In Journal of Algorithm=26 (1998), pp. 1-33.

Ultra-Fast Expected Time
Parallel Algorithms

Philip D. MacKenzié
Google Research

Quentin F. Stoyt
Computer Science and Engineering
The University of Michigan

Abstract

It has been shown previously that sortimgtems inton locations with a polynomial number of proces-
sors require$)(log n/loglogn) time. We sidestep this lower bound with the idea of Paddedrigpror
sortingn items inton + o(n) locations. Since many problems do not rely on the exact raskrbed items,

a Padded Sort is often just as useful as an unpadded sortlgotittam for Padded Sort runs on the Tolerant
CRCW PRAM and take®(log log n/ log log log n) expected time using log log log n/ log log n proces-
sors, assuming the items are taken from a uniform distohutiUsing similar techniques we solve some
computational geometry problems, including Voronoi Dagr with the same processor and time bounds,
assuming points are taken from a uniform distribution inuhé square. Further, we present an Arbitrary
CRCW PRAM algorithm to solve the Closest Pair problem in tamsexpected time with processors
regardless of the distribution of points. All of these altdons achieve linear speedup in expected time over
their optimal serial counterparts.

!Research done while at the University of Michigan and sujgpioy an AT&T Fellowship.
2Supported by NSF/DARPA grant CCR-9004727.

1 Introduction

For a given problem wit inputs, we define anltra-fast parallel algorithm as one which uses a linear
number of processors and runs@(log logn)°()) time. Some examples of problems with known ultra-
fast parallel algorithms include merging two lists of sizi24] and finding the maximum of numbers [36].
We also define anltra-fast expected timparallel algorithm as one which uses at most a linear number o
processors and runs @((log log n)°()) expected time. In this paper, we will develop ultra-fastentpd
time parallel algorithms for sorting and many geometridapems. These algorithms will also achieve linear
speedup in expected time over their serial counterparts.

Because there is some ambiguity involved in the term “exguktime,” we will define it more carefully.
If we assume the inputs to an algorithm come from a specifibaiyiity distribution, we call the expected
time analysidistribution dependent~or adeterministicalgorithm, the expected time is simply the average
running time over the distribution of inputs. Forandomizedalgorithm, the expected time is the average
running time over the distribution of inputs and the possitsindom choices within the algorithm.

Alternatively, if we assume nothing about the input disttibn, we call the expected time analysis
distribution independent~or a deterministic algorithm, the expected time is singgual to the worst case
time. For a randomized algorithm, the expected time is tleeame running time over the possible random
choices for the worst case input, or equivalently, the maxmover all inputs of each input’s average running
time.

We will define arandomized parallel algorithnas one in which each processor can make independent
random choices. In this paper, we present randomized pbaddjorithms that solve the following problems
in ©(log log n/ loglog log n) expected time with linear speeduplg log log n/ log log n processors).

Padded Sort Givenn values taken from a uniform distribution over the unit im0, 1], arrange them in
sorted order in an array of size+ o(n), with the value NULL in all unfilled locations.

All Nearest Neighbors Given a setS of n points taken from a uniform distribution over the unit squar
for each poinp € S find the point inS — {p} that is closest t@ in the Euclidean metric.

Relative Neighborhood Graph Given a setS of n points taken from a uniform distribution over the unit
square, for each point € S, construct an edge fromto every other poing € S wherep andq are
relative neighbors, i.e., for all € S wherer # p, g, the distance fronp to ¢ is less than than the
maximum of the distance fromto r and the distance fromto r.

Voronoi Diagram Given a sefS of n points taken from a uniform distribution over the unit sqydor each
pointp € S find the maximal polygon around it which has the property #mt point in the polygon
is closer top than to any other point is'

Delaunay Triangulation Given a setS of n points taken from a uniform distribution over the unit squar
find a triangulation ofS with the property that the interior of the circumcircle ofeey triangle is
empty. A triangulation of5 is defined as a planar subdivision inside and including tmgeohull of
S, whose vertices are exactly the points$fand whose regions are all triangles.

Largest Empty Circle Given a setS of n points taken from a uniform distribution over the unit squar
find the largest circle that contains no pointsSodnd whose center is internal to the convex hulbof

Givenn!*¢ processors, the above problems can be solved in constaat We do not consider these
ultra-fast algorithms due to the super-linear number otessors, but we include descriptions of these
algorithms for completeness.

We also present a randomized parallel algorithm to solvddh@wing problem in constant expected
time givenn processors. Note that there is no dependence on the digintaf points in this problem.

2

Closest Pair Given a setS of n points in the plane, determine the pair of pointsSinvhich are closest to
each other in the Euclidean metric.

All of the problems above have trivial linear lower boundstha expected times of their solutions,
and serial algorithms have been developed for all of thenchvhittain this lower bound. The solution
for sorting is well known. Bentley, Weide, and Yao [7] exhibhear expected time algorithms for All
Nearest Neighbors and Voronoi Diagram, and linear expetiteel Delaunay Triangulation and Largest
Empty Circle algorithms follow immediately. KatajainengWalainen, and Teuhola [22] exhibit a linear
expected time algorithm for the Relative Neighborhood GraRabin [29] has given a randomized linear
expected time algorithm for Closest Pair which is distiitnutindependent.

There has been a great amount of work on parallel algoritbndi$tribution independent versions of the
problems above. We give the most recent results here, amghtadvhether the algorithms are PT-optimal,
which means that the processor time product is equal to tied k®ver bound, or simply optimal, meaning
that for the number of processors used, the time is equal tmark lower bound. When the processor time
product of an algorithm i®(n), the PT-optimality is obvious, and we will sometimes omistimdication.

Leighton’s [25] modification to the AKS sorting network [3nd Cole’s parallel merge sort [13] both
usen processors and achiew®(log n) worst case time for sorting, which is PT-optimal. We notet tha
any PT-optimal algorithm for sorting must use at lelagin time [4]. Reischuk [33] gives a PT-optimal
randomizedn processor©(logn) time algorithm for sorting. Rajasekaran and Reif [30] giveaadom-
ized algorithm for general sorting which achie¥@8og n/ log log n) time with n log® n processors for any
e > 0, which is optimal, a randomized algorithm for integer sagtwhich achieve® (logn/loglogn)
time withn(log log n)?/ log n processors, and a PT-optimal randomized algorithm fogeteorting which
achievesd(logn) time with n/log n processors. Cole and Goodrich [14] and Willard and Wee [8Th b
present PT-optimak processorP (log n) worst case time algorithms for solving the All Nearest Néigh
and Closest Pair problems. Aggarvedlal.[1] present am processor© (log? n) worst case time algorithm
for finding the Voronoi Diagram. Cole, Goodrich, and O’Dunta[15] give algorithms for finding the
Voronoi Diagram in©(log? n) worst case time wit/log n processors, and i (log n loglog n) worst
case time withn log n/log log n processors. Reif and Sen [32] have recently given PT-optinmaoces-
sor, ©(log n) expected time randomized algorithms for constructing thekoi Diagram and finding All
Nearest Neighbors. We note that the Largest Empty Circlebegiound in©(log n) worst case time with
n processors given the Voronoi Diagram, so the time and psocd®unds above also apply to finding the
Largest Empty Circle.

Berkmanet al. [8] give n/ log log n processorP(log log n) worst case time algorithms for some other
geometric problems, but these problems are highly congitai On the other hand, we solve much more
general problems and use randomness and a knowledge ofdigiitbution to obtain linear speedup and
o(loglog n) expected time solutions.

Two groups have previously done work on parallel distrimiiependent expected-time geometry. Stout
[35] shows that givem points taken from a uniform distribution over the unit sqahe maximal points,
extreme points, diameter, smallest enclosing rectanghallsst enclosing circle, and closest pair can all
be found in constant expected time witlprocessors. These results can also be extended to moragener
regions. Levcopoulos, Katajainen, and Lingas [26] show tifra Voronoi Diagram of: points taken from
a uniform distribution over the unit square can be constdidh O (logn) expected time withm/logn
processors. Katajainen, Nevalainen, and Teuhola [22] shathe Relative Neighborhood graph 1of
points taken from a uniform distribution over the unit squean also be constructed @(log n) expected
time withn/log n processors.

Distribution dependent parallel sorting has been workedyChlebus [12]. He obtains @(logn)
expected timep/ log n processor algorithm to sontrandom integers in the randg n).

Following the work in this paper, MacKenzie [27] has provelower bound ofQ2(log* n) expected

time for Padded Sort and Hagerup and Raman [21] have showthtbas optimal by giving arO(log™ n)
expected time algorithm for Padded Sort. We note that thgaridhm also improves on the algorithm given
here in that it does not rely on any assumption about theilalision of inputs.

