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Abstract

This paper gives algorithms for determining real-valued un

variate unimodal regressions, that is, for determiningibte

mal regression which is increasing and then decreasindn Su
regressions arise in a wide variety of applications. TheyO

are shape-constrained nonparametric regressions, lesel
lated to isotonic regression. For unimodal regressiomon
weighted points our algorithm for thie, metric requires only
©(n) time, while for theL; metric it requires®(n logn)
time. For unweighted points our algorithm for the, metric

requires only® (n) time. All of these times are optimal. Pre-

vious algorithms were for thé&, metric and require€@(n?)
time. All previous algorithms used multiple calls to isoion

regression, and our major contribution is to organize thes

into a prefix isotonic regression, determining the regoassi

on all initial segments. The prefix approach reduces thé toteho

time required by utilizing the solution for one initial segrmt
to solve the next.
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1 Introduction

Givenn univariate real data valu¢s,, y;, w;) with nonnega-

tive real weightsv;, i = 1,...,n, wherex; < --- < x,, and
givenp € [1, oo], the L, isotonic regressionf the data is the
set{(x;,9;) : i =1,...,n} that minimizes

n ~ 1 .
(21:1 wz|yz - yi|p) /p ifl<p<oo

max!"_; w;|y; — Ui

1)

if p=o00

subject to the increasing isotonic constraint that

c

unimodal regression, umbrella
ordering, isotonic regression, monotonic, prefix operatio

anm € {1,...,n} such that
NP2 < Ym Z Yt 2 Un,

i.e., suchtha{y;} is increasing oni . .. m and decreasing on

m ...n. The unimodal constraint is also called an umbrella
rdering, and isotonic regression is often called monatoni
regression, though in some application areas this term snean
the values decrease.

Isotonic regression does not yield a smooth curve, but
rather a collection of level sets where the regression is con
stant. Figure 1 gives an example of an isotonic regression of
a set of data with equal weights, where circles represeat dat
points and lines represent level sets, with a filled circfrae
senting a data point which is also a level set. Figure 2 shows
% unimiodal regression.

By theerror of a regressionve mean the quantity in Equa-
n (1). In the algorithms the value calledor is actually the
p*™ power of this quantity in order to simplify calculations.

Both isotonic regression and unimodal regression are ex-
amples of nonparametric shape-constrained regression. Ou
interest in efficient unimodal regression was motivatedtby i
repeated use in dose-response problems with competing fail
ure modes [7, 10]. For such problems, as the dose increases
the efficacy increases but the toxicity increases as wele Th
goal is to find the dose that maximizes the probability of be-
ing efficacious and non-toxic, and it is usually assumed that
this probability distribution is unimodal. More generadiych
regressions are of use in a wide range of applications when
there is prior knowledge about the shape of a response func-
tion but no assumption of a parametric form. See, for exam-
ple, the references to water-level time-series data in @] a
to tree growth in [18]. The latter is another example of com-
peting failure modes, where as trees in a newly planted grove
grow, their “vigor” initially increases as they increasesine,
but eventually starts decreasing as they compete for migrie
and light.

In Section 2 we examine previous work on the problem of
determining unimodal regression. In Section 3 we introduce

Note that the values are merely required to be nondecreasin%:e notion of prefix isotonic regression, and in Sections 3.1
t

rather than strictly increasing. Thie, unimodal regression
of the data is the sdt(z;, 7;) : i = 1,...,n} that minimizes

rough 3.3 we develop algorithms for tiie, L,, and un-
weighted L, versions of this problem, taking tim®(n),

Equation (1) subject to the unimodal constraint that there i ©(7 logn), and©(n), respectively. These then yield uni-

modal algorithms of the same time complexity. All of these



@) {mode: location of mode of best unimodal fit}

Q_O do0=1,n

errorl(z) = error_increasing_iso_regres(z1 ...x;)
Q O errorr(z) = error_decreasing_iso_regres(x; ... Tn)
PY enddo

. . . . mode=arg min {errorl(éi)+errorr(i+1): 1 <i<n
Figure 1: L, Increasing Isotonic Regression & { @ (1)1 <i<n}

Figure 3: Best Previous Unimodal Regression Algorithm

(©) (©)
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Figure 4: Data Values with Nonunique Mode

Figure 2: A Unimodal Regression

the problem by trying each possihias the location of the
maximum, where the smallest error attained corresponds to
the solution of the problem.

Testing each new value aéfinvolved new calls to proce-
dures to determine isotonic fits. The fastest and most sitraig
forward approach, used in [4, 5, 9, 13, 17] and given in Fig-

tonic regression on the first values. Section 4 contains an i . . .
immedigte corollary of the results on prefix isotonic regres © ¢ 3, fits an increasing curve to the values corresponding to
y P gres .. .. .x; and a decreasing curve to the values corresponding

. . . L1
sion, namely that unimodal regression can be computed |§|)x_ ..2,. SinceL, isotonic regression of, points can be

the same time bounds. Section 5 concludes with some fing etermined inO(m) time, this approach taked(n?) time.
remarks. L . A far less efficient approach, takirtgy(n2") time, was used
Throughout, we assume that the data is given in order of ' '

. . . in [10].
Increasingr; values. l.f the data is r_lot S0 ordered, th_en an general, the mode of the best unimodal fit is not unique.
initial sorting step, taking(n logn) time, is needed. Since

