 23 {(1974), 561-565.

4. S. R. Kosaraju, Past parallel process-
ing array algorithms for some graph prob-
lems, ACM Symp. cn Theory of Computing 11
{1979y, 231-236.

5. S.
ture patterns,
789-801.

Levialdi, ¢n shrinking binary pic-
Cemm. ACM 15 (1972),

6, R, Miller and Q. F. Stout, Mesh-compu-
ter algorithms fc¢r some topological and
geometric problems, to appear.

7. D. Nassimi and S. Sahni, Finding con-

nected components and connected ones on a
mesh~connected parallel comput2r, SIAM J.
Computing 9 (198€), 74u4-757,

8. D. Nassimi and S. Sahni, Data broad-
casting in SIMD computers, IEEE Trans.
Computars 30 (19€1), 101-106.

9. Aa.
Math.

Rosenfeld, Digital topology, Amer.

Monthly 86 (1979), 621-€30.

10. A, Rosenfeld, Pjicturs lLanguagss, Aca-
demic Press, 1976.

11. A. R. Smith III, Two-dimensional for-
ral lanquages and pattarn recognition by
cellular automata, 12th Symp. on Switch-
irqg and Automa*ta (1971), 144-152,

31

12. Q. P. Stout, Drawing straight lines
with a pyramid cellular automaton, Info.
Proc. Letters 15 (1982), 233-237.

13. Q. P. Stout, Using clerks in parallel
processing, 23rd Found. of Computer Sci.,
1982, 272-279.

14, C. D. Thompscon and H. T. Kung, Sort-
ing on a mesh-connected parallel compu-
*er, Comm. ACM 20 (1977), 263-271.