2 Preliminaries

Some probabilistic tools and other equations which will beful in our analyses are given in the appendices.
Throughout the paper we will assume thgthe number of inputs) is large enough so that our analysels ho

For all our algorithms except for Closest Pair we will be gdime Tolerant Concurrent Read, Concurrent
Write (CRCW) Parallel Random Access Machine (PRAM) modekhis model, if two or more processors
write to a cell simultaneously, then the cell remains ungledn An algorithm for the Tolerant CRCW PRAM
implies algorithms with the same time and processor boundgronger models, such as the Collision and
Arbitrary models (see, for example, Hagerup and Radzik)[26Jor the Closest Pair algorithm we will
be using the Arbitrary CRCW PRAM model. In this model, if two more processors write to a cell
simultaneously, the one which succeeds in writing is ch@sbitrarily.

In all our algorithms, we will also assume that we can perffiloar and ceiling functions in constant
time. These are used to perform various types of “bin-sgttprocedures, which are crucial to our algo-
rithms.

We will use the following CRCW PRAM algorithms as subprocexu

Prefix The prefix operation takes an array = [ag, a1, ...,a,—1] and an associative binary operator
as input, and outputs an arr&y = [sg, s1,...,S,—1], Wheres; = ag @ a1 @ ... ® a;. Whend
is addition, and the input array consistsroinumbers, each ab(logn) bits, the prefix operation
can be performed i®(log n/ log log n) time with n log log n/log n processors on a CRCW PRAM
[16]. Compressionin which m marked records out of a total af records must be compressed to
the front of the output array, can easily be reduced to prefditmn, and thus can be performed
in the same time bounds. Using only the processors assignee tmarked records, those marked
records can be compresseddfilog n) time [18]. We will call this anarked compressiotWhen® is
maximum or minimum, the prefix operation can be performe@ (fog log n) time usingn/ log logn
processors [9, 34]. This obviously implies that the maximarmminimum ofn elements can be found
in ©(log log n) time with n/ log log n processors [36]. However, if we can us&™ processors, for
anyb > 0, the maximum of: elements can be found in constant time [36].

A special type of prefix operation is tleegmented prefix operatian which the input array is

divided into contiguous groups and a prefix operation isquaréd within each group in parallel. A
segmented prefix operation can be performed in the same tiom&ls as a normal prefix operation.

Merge Two lists of sizen can be merged i®(log log n) time usingn/ log log n processors [24].

Sort A list of n items can be sorted i®(log n) time usingn processors [3, 13]. With? processors, the
items can be sorted i®(logn/loglogn) time, by finding the position of each item using separate
prefix operations.

Global OR Assuming each processor in some set of processors contaiosail, the global OR of those
processors’ values can easily be found in constant time dkrlaitrary CRCW PRAM. However, on
the Tolerant CRCW PRAM, we need to have exactly one desigratecessor to allow us to perform
a global OR in constant time as follows. The designated smreinitially writesO to a memory
location. Then it writed to that memory location while all the other processors wiritsly if they
contain al. The designated processor now reads the location. If tfeitwtcontaing) then at least
one other processor containg and so the designated processor writégere. If the location contains
1 then no other processor contain$ and the designated processor writes its own value theree Not

4

that if we have a known block of processors, we can simply lusditst processor in the block as the
designated processor. Also note that we can perform a GidWBI in a similar fashion.

Broadcast One processor can broadcast a value to any other set of possds constant time by simply
writing the value to a global memory cell. Each processot wents to participate in the broadcast
then can read the cell.

Now we list some lemmas that will be useful in our analysis. e the term “randomly” to mean
“with uniform distribution.” In some lemmas, we will assurti&t a set of: bins is partitioned into blocks of
log log n consecutive bins, or into superblocksded* n consecutive blocks (i.elog?* n log log n consecutive
bins).

Lemma 2.1 Givenn items randomly placed inta bins, the probability that more thaéw/ log® n blocks
of sizelog log n will all contain at least8 log log n items is less tham/n3.

Proof: Use a Chernoff bound to place an upper bound on the prolyathitit6n/ log® » blocks each have at
leasts log log n items, and multiply this by the number of choicestaf/ log® n blocks out ofn/ log log n
blocks.

Lemma 2.2 Givenn items randomly placed into bins, the probability that more thahlog n fall into any
block of sizdog log n is less thari /n3.

Proof: Use a Chernoff bound to place an upper bound on the prolyathktt 4 log n items fall into any
block and multiply this by the number of blocksl
The ideas in the following lemma were previously used in 58b] and Rajasekaran and Sen [31]

Lemma 2.3 For any b > 0, n processors can each be allocated a position in an array'of® positions
in constant time (which depends dywith probability of failure less than /n in the CRCW PRAM model.
(We assume that each processor has a unique identificatiorber)

Proof. A processor attempts to allocate a position for itself in @ayaby writing its unique identification
number to a random position. It then reads that positiont dbntains its own identification number, then
that processor has succeeded. Otherwise, it has failed.

Forb > 2 the allocation takes one step. The probability of a proaefssiing is bounded byt /»2, and
thus the probability of any failing is bounded by1/n?) = 1/n.

Forb < 2, we assume without loss of generality thats large enough (depending @h so that the
following analysis holds. We divide the array iffo= [5/b] — 1 equal size subarrays, and perform the
allocation inT steps. At each stepwe attempt to allocate each of the remaining unallocatedgzsors a
position in subarray. We first note that the probability of a processor failing atep is less thafi’/n®.
Thus, ifn® processors must be allocated in stefor some2b/5 < a < 1, andZ; is the number which fail,
thenZ; is dominated by a random variabl ~ B(n®, T'/n®). Then by a Chernoff bound,

a—(b/5)
© < 1/n?.

Pr(Z; > na_(b/5)) <Pr(Z > n“_(b/5)) <27
At each stepg we see that we will have less thah~(*/%) processors left to allocate, and thus affer- 1
steps, we will have less thar?®/5 processors to allocate. The probability of a processanéaibn the last
step is bounded by /n!*(%/5) and so the probability of any processor failing on the lap $6 less than
n2b/5(T /1 +36/5)) < T/l +b/5 0
Note that in the Padded Sort algorithm, we will always usepifexious lemma withh = 2, and thus
allocation will be accomplished in one step with high prabigb

Lemma 2.4 Givenn items randomly placed into bins, the probability that more thafog? n-+log® n) log log n
items fall into any superblock éfg* n blocks isO(n~2).

Proof: Use a Chernoff bound to put an upper bound on the probaility(log* n + log® n) log log n items
fall into any superblock and multiply this by the number opstblocks.[]

Lemma 2.5 For k > 16,

Proof: Fork > 16,

IN
/—\
N
)
_/

k(log k—log 2e)
e—(klogk)/él'

IA A

O

3 Padded Sort

Beame and Hastad [6] have shown that finding the paritytifs in any PRAM model require3(log n/ log log n)
time using any polynomial number of processors. From Ajtal Ben-Or [2] and Chandra, Stockmeyer,
and Vishkin [11], we can see that this lower bound applies evieen randomization is allowed and/or the
bits are chosen at random. This implies that sortingems inton locations require$2(logn/loglogn)
time using any polynomial number of processors, even if titvm$ are taken from a uniform distribution.
Fortunately, the lower bound of Beame and Hastad does nét &pp Padded Sort, in which items are
sorted inton+o(n) locations with some locations left blank, and we have foun@wpto use the distribution
assumption and randomization to achieve a PT-optéiédg log n/ log log log n) expected time algorithm.

A Padded Sort does not convey as much information as an uegastit, but if the important infor-
mation is simply the relative ordering of items, and not tkaat rank of the sorted items, then a Padded
Sort will be as useful as an unpadded sort. Examples of prabie which a Padded Sort is directly useful
include the Maximum Gap problem and the one dimensional Akmdst Neighbors problem.

The Padded Sort algorithm we present uses many of the samae adethe serial algorithm for sorting
items taken from a uniform distribution, so we will descritbe serial algorithm here. The main idea is
that since the: items are taken from a uniform distribution over an intertaey will be roughly evenly
distributed over that interval. Thus if we divide the int@rinto subintervals of equal length’'n and assign
a bin to each interval, we know that on averagietem will fall into each bin. It can be shown that the
expected time to sort the items in a single bin will be cortstand thus the expected time to sequentially
sort all the items in all the bins will be linear. The algonittthen simply places items in bins (usually
implemented as linked lists) and sorts the items in each bin.

Unfortunately, a straightforward parallelization of thieose technique does not lead to an efficient
algorithm. The first problem is placing items in bins. The&sted maximum number of items in a bin is

6

©(logn/loglogn) [19], and thus it would take that many naive attempts beftiréeans were placed in
bins. The other problem is that assuming each processorotm®kin to sort, the expected maximum time
would beQ(log n/ loglog n). However, we show that we can still use the bin techniqueinmmuch more
careful way, to achieve an ultra-fast expected time pdraligrithm.

The algorithm for Padded Sorting is logically divided int@ot sections. The first is the placement
of items into bins, and the second is sorting within bins. sehsections are further divided into separate
stages. Between the stages we will use a processor re@logabcedure described below. This processor
reallocation could fail either because not enough itemseseaed in the previous stage or because the items
that did not succeed were badly arranged. If this happensevest to a deterministic logarithmic parallel
sorting algorithm. We will show that the probability of tHigppening is less tha@(n~!), so it will not
increase the expected running time of our algorithm.

3.1 Processor Reallocation

Here we give @ (log log n/ log log log n) expected time algorithm that can be used to approximateglgv
distribute the processors over a random set of problemdwiged to be solved. (For the Placement in Bins
section, this will distribute processors evenly to unpthitems, and for the Sorting within Bins section, this
will distribute processors evenly over bins which have resrbcompletely sorted.)

Formally, letc > 1 andm > nlogloglogn/loglogn be integers, and lgtbe a value betweety log®n
andlog log log n/41oglog n. Assume we have an array of sizen in which there is a set of marked posi-
tions, and this set is taken from a distribution with the gmies that (1) for any given number of marked po-
sitionss, any set of positions of sizeis equally likely to be marked, and (2) the probability tHas humber
of marked positions is larger thap is O(n~2). Then withm processors and i®(log log n/ log log log n)
time we can with high probability allocate from onertg/4np unique processors to each marked position.
The probability of failing will beO(n~2). We need the following Lemma.

Lemma 3.1 If we partition A into n./41og®*! n groups of size log®*! n, then the probability that there are
more thanl6plog®*! n marked positions in any group &(n=2).

Proof: First we can assume thdt contains at mostp marked positions, since the probability that it does
not is O(n~2). Now we analyze the probability of more thafiplog®*t! n marked positions in a given
group. Note that for a given positighin this group, even conditioning on any other positions is group
being marked or unmarked, the probability of positjobeing marked is at mo&p. Let Z be the number

of marked positions in this group. Théhis a random variable which is dominated by a random variable
Z' ~ B(4log®*1 n,2p). Using a Chernoff bound we obtain

Pr(Z > 16plog*in) < Pr(Z' > 16plog™*!n)
1
232p log®t1n/9
1
pEES

<

Now we can bound the probability of having oveip log®*! n marked positions in any group by summing
the probability of this occurring in one group over all greugNote that because we are simply summing
probabilities, this bound applies regardless of deperidsraetween groups.) Since there are fewer than
blocks, the total probability of any group having more th&éplog®™! n marked positions is at most 22,
O

The Processor Reallocation algorithm proceeds as folldvesassignim log®*! n/n processors to each
group and perform a compress operatio®ifiog log n/ log log log n) time. We then perform a prefix sum

7

in each group to count the number of marked items. If a pracefasds that one of the prefix sums is
greater thari6plog®! n, then we say this processor has failed. We perform a globalcOfRorm all the
processors of a failure. It is the responsibility of the @alhf this reallocation procedure to decide what
to do on a failure. If there is no failure, then in each groug, will have m/4np processors to allocate
to each marked item. Lét be the number of processors we wish to allocate to each mégmdwhere

1 < k < m/4np. To the marked item at positianin the compressed array, we will allocate proces&ers
to k(i + 1).

3.2 Random Placement Procedure

We will also use a randomized procedure for placing (and cesging and sorting): items into an array of
sizek, assuming that each item has a processor assigned to itm&ssis the array of sizé:, and assume
processomp; is assigned to item. Processop; then performs the following procedure. First it chooses a
randomr betweerD) andk — 1, and writes into A[r|. Then it readsA[r]. If it readsi, it sets a local variable
Succ= 1, else it sets Suce 0. If Succ= 1, it participates in a compression ovéof the successful writes.
Assume it ends up in position after compression. If = 0, it considers itself the designated processor.
Then (even if Suce= 0 or s # 0) it participates in a global AND over the Succ values ofralprocessors.
Now if Succ= 1, it sets AllSucc to be the result of the global AND. Otherwissets AllSucc= 0. (Note
that AllSucc= 1 if and only if all processors were successful in their writ€he key to this fact is that if
any processor had Suee 1, then there will be a designated processor, and the glob& ANl return the
correct answer.) Now if AllSuce- 1, processop; writes the actual itemto A[s], and participates in a Sort
of the compressed list of items.

When this procedure is used in the Padded Sorting algoritbewill specify the algorithms to be used
for compression and sorting.

3.3 Processor Choice Procedure

We will encounter the situation in which we would like to clsecmne processor out of many, only knowing
that each processor has a unigue index fioto k. (Note that there might be fewer tharprocessors, and
for any given index, it might be that no processor has that index.) To do this veeamsarray of sizé&, and
have each processor mark a position according to its indeen Tve perform a compression in the array,
and choose the processor that ends up in the first position.

When this procedure is used we will specify the algorithmeaaubed for compression.

3.4 Padded Sort Algorithm

In this section, we give the algorithm for padded sort. Itiaightforward to show that assuming we do not
revert to a deterministic sorting algorithm, the runnimgeiof each stage is bounded®ylog log ./ log log log n).
Therefore in the analysis, we simply prove that the proligf reverting to a deterministc sorting algo-
rithm isO(n 1)

3.4.1 Placing Items in Bins

In this section, we assume that the unit interval is dividetd +» equally sized subintervals, and a bin is
associated with each subinterval. Placing the items inwilh$¥e carried out in five stages, with processor
reallocations between the first four stages. The fifth stagesimply merge the results from the first four
stages into an array of sizet-o(n) in which items are sorted by bins, items in the same bin arensecutive
locations, and at most the first log log n/ log log log n items in each bin are not sorted.

Number of processors
Stage assigned to each Items placed into Total unplaced items
unplaced item (with high probability)
1 1/v bin array n/4v
2 1 array of size3(log log n)> n/32(loglog n)?
per block
3 8loglogn array of size3(log log n)? n/256 log® n
per block
4 641log? n array of sizetlog®n 0
per block
5 gather items (sorted by bins) into an ard@yof sizen + o(n)

Table 1: Summary of the five stages for placing items in bins.

Assume the input is given in array For each item, Bin(:) = |n - I[i]|, or equivalently, the bin in
which item+ should be placed. Also Blo¢k) = |Bin(i)/loglogn|, or the block (ofloglogn bins) in
which itemi should be placed. Let PO be an array that stores for each itsppibsition in its bin if it is
placed in Stage 1, and otherwisé. Let UNP be an array that stores for each input a binary valdieating
whether it has been placed. Let CO be another array ofsiadicating the number of items placed in each
bin in Stage 1. Let = log log n/log log log n. Table 1 summarizes the five stages for placing items in bins.

Initialization Initialize each element of PO te1, each element of UNP tb, and each element of CO to
0. Also for another array of sizen, initialize each element t0.

Stage 1: Split then items into16v groups. For each group perform the following constant timoeg@dure.
Each processoi (0 < i < n/16v) writess to D[Bin(:)], and then read$[Bin(:)] to see if its
write was successful. If so, it writésto D[Bin(z)], sets UNRi] = 0, sets PQ] to COBIn(i)], and
increments C@Bin(z)].

Analysis of Stage 1: For each item there will be at mostlg16v probability of not being assigned to the
lowest numbered processor writing to its bin. By a Chernofiiriid, the probability of this occuring
to more than twice the average number of items in a grod(is 2). Each of these items implies at
most 1 other processor in a write conflict, and thus the pritityabf more thandn /(16v)? = n/64v?
items from a group not being written is thar(n=2). The location of these items within the group is
obviously random. Thus, the following reallocation progedwill perform with probability of failure
O(n=?)

Reallocation 1: Let n/v? processors be associated with each group ff items. Then in each group
of items in parallel, perform the Processor Reallocatiaocpdure to assign one processor to each
marked (i.e. unplaced) item. If the reallocation fails,ae\to the deterministic sorting algorithm.

Stage 2: For each block, using the processors assigned to each ifesuch that Blockj) = b, perform
a random placement procedure into an auigyof size (8 log log n)3. In this procedure, use marked
compression as the compression algorithm, and Cole’slpamarge sort for the sort algorithm. If the
procedure succeeds let each processor mark its item aslpladee procedure fails for block, (i.e.
AllSucc = 0 for each processor) then repeat the procedure until eitlseicceeds, or the procedure
has been run four times.

Analysis of Stage 2: From Lemmas 2.1 and 2.2, we see that the probability thag ther oveR4n/ log” n
items from blocks with oves log log n items in each i€)(n~3). By Lemma 2.3 the probability that

a block with< 8log log n items will fail in all four random placement attempts<is(8 log log n) .
By a Chernoff bound, we can show that the probability of owdcé the average number occuring is
O(n~?). Thus the probability that we have over

2n(8log logn) 24n - n
(loglogn)(8loglogn)* ~ log"n ~— 32(loglogn)?

items which have not been placed$n~2). Within each group these items are at random positions.
Also, given any distribution of items between the groupsl(@ven if all items were in the same group)
the following reallocation procedure will perform with frability of failure O(n=2).

Reallocation 2: Let n/v? processors be associated with each group ff items. Then in each group
of items in parallel, perform the Processor Reallocatiomcedure to assigfilog logn processors
to each unplaced item. (We may assume that each processmdition to knowing the item it is
assigned to, also knows its rank in the list of processoligmes to its item.) If the reallocation fails,
revert to the deterministic sorting algorithm.

Stage 3: For each block, let B; be an array of siz8loglog n and let4; be an array of sizé8log log n)3.
For each block, and for eachi € {0,...,8loglogn — 1}, letC; , be an array of sizés log log n)>.
Now for each block and eachi € {0,...,8loglogn — 1}, using7the processors with rankssigned
to each itemj such that Blockj) = b, perform a random placement procedure into agy. In
this procedure, use marked compression as the compresgaittan, and Cole’s parallel me7rge sort
for the sort algorithm. If the procedure succeeds for a gpein(b,), then the designated processor
p for (b,4) participates in a processor choice procedure in aBgy In this procedure use marked
compression as the compression algorithm. The procesabistbhosen then broadcasts that fact to
other processors with the same rank, and these processdtghai items as placed, and transfer
their list of sorted items to array;.

Analysis of Stage 3: From Lemmas 2.1 and 2.2, we see that the probability thag ther oveR4n / log” n
items from blocks with oves log log n items in each i€)(n~2). By Lemma 2.3 the probability that a
block with < 8log log n items will fail in all 8 log log n random placement attemptsds2—81oglogn,

By a Chernoff bound, we can show that the probability of owdcé the average number occuring is
O(n~3). Thus the probability that we have over

2n(8loglogn) 24n n

<
log®n log"n = 2561log® n

items which have not been placedi$n~2). Within each group these items are at random positions.
Also, given any distribution of items between the groupsl(@ven if all items were in the same group)
the following reallocation procedure will perform with grability of failure O(n=2).

Reallocation 3: Let n/v? processors be assigned to each groum af items. Then in each group of
items in parallel, perform the Processor Reallocation guiace to assigf4 log* n processors to each
unplaced item. If the reallocation fails, revert to the dati@istic sorting algorithm. Otherwise, let
Item(p) be the item assigned to procesgorand let Rankp) be the rank of processarin those
processors assigned to Itém). Let the superrank of a procesgobe |Rankp)/641log® n], and let
the subrank op be Rankp) (mod 64log®n). Let a processop with subrank0 be called a main
processor, and any procesgbrassigned to the same item@aand with the same superrank @gse
called an auxiliary processor for

Stage 4: For each block, let B be an array of sizéog n and letA] be an array of siz¢4logn)3. For
each block, and for each € {0, ..., (logn) — 1}, let Cy/; be an array of siz¢tlog n)3. Now for

10

each blockb and each € {0, ..., (logn) — 1}, using the main processors with superrarmssigned
to each iteny such that Blockj) = b, perform a random placement procedure into afrgy. In this
procedure, use the auxiliary processors to perform comsjomredy computing prefix sums over the
number of succesful writes before their main processocsessful write (if the main processor was
successful). In the same manner, use these auxiliary pase® sort by computing prefix sums over
the number of items smaller than their main processor’s.iténthe random placement procedure
succeeds for a givefb, i), then the designated procesgdor (b, i) participates in a processor choice
procedure in arrays; . In this procedure, again use the auxiliary processors tfome compression,
as above. The processor that is chosen then broadcastadhti the other main processors with the
same superrank. Then these processors mark their itema@dpland transfer their list of sorted
items to arrayA; . After this, perform a global OR to determine if any blocKédliin all of its random
placement attempts. If so, revert to the deterministiasgrlgorithm.

Analysis of Stage 4:In this stage we makieg n independent attempts in each block to place its items into
random positions in arrays of sizélogn)3. ¢From Lemma 2.3, we know that for each independent
attempt, if the number of items in the blockd4s4 log n, then the probability of not placing the items
in one attempt is at modt/4 log n. Then by a Chernoff bound, we can see that the probabilityl of a
log n attempts failing isO(n=2). ¢From Lemma 2.2, the probability that any block has aveg n
items isO(n~?), so the probability that any block will fail to have a confifoee placement must be
O(n=2).

Stage 5: For each blocki, merge the items placed in Stages 2, 3, and 4 (from arfgysA;, and AY)
using the processors assigned to them in Reallocation I 0$iag segmented prefix sums, count the
number of items in each binplaced in Stages 2, 3, and 4. Add this to[GIONow for each superblock
j of log" n consecutive blocks, perform the following. Usg® nlogloglog n/ loglog n processors
to perform a prefix operation over theg®* nloglogn positions in the CO array corresponding to
the bins in this superblock. This will find for each kinthe number of items that precede it in the
superblock. Now using a global OR, check if there are more tha* n + log® n) log log n items in
any superblock. If so, revert to a deterministic sortingoathm. Otherwise, let” be the output array
of sizen + (n/logn), and letz = (log* n + log® n) log log n. Let S(b) be the number of items that
precede birb in the superblock. Now for each group of 16v items perform the following constant
time procedure. Each processaf < ¢ < n/16v) writes itemi to F'[jz+S(b)+PQ[i]], if PO[i] > 0.
After this, place the items merged from Stages 2, 3, and 4 thiédast item placed from Stage 1.

Analysis of Stage 5:By Lemma 2.4, the probability that more théiog? n + log® n) loglog n items fall
into any superblock i®(n=2).

3.4.2 Sorting Within Bins

Assume we have correctly placed theétems into their corresponding bins. Now we must sort thenge
within each bin. This procedure is divided into two stagesh& reallocation of processors between the
stages. Again let = log log n/ log log log n.

Stage 1: Then bins are divided equally among the processors, and eackgmocis given at modu4v
steps to try to sort the items in itshins. The processors can use a standard serial sortingthigor
such as MergeSort.

Analysis of Stage 1: The left hand side of the inequality in Lemma 2.5 is the maximprobability of
exactly k items landing in one bin given that we have seem /2 other bins. Now assume we have
a serial sorting algorithm that sorksitems in exactlyck log k steps, for some constaat Then the

11

probability that it takes exactict steps to sort a bin will be less thayiet. Thus the time to sort a bin
is bounded by a simple exponential distribution. Withosslof generality, we can assumé& < 8t¢.

In this stage, each processor habins to sort and is given a total dft4v steps. 80v steps
will take care of sorting all bins with fewer thal0 items. Now we will bound the probability
that more tham /4v(log logn)? groups ofv bins (each with over0 items) take more thaf4v
steps each to sort. From the discussion above, the time t@4mn is bounded by an exponential
distribution. LetZ be the time to sork/4(loglogn)? bins. ThenZ is dominated by a random
variable Z' ~ T'(n/4(loglogn)?,1/8). We can bound the tail aZ’ using a Chernoff bound, and
multiplying by the number of possible choicesof4v(loglogn)? out of n/v groups, we see that
Pr(Z > 16n/(loglogn)?) < O(n=2). Also, the processors that fail are randomly distributedthe
following reallocation procedure will perform with failerprobabilityO (n=2).

Reallocation 1: Perform the Processor Reallocation procedure to agsigriogn)? processors to each
unfinished processor, and more specifically,log n to each of the unfinished processor’s bins. If the
reallocation fails, revert to the deterministic sortingaithm.

Stage 2: For each birb, deterministically sort the at mosév unsorted items in. Now binb has at most 2
sorted sublists in it. If C] < 2loglog n, merge the lists using tHeg log n processors assigned to
the bin in the Reallocation 1 of Sorting Within Bins. Othesej merge the lists using the processors
assigned in Reallocation 1 of Placing Items into Bins to thms placed in this bin in Stages 2, 3, and
4. In either case, there will be at most twice as many items@epsors.

Analysis of Stage 2: Stage 2 is deterministic and always succeeds.

Itis a simple matter to make sure that each unused locatiotaics the value NULL, and this completes
Padded Sort.
We have therefore proven the following theorem.

Theorem 3.1 Givenn values taken from a uniform distribution over the unit inégr in
O©(loglogn/logloglogn) expected time and usinglog log log n/log log n processors, these values can
be arranged in sorted order in an array of sizet+ o(n) with the value NULL in all unfilled locations.

We note that although the size of the output is anly o(n), we actually use superlineat {polylog(n))
space during the Padded Sort algorithm.

4 Applications of Padded Sort

By having each processor choose a random number uniformoiy [d, 1] and performing a Padded Sort,
we will obviously be left with the processors in random ordéve can easily obtain a random cycle of
the processors from this using an algorithm for chaining,[80d we can obtain a random permutation
of the processors by compressing the padded list using a @efin operation. (In a random cycle of
processors, each processor contains a link to anothergsmgdhe links form a simple cycle, and each
possible cycle is equally likely.) Thus, by using the Pad8edt algorithm given above, a random cycle
can be constructed B (log log n/ log log logn) expected time withn log log log n/ log log n processors,
and a random permutation can be constructe® (itog n/ log log n) expected time with loglogn/logn
processors.

This result is not optimal, as shown by Gil, Matias, and Vislk 7], who give an algorithm to construct
a random permutation i®(log* n) expected time using/log* n processors, wherbg n = logn,
log¥ n = log(log(i_l) n) fori > 1, andlog™ n = min{i : log®W n < 2}.

12

We note that the Padded Sort algorithm given above can algiewed solely as a item distributing pro-
cedure, which simply places items into their correspondiimg. This item distributing property makes the
Padded Sort algorithm very useful in solving many other %praty” problems in© (log log n/ log log log n)
expected time wit log log log n/ log log n processors. We show some important examples here.

4.1 All Nearest Neighbors

In this problem we are given points taken from a uniform distribution over the unit sqjaand we are
asked to find each point's nearest neighbor. To do this, wewadthe technique of Bentley, Weide, and
Yao [7] and divide the square inte equal subsquares in@n x /n grid. The points can be placed into
bins corresponding to these subsquares just as in the P&adedlgorithm. To find the nearest neighbor
to a point, we simply examine the subsquares around that poim spiral fashion until we are sure we
have found the nearest neighbor. The probability of a set@king more thank’i steps has been shown
to bee~?, for some K [7]. Thus the search time is bounded by a simple®smptial distribution, and this
enables us to use techniques similar to the ones used in d®P&daeng (where sorting time per bin was
bounded by an exponential distribution) to find the nearegghbors inO(loglogn/logloglogn) time
usingn log log log n/ log log n processors. The details here are not complicated and &te tbke reader.

4.2 Relative Neighborhood Graph

The procedure for constructing the Relative Neighborhooap is very similar to the one for solving All
Nearest Neighbors. We refer the reader to Katajainen, i, and Teuhola [22] for the details of the
differences.

4.3 Voronoi Diagram

We construct the Voronoi Diagram with two separate procesiuone which constructs the part inside the
unit square, and one which constructs the part outside tiiesgnare. The procedure for constructing
the Voronoi Diagram inside the unit square will be very sanito the one given above for solving All
Nearest Neighbors. We refer the reader to Bentley, Weidg Yap [7] for the details of the transformation.
Constructing the Outer Voronoi Diagram, that part of thedvimi Diagram which lies outside the unit
square, requires more work, but it too can be accomplishedl(ing logn/logloglogn) expected time
usingn log log log n/ log log n processors. We show the details here.

We will use the following lemmas.

Lemma 4.1 Given a set of: points taken from a uniform distribution in the unit squaaed given a region
R within the unit square of areg, wherelogn/n < p < 1, the probability that overdpn points lie within
this region is less tha/n?.

Proof: Let Z be the number of points which lie within the regiéh ThenZ ~ B(n,p), and by a Chernoff

bound,

1
P(Z > 4dnp) < 47" < 471" < —-

O

Lemma 4.2 Given a set of points in the plane, one can find the Voronoi cell around a piirconstant
time withn?* processors.

13

Proof: To find the Voronoi cell around a poiptwe simply need to find the intersections of the halfspaces
defined by the perpendicular bisectors betwgemd the other, — 1 points. Thus, for each perpendicular
bisectorb, we must find the section (if it exists) which is not behind diieer perpendicular bisectors, when
viewed fromp. Each of the other bisectors will restrict the visible sattdf b, and withn!'*¢ processors we
can find the most restrictive limits in constant time. We il this simultaneously for each perpendicular
bisector. If the most restrictive limits on a bisector defineon-empty interval then this interval is an edge
to the Voronoi cell ofp. O

Corollary 4.1 Given a set ofi points in the plane, one can find the Voronoi diagram in camtstiane with
n3t€ processors.

Now we define three strips around the edge of the unit squaiteR be a strip of widtr2 log n/n%5, S
be a strip of width2 /n%7, andT be a strip of widthl /n’7 (see Figure 1). Note thdt ¢ S C R. Also note
that the probability of any points not i contributing to the Outer Voronoi Diagram is less tham (shown
in Bentley, Weide, and Yao), and so we only need to be condemiit points inR. We will describe how
to find the Outer Voronoi Diagram from the points along one sitithe unit square. The other sides and the
corners will follow with similar arguments. The points ihalong one side are uniformly distributed so we
assume they can be placed in sorted order using a Padded Sort.

First we will find the contribution to the Outer Voronoi Diagn from the points in the arda— .S. From
Lemma 4.1 we see that the probability of more tidam°-° log n) points inR — S is less tharl /n%. Also,
given a poinp in R— S, the probability that no points lie i for a length of21og? n./n’ in either direction
from p is less thare=21°8™ < 1/n2. Then it is easy to see that only points within a distafez? n/n’3
from p in R would have any affect on the Outer Voronoi Cellofsee Figure 2). By Lemma 4.1, we see that
the probability of more tha® (n°2 log n) points in this region is less thann?. Now if we assigrO (n’4°)
processors to each point & — .S, we can find all of their Voronoi cells in constant time by Leah?2.

Now we must find the Outer Voronoi Cell for each pointdnWe note that by Lemma 4.1 the probability
that there are more tha(n"3) points inS is less tharl /n2, and by the above discussion, the probability
that overO(n%2 log n) points inR — S affect the Outer Voronoi Cell of a point ifi is less tharl /n2. Thus
for each poinp in S, to construct the Outer Voronoi Cell, we simply must consitie O(n°3) points inS
and theO (n"2 log n) points closest tp in R — S. Then to each point in S we can assign"-% processors
and use them to find the Outer Voronoi Cellpah constant time, according to Lemma 4.2. Sigteontains
O(n%3) points, all the Outer Voronoi Cells can be found simultarsiguand this completes the construction
of the Voronoi Diagram.

4.4 Delaunay Triangulation

From Preparata and Shamos [28], we know that the Delaunandulation is simply the straight line dual
of the Voronoi Diagram. Thus we can find the Voronoi Diagranalagve, and easily construct the dual in
O (loglogn/logloglogn) time.

4.5 Largest Empty Circle

From Preparata and Shamos [28], we know that the midpointeftargest Empty Circle must be on a
vertex of the Voronoi Diagram, or on the intersection of & Isegment from the Voronoi Diagram and the
Convex Hull.

We find the Voronoi Diagram as above. To find the Convex Hubt five find the extreme points (i.e.
those points which are corners of the Convex HullBiflog log n/ log log log n) time, using the constant
time algorithm given in Stout [35], but simulatifgg log n/ log log log n processors with processor. Then
we use the following lemma.

14

Figure 1: Strips used in computing the Outer Voronoi Diagram

. DT
\./

I
R E p
I
I
I

Figure 2: Only points within the dotted lines can affect th&& Voronoi Cell of poinip.

15

Lemma 4.3 Givenn points taken from a uniform distribution in the unit squatteg probability that there
will be more thariog? n extreme points i€)(1/log3 n).

Proof: Itis easy to see that the number of extreme points is lessathequal to the total number of maximal
points found in the following four orientations of the plarstandard, rotated b§0°, rotated byl80°, and
rotated by270°. Since the probabilities for all four orientations are @glent, we simply need to show that
the probability of more thatbg? n maximal points in the standard orientation is less @i/ log® n).

Let us number the points fromto n by increasingy coordinate. Since the coordinates ang co-
ordinates of points chosen from a uniform distribution am@ependent, we see that if points are placed in
order by decreasing coordinate, then any permutationlofo n is equally likely. We consider positioh a
maximal position if the number stored at positibis larger than all the numbers stored at positions before
k. The number of maximal positions is then equal to the numberaximal points.

The analysis of the number of maximal positions is given irf23]. The average is less thagn
and the standard deviation is less thglvg n. Then by Chebyshev's Inequality, the probability that éner
are more thamog? n extreme points i€ (1/log® n). O

We attempt to place the extreme points into an array of kigén. By Lemma 2.3 and Lemma 4.3
the probability of failing is less tham/log?n. If we do fail, we simply find the Largest Empty Circle
deterministicly. It is trivial to show that this take&(log n) time, so that it will add only a constant to the
expected time.

If we succeed, then i®(log log n/ log log log n) time we can sort the extreme points and construct the
Convex Hull. The probability that any point not in the outdng n/+/n width strip around the outside of
the unit square is not inside the Convex Hull is less than?, so we only must check th@(/n logn)
vertices of the Voronoi Diagram in this strip to see if thayiliside the Convex Hull. We can assigg? n
processors to each vertex and check each one of these sigaulgy in constant time. We then perform
a max operation on the at most empty circles corresponding to those vertices inside theveo Hull.
Similarly, we find the intersections of the Voronoi Segmentth the Convex Hull, and perform amax
operation on the at mostempty circles corresponding to those intersections. Tigetaof the two circles
found will be the Largest Empty Circle.

We summarize the results given in this section in the follmptheorem.

Theorem 4.1 Givenn points taken from a uniform distribution over the unit sgjan

O©(loglogn/logloglogn) expected time and usinglog log log n/ log log n processors, we can
1. solve the All Nearest Neighbors problem,

construct the Relative Neighborhood Graph,

construct the Voronoi Diagram,

construct the Delaunay Triangulation, and

a > N

find the Largest Empty Circle.

5 Closest Pair

Rabin [29] suggests the following algorithm for finding tHesest pair ofn points in linear time. Take
a random sample ai?/3 points and find the closest pair of this sample recursivelgeriTform a lattice
with a mesh size equal to the distance between the closeshpghie sample. Obviously the points of the
closest pair must be within one square of each other, anchRabivs that with high probability on§(n)
combinations of points have this property. Finding the mimin of these will thus take linear time, and the
recurrence is bounded, so the total time of the algorithnisis lnear.

16

A trivial parallelization of this algorithm will not work wiebecause there is only a bound@f/n) on
the number of points in any square. This will cause major lerab when we try to sort points by squares.
Moreover, we are not able to apply any techniques from Pa@detibecause there is no assumption on
the distribution of points. Fortunately, we can still usesiof Rabin’s ideas and simply strengthen his
intermediate results to obtain a good parallel algorithrefoBe we begin to dicuss these, though, we will
present some technical lemmas to aid our analysis.

Lemma 5.1 Givenk < 1, a random sample of siz€ is drawn from a sef of sizen. Then the probability
that n' =" log n or more items from the se& are smaller than the minimum item in the random sample is
less thanl /n.

Proof: The probability that any item chosen from the $ets greater tham!~*logn items is at most
1 — (logn/n*). Then the probability that every item from the random sanhgle this property is less than
(1= (logn/n*)"" < e losn < 1/n. 0O

Lemma 5.2 The minimum (or equivalently, the maximum)noitems can be found in constant expected
time withn processors.

Proof: We assume one item is assigned to each processor. We takeanraample by having each
processor decide to include its item in the random sample pvitbability1 /n'/2. Using a Chernoff bound,
we see that the probability of a sample with more th&f2)n'/? items or less thafl/2)n!/? items is less
than1/n. ¢From Lemma 2.3, these items can be placed into an arrayeoh$i* in constant time with
probability of failure less than/n. Now with n processors we can find the minimum of the items in the
random sample in constant time. By Lemma 5.1 the probalihiay there are more tham!/2 log n items
which are less than the minimum in the sample is less than and by Lemma 2.3 these can be written to
an array of sizex*/* in constant time with probability of failure less thapin. Then the minimum of these
items (which is the minimum of alk items) can be found in constant time withprocessors. If any step
fails, we simply run a9 (loglogn) time deterministic algorithm to find the minimum. This wilbhadd
more than a constant to our expected timke.

We now return to the description of a parallel closest pgjoalhm. We begin by defining the notation
used in Rabin [29]. LetS = {xi,...,x,} be a set of points in the plane. & = S; U... U Sk is a
decompositiorD of S and|S;| = n;, then the measure @ is defined asV (D) = Zle n;(n;—1)/2. This
is simply the number of possible pairings of points whichlawth in the same subset of the decomposition.
If we know that the nearest pair of points is within one of fyethen we simply need to find the minimum
distance between the$é(D) pairs of points.

Let I" be a square lattice of mesh side Let §(S) be the distance between the closest paifinlf
4(S) < 4, then the closest pair must lie within the same squar€ of in two squares with a common
corner. LetN(I") denote the measure of the decompositiors ddormed by the latticd™. Also let N'(T, ¢)
denote the measure of the decompositio§ &@drmed by the latticé" but only including those subsets which
have more than points.

Lemma 5.3 LetI" be a lattice of mesh size Construct a latticd’; by choosing a fixed lattice poigtof I'
as a lattice point of’; and forming the lattice with mesh si2é& and lines parallel to those df. Then for a
fixed setS of n points,

N(Ty) < 16N(T') + 24n
N'(T'y,4) < 32N(T).

17

Proof: The first inequality is proven by Rabin. Now consider a squmie; with at leasts points. It must
have a subsquare Inwith at least2 points and thus the measure in the square is at most
Ak(4k —1) _ 32k(k — 1)
2 - 2 ’

wherek > 2 is the maximum number of points in any of the four subsqual& obtain the second
inequality in the lemma by summing over all square§'jrwith at leasts points.[]

Corollary 5.1 There exists a constaatsuch that for eveng, T', andT'; as above, ifV(I') < n%4, then
N(T;) < cnandN'(I'1,4) < en®4.

If we start from a lattice in which all points are in individusguares, we can keep doubling this lattice
as in Lemma 5.3 until we findV (I'y) > n%4. At this point, N(I") < n%4, so the conditions of Corollary 5.1
still hold forI'y. LetI'y = I'; at this point, and lefy be the mesh size dfy.

Lemma 5.4 Let D be a partition of the se$, |S| = n, andn®* < N(D). If n%? pairwise different points
are drawn at random fron¥, then the probability that two elements will be chosen framsame set ab

. 0.1
is at leastl — 2e= <", for somec.

Proof: Rabin shows that we can substitute a partiti?for D in which exactly one subset has more than
element\n’4 < N(D’) for some constant, and the probability that two elements will be chosen from th
same set of)’ is greater than the equivalent probabilityZin Thus ifp is the size of the only non-singular
setinD’, then2\n%* < p(p — 1) so thaten®2 < p for ¢ ~ V2.

The probability that in one choice frosiwe miss this non-singular subsetlis- p/n, which is smaller
than1 — ¢/n%8. Then forn®? choices the probability of all missing this subset is srmatian

0.8(,,0.1
C n?S(n?) 0.1
1-— —) <e M.
< n0-8 -
1

The probability that two elements are chosen from this siiLis greater thaih — 2¢O

SinceN (I'g) > n%4, if we take a random sample of sizé, we know that two points must fall within
a single square dfy with probability 1 — 2¢=""' . Then the distancé between the closest pair of points
will be less thany/26y. Thus if we consider a latticE with mesh sizej, each square will be covered by a
square found when quadrupliig. We can see then that'(T',64) < O(n%4) andN(T") < O(n).

The actual algorithm proceeds as follows. We take a randonpleaby having each processor decide
to include its point in the random sample with probabilityn’-!. Using a Chernoff bound, we see that
the probability of a sample with more th&s/2)n%° points or less thafil/2)n" points is less thai /n.
¢From Lemma 2.3, these points can be placed into an arraxeoi%?® in constant time with probability of
failure less thani /n. We find the closest pair in this random sample recursivetgrwe form a lattice with
a mesh size equal to the closest distance found and find thberurhsquares vertically and horizontally
which we must use to cover all the points. This again can be @ati the constant expected time minimum
and maximum finding algorithm. We then assign a position imory to each square in this region.

We will place the points into squares by writing each poimigianeously to the position corresponding
to its square. If a point succeeds in being written, then glésed in an array of sizé4 for its square.
Otherwise, it tries again. We do théd times. After this, if any points are left over, their procasswrite
denseo the positions corresponding to their squares. All pregesscan then tell if their points are in dense
squares. If so, these points will be called temsepoints. All the points which are in squares with less than
64 points will be calledsparsepoints.

18

We have shown that when one forms this lattice, the numberstdiite comparisons which must be
made is betwee®(n’4) andO(n), but that onlyO(n°*) comparisons come from dense squares. We will
now separately find the closest pair of the dense points,hertfind for every point the closest neighboring
sparse point.

To find the closest pair of the dense points, we simply wrinthinto an array of size’>. By
Lemma 2.3 this will take constant time with probability ofifae less tharl /n. Then we use’-? processors
to find the distances between all pairs of dense points. Thémim of thesen?? distances can then be
found in constant time with processors.

For each point, to find the closest neighboring sparse pargimply examine the at mo8t 64 points
in its own and neighboring sparse squares. Then we perfamoahstant expected time minimum operation
from Lemma 5.2 to find the closest pair of th&3én) pairs.

The closest pair of all the points must be two dense pointspmirst and a neighboring sparse point, so
it can be found simply by comparing the distances of the twrsgaund above. Given that afté6 stages
of recursion, there will be less that?-*> points left, and the closest pair of these can easily be fonnd
constant time, we have the following theorem.

Theorem 5.1 Givenn points in the plane, we can determine the closest pair oftpdinconstant expected
time usingn processors.

6 Padded Sort Revisited

We note that the lower bound 6(log n/ log log n) time on sortingr items inton locations applies for any
polynomial number of processors. However, Padded Sortttdeometry problems which have similar
solutions, all can be solved in constant expected time wineniallowed to use'*¢ processors for any
constani > 0. We show how to do this here.

6.1 Padded Sort

First we prove the following technical lemmas.

Lemma 6.1 For large m, givenm items to be randomly placed into an array of skze, for some constant
integerk > 1, the probability that there will be a conflict is less thar- e /%,

Proof: Let A be the event that there is a conflict. THer(A) can be bounded by

Pr(d) = 1- (kg@;),(m)—m
m\km o——
< 1- % _(%) i)(km)_m
(ka—m) 2w (km — m)el/12(km=m)

km >km_m e~ - km e—l/l2(km—m)

IN
—
|

IN
—
|

IN
—
|
TN N TN N /N
N
|
—

19

=1
—1\(k—)m
() e
< 1 L
- e—(1=1/k)ym gm
= 1—e ™k

(See B for some of the mathematical details.)

Lemma 6.2 Givenm items to be randomly placed into an array of size:, for some constank, the
™ ™ 2m/k’ . em/k

probability of failing on all ofe attempts is less thasm

Proof: Let A be the event of failing on all attempts. ThBn(A) can be bounded by

e2m/k

Pr(A)

IN

(1 —e_m/k)

e_em/k

d

Lemma 6.3 Given an array ofn values fron0 to b — 1, the prefix sums can be computed in constant time
with mb™ processors.

Proof: Note that there ar&™ possible sequences wof values, and we have processors for each sequence.
Each processor in a sequence will be initialized with theeat its position in the sequence and the prefix
sum at its position in the sequence. Each processor can lleek to see if its value is the same as the input
value at its position. A global Or can be used to test for aifail Exactly one sequence will not have a
failure, and the processors corresponding to this sequearcevrite their prefix sums to the output array.

Lemma 6.4 Givenm values fronmD to b — 1, and a constant integer > 0, the prefix sums can be computed
in constant time withnd™"* (1+108m) processors.

Proof: Compute the prefix sums of groupsiaf*—1/* values recursively, assignimg(#—1)/kpm'/* (1+logm)
processors to each group. Note that the recursion will stogrvihere are:*~1/% groups ofm!/* values.

At this point each group is assigned more thah/ /" processors, and by Lemma 6.3, the prefix sums
can be computed in constant time.

Now compute the prefix sums over the groups, i.e., ovemihé values from0 to bm(*—1/% corre-
sponding to the total sum in each group. By Lemma 6.3 thesebearomputed in constant time, with
mMk (pm(k=D/kym! " < 1/kpm!/F (Llog m) processors.

Now we assign one processor per location. This processdfirithe prefix value for its location by
summing at mosk prefix sums computed at different levels of recursian.

Lemma 6.5 Givenm items, and a constant integér > 0, these items can be sorted intolocations in
constant time withn 22"/ " (1+losm) processors

Proof: We will assiganml/ *(1+logm) processors to each item to find its position in the sorted/afrar
each itemt, we will comparet with every other items; and thus compute an array of lengtih which
contains al at positioni if ¢ > s;, and otherwise contains@ The sum of these bits is the position of
t in the sorted list, and by Lemma 6.4, this sum can be found mstemt time with the exact number of
processors we have assigned to eladh

20

We now return to the constant expected time Padded Sortithigiowhich uses:!+€ processors. Let
be a constant integer such thigj < e. We attempt to place items randomly into the correct bloclogf
bins. By a Chernoff bound, the probability that there areartban4 log n items to be placed in any block
is less tharl /n. We allocaten/7 processors to each item, so we can makeé = 2*1°¢"/j independent
attempt to place points in the correct block. If we choosedtnay size for a block to b&6; log n, then
by Lemma 6.2 (withm, = 4logn, k = 44, and noticing tha*!°e”/7 > ¢2"/k) the probability of not
having a correct placement in a block is less thafi **"’*. Thus the probability of any block not having
a correct placement is less thém/ log n)e_"l/j < 1/n, for largen. Using a decision broadcast, we can
find a correct placement in each block.

Now we form groups ofog? n blocks, so that each group Hag* n bins associated with it. We will sort
the items within these groups. We have at m@éstlog* n positions to sort for each group, an#/”? log* n =
(log? n)241°g”/j processors for each group. By Lemma 6.5 (with= 16 log*n, k = 8, andn large
enough so that16; log® n)22(164 log" n)!/*(1+log(167 10" n)) < (Jog? p)24l0en/7) we can sort these into a
compressed list (assuming we mark each position withoutean as greater than any item) in constant
time. Also, in a proof similar to Lemma 2.4, we can show that pinobability that there are more than
log? n 4 log® n items in any group is less thann. Thus we can now write the items into an array of size
n + o(n) without conflicts, and we are finished.

6.2 All Nearest Neighbors

To solve All Nearest Neighbors with! *¢ processors, we will again place items into block&gf n x1og? n
cells, but use the constant time procedure given above fidd?aSort. Then we can assign each pant
processors and each one can perform a constant expecteditmineum operation on the distances between
itself and thdog? n < n¢ neighbors closest to it.

6.3 Relative Neighborhood Graph

An algorithm similar to the one for All Nearest Neighbors ihd the Relative Neighborhood Graph in
constant expected time.

6.4 Voronoi Diagram

An algorithm similar to the one for All Nearest Neighborsiihd the Voronoi Diagram in the unit square in
constant expected time, and the Outer Voronoi Diagram cdaurel in constant time as shown previously.

6.5 Delaunay Triangulation

The Delaunay Triangulation can be constructed in constqreated time given the Voronoi Diagram. Since
the Voronoi Diagram can be constructed in constant expeiteg, the Delaunay Triangulation can be
constructed in constant expected time.

6.6 Largest Empty Circle

The Largest Empty Circle must have its midpoint on a vertetheforonoi Diagram, or on the intersection
of the Voronoi Diagram and the Convex Hull. Wit +¢ processors we can find the Voronoi Diagram and
the extreme points in constant time. We see by Lemma 6.5 thatw sort these extreme points in constant
time to form the ordered convex hull. Then we can easily firdvértices of the Voronoi Diagram which
are inside the Convex Hull in constant expected time, andtfiadnaximum empty circles these imply in
constant expected time. Similarly we can find the intersastiof the Voronoi Diagram with the Convex

21

Hull in constant expected time, and find the maximum emptesrthese imply in constant expected time.
Comparing these two will give us the Largest Empty Circle.
We sum up the results in this section in the following thearem

Theorem 6.1 Givenn values taken from a uniform distribution over the unit intr in constant expected
time and using:'*¢ processors, these values can be arranged in sorted orden i@y of sizen + o(n)
with the value NULL in all unfilled locations. Also, givanpoints taken from a uniform distribution over
the unit square, in constant expected time and usitif processors, we can

solve the All Nearest Neighbors problem,

construct the Relative Neighborhood Graph,

construct the Voronoi Diagram,

construct the Delaunay Triangulation, and

a > wnh e

find the Largest Empty Circle.

7 Conclusion

We have defined an ultra-fast expected time parallel algoréis one which uses a linear number of proces-
sors and runs i@ ((log log n)°(1)) expected time. We have presented ultra-fast expected tnadigd algo-
rithms for Padded Sort, All Nearest Neighbors, Relativegborhood Graph, Voronoi Diagram, Delaunay
Triangulation, Largest Empty Circle, and Closest Pair.tAdl algorithms run i© (log log n/ log log log n)
expected time using log log log n/ log log n processors and assume that inputs are taken from a uniform
distribution except Closest Pair, which runs in constangtivithn processors and makes no assumptions
on the distribution of inputs.

We note that all of these algorithms are optimal in terms édr speedup, but only Closest Pair is
known to be optimal in terms of running time. It is known thiae toptimal running time of Padded Sort is
©(log™ n), but in regards to the other problems, an open question ishehany of them can be solved in
o(log log n/ log log log n) expected time with a linear number of processors. As for ése of having,! ¢
processors, we showed these problems could all be solvemhstant expected time,

A Probabilistic Tools

One technique we use for bounding the tail of a probabiliggriiution is the Chebyshev Inequality. It states
that given a random variabl& with meany and standard deviation,

1
P(X —p| >ro) < ok

Another technique we use is the Chernoff bound. This can bd when we wish to bound the distribution
of a random variabl&Z which is the sum of. independent random variables. For a binomial random aribl

Z ~ B(n,p), whereZ is the sum of: independent Bernoulli trials with probability of successAngluin
and Valiant [5] show that fod < 3 < 1, one can obtain the bounds

P(Z>(1+8)np) < e Pl
and

P(Z<(1-p)np) < e~ P*e/2,

22

From this we obtain the bound
P(Z > 2np) < 274/9
Also, for £ > 3 we obtain the bound
P(Z > knp) < k™",
and fork > 6 we obtain the bound
P(Z > knp) < 27k,

For a random variable with a gamma distributiofi,~ I'(n, \), where Z is the sum ofn independent
random variables with exponential distributions with paeger\, we obtain for0 < g < 1 the bound

P(Z > (1+ B)n/A) < e 71/6,
and fork > 3 the bound

P(Z > kn/)) < 27F/2,

B Useful Equations and Inequalities

To simplify some of the expressions we derive, we use thewafig facts.

1+x < €%, forallx.
Vi+z > 1+z/3, for0<z<1.

Also, Stirling’s Approximation is often useful. Taken frokmuth [23],
(g)x Vorxe < ! < (g)x V2rzel/12e
(& (&

One use of Stirling’s Approximation is to obtain the bound
n n" ne\k
< ——— < (=) .
<k¢> = (n—k)kEgk — (k)
References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’'Dunlaing, and Yap. Parallel computational geometry.
Algorithmica 3:293-327, 1988.

[2] M. Ajtai and M. Ben-Or. A theorem on probabilistic constalepth computations. IIRroc. 16th ACM
Symp. on Theory of Computingages 471-474, 1984.

[3] M. Ajtai, J. Komlbs, and E. Szemerédi. An(n log n) sorting network Combinatorica 3:1-19, 1983.

[4] N. Alon and Y. Azar. The average complexity of determiitisand randomized parallel comparison
sorting algorithmsSIAM J. Compu}t.17(6):1178-1192, December 1988.

[5] D. Angluin and L. G. Valiant. Fast probabilistic algdnts for Hamiltonian circuits and matchings.
Comput. System Scil8:155-193, 1979.

23

[6] P. Beame and J. Hastad. Optimal bounds for decision enoblon the CRCW PRAM.J. Assoc.
Comput. Mach.36(3):643—670, July 1989.

[7] J. L. Bentley, B. W. Weide, and A. C. Yao. Optimal expectade algorithms for closest point prob-
lems. ACM Trans. Math. Softwaré(4):563-580, December 1980.

[8] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and Ushkin. Highly parallelizable problems. In
Proc. 21st ACM Symp. on Theory of Computipgges 309-319, 1989.

[9] O. Berkman, B. Schieber, and U. Vishkin. Some doubly fithenic parallel algorithms based on
finding all nearest smaller values. Technical Report UMIATIS88-79, University of Maryland
Institute for Advanced Computer Studies, 1988.

[10] O. Berkman and U. Vishkin. Recursive *-tree paralletadatructure. IrProc. 30th Symp. on Found.
of Comp. Scj.pages 196—-202, 1989.

[11] A. K. Chandra, L. J. Stockmeyer, and U. Vishkin. A conxitg theory for unbounded fan-in paral-
lelism. InProc. 23th Symp. on Found. of Comp. Sgages 1-13, 1982.

[12] B. S. Chlebus. Parallel iterated bucket sémform. Process. Lett31(4):181-183, May 1989.
[13] R. Cole. Parallel merge sort. Proc. 27th Symp. on Found. of Comp. Sgages 511-516, 1986.

[14] R. Cole and M. T. Goodrich. Optimal parallel algorithfios polygon and point-set problems. Rroc.
4th ACM Symp. on Comp. Geqrpages 205-214, 1988.

[15] R. Cole, M. T. Goodrich, and C. O’Dunlaing. Merging freees in parallel for efficient voronoi
diagram construction. [Proc. 17th Intl. Coll. on Automata, Languages, and Prograngnpages
432-445, 1990.

[16] R. Cole and U. Vishkin. Approximate and exact paralttHeduling with applications to list, tree, and
graph problems. 127th IEEE Symp. on Foundations of Computer Scigpages 478-491, 1986.

[17] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of dgaconstant time parallel algorithms. In
Proc. 32nd Symp. on Found. of Comp. Sgages 698-710, 1991.

[18] J. Gil and L. Rudolph. Counting and packing in parallelProc. 15th Intl. Conf. on Parallel Process-
ing, pages 1000-1002, 1986.

[19] G.H. Gonnet. Expected length of the longest probe secpia hash code searchinj Assoc. Comput.
Mach, 28:289-304, 1981.

[20] T. Hagerup and T. Radzik. Every robust CRCW PRAM can igffity simulate a Priority PRAM. In
Proc. 2nd ACM Symp. on Para. Alg. and Argbages 117-124, 1990.

[21] T. Hagerup and R. Raman. Waste makes haste: Tight bdanttsose parallel sorting. IRroc. 33rd
IEEE Symp. on Found. of Comp. Spiages 628—-637, 1992.

[22] J. Katajainen, O. Nevalainen, and J. Teuhola. A lineqeeted-time algorithm for computing planar
relative neighbourhood graphform. Process. Lett25(2):77-86, May 1987.

[23] D. E. Knuth.The Art of Computer Programmingolume 1. Addison-Wesley, Reading, Massachusetts,
1973.

24

[24] C. P. Kruskal. Searching, merging, and sortifgEE Trans. Comput32(10):942-947, October 1983.

[25] T. Leighton. Tight bounds on the complexity of paraierting.IEEE Trans. Comput34(4):344—-354,
April 1985.

[26] C.Levcopoulos, J. Katajainen, and A. Lingas. An opliexpected-time parallel algorithm for Voronoi
diagrams. IrScandenavian Conf. on Theoretical Comp.,3888.

[27] P.D.MacKenzie. Load balancing requit®log* n) expected time. 18rd ACM-SIAM Symp. on Disc.
Alg., pages 94-99, 1992.

[28] F. P. Preparata and M. I. Shama3omputational Geometry: An Introductiorspringer-Verlag, New
York, 1985.

[29] M. O. Rabin. Probabilistic algorithms. In J. F. Traudijter, Algorithms and Complexifypages 21—-39.
Academic Press, Inc., New York, New York, 1976.

[30] S. Rajasekaran and J. H. Reif. Optimal and sublogartthime randomized parallel sorting algo-
rithms. SIAM J. Comput.18(3):594-607, June 1989.

[31] S. Rajasekaran and S. Sen. Random sampling technieggegaaallel algorithm design. In J. Reif,
editor, Synthesis of Parallel Algorithmpages 411-451. Morgan Kaufmann, San Mateo, CA, 1993.

[32] J. H. Reif and S. Sen. Polling: A new randomized sampiéwnnique for computational geometry. In
Proc. 21st ACM Symp. on Theory of Computihg39.

[33] R. Reischuk. Probabilistic parallel algorithms forting and selectionSIAM J. Comput.14(2):396—
409, May 1985.

[34] B. SchieberDesign and analysis of some parallel algorithn®D thesis, Tel Aviv University, 1987.

[35] Q. F. Stout. Constant-time geometry on PRAMs.Pioc. Intl. Conf. on Parallel Processingages
104-107, 1988.

[36] L. G. Valiant. Parallelism in comparison problen&AM J. Compu}.4:348-355, 1975.

[37] D. E. Willard and Y. C. Wee. Quasi-valid range queryingdats implications for nearest neighbor
problems. InProc. 4th ACM Symp. on Comp. Geopages 34-43, 1988.

25