. A . For example, if the weighted data values are as in Figure 4,
the values of ther; are irrelevant we simplify notation by . . _
assumings . then for any norm, one optimal unimodal fit has the leftmost
i — 1.

point as mode and the mean of the other two as a level set,

while another optimal fit uses a level set on the two left point

2  Previous Work and the rightmost point as mode. All of the previously pub-
lished algorithms, and the ones herein, can locate all of the

Itis well-known that theL» increasing isotonic regression can modes that correspond to best fits, and some secondary crite-

be determined if®(n) time. Apparently all published algo- ria could be applied to select among them. The algorithms in

rithms use the “pair adjacent violators” (PAV) approach [2] this paper do not apply such criteria, but the modifications t

In this approach, initially each data value is viewed as allev do so are straightforward.

set. At each step, if there are two adjacent level sets tieat ar Despite the nonuniqueness of the optimum, it is easy to

out of order (i.e., the left level set is above the right omeyt ~ show that for any’,, metric withp < oo, for any optimum

the sets are combined and the weighfedmean of the data Modez,,, the value at,, of its optimum fit is the original

values becomes the value of the new level set. It can be shovi#ta valuey,,,. It is also easy to see that the increasing iso-

that no matter what order is used to combine level sets, ond@nic regression o, ...z, has valuey,, at z,,, as does

there are no level sets out of order the correct answer has be£h€ decreasing isotonic regressionop. . . z,,, and thus the

produced [15]. The PAV approach also produces the corre@ITor of the unimodal regression is the sum of the errors of

results forL, andL... these two regressions. Figure 2 shows a unimodal regression

Apparently all previous work on unimodal regression haswhere all of the data points have equal weights.
concentrated o, regression, though the basic approach can
be applied to arbitrary metrics. Previous researchersdolv

algorithms, both isotonic and unimodal, are optimal, ane, e
cept for the isotonid., problem, all are the first optimal solu-
tions to their problems. In Section 3.4 we examine the dijght
different problem of determining the value @t of the iso-



{left(s): left endpoint of level set containing z;} (]

1

1

{mean(:): mean value of level set containing = } _C 1
{error(z): error of increasing isotonic regression on '

[ 1 O
mean(0) = —oo Regression of first 4 points, i.e., lso
left(0) =0
error(0)=0 o
doi=1,n Q

initialize level set of ¢

mean(z) = y;

left(s) =4 ° o

while mean(i) < mean(left(:)-1) do Level sets of 5 points after 1st while-loop iteration
merge level set of left(:)-1 into level set of ¢
left(:) = left(left(¢)-1) o

endwhile o

levelerror = weighted error of mean(z) to Q
(Yieft(iys Wiett(ay )s - - - (Yi, wi)

error(:) = levelerror-+-error(left(i)-1) ° o

enddo Level sets of 5 points after 2nd (final) iteration, i.e. sIso

Figure 5: Prefix Isotonic Regression Figure 6: Constructing Iscfrom Isqy

3 Prefix Isotonic Regression

o the level set of all points with indices in the interval
[left(left(i—1) —1), left(i—1)—1], with value
mean(left(i—1) —1)

By determining an isotonic regressiave mean determining
the error of the regression and the extents and regresdion va
ues of the level sets. Givenreal-valued weighted data val-
ues{(z;,y;,w;) : 1 < i < n} with nonnegative real weights e the level set of all points with indices

w;, and given a metrig: on the reals, let Isg denote theu [left(left(left(i—1) —1) —1), left(left(i—1) —1)—1]
isotonic regression ofi(z;,y;,w;) : 1 < i < m}. Thepu with valuemean(left(left(:—1) —1) —1)

prefix isotonic regression probleisito determine Isg for all ) o
1<m<n. and so on. Further, the error of this regressioerisr(i —1).

Note that prefix isotonic regression determines exactly |fthe value of the new poini;, is greater than the mean of
the set of increasing isotonic regression problems exaininethe 1evel set containing; ., then Isq is Iso,_; unioned with a
by [4, 5, 9, 13, 17]. However, the critical observation isttha NeW level set consisting only af; with valuey;. However, if
determining all of them should be approached as a single irii 1S less than or equal to the mean of the level set containing
tegrated problem, rather than merely as a collection ofcalli-1, then they are out of order and must be merged. This
to a subroutine to solve each subproblem. Prefix operation§€W merged level setis then compared to the level set to its
also calledscan operationgre utilized as building blocks for |€ft- If they are in order, i.e., if the mean of the left levets
a variety of efficient algorithms. In parallel computingefix IS |€sS than the mean of the right level set, then the process
operations are also known parallel prefix operationsince IS done, while if their means are out of order they are merged
often all values can be determined concurrently. and the process of comparing to the left is repeated. This is
The basic prefix isotonic regression algorithm is given in2ccomplished in the while-loop. The fact that this merging
Figure 5. The outermost loop angoes through the points Process correctly determines Jsiollows immediately from
in increasing indexing order, adding them to the previous soth® PAV property mentioned in Section 2. Figure 6 illustsate
lution. The loop invariant is that at the start of the do-lpop this process. _
Iso.; has been determined. In right to left order, it consists After the algorithm in Figure 5 has completed, for any in-

of: dexm, 1 < m < n, Iso,, has errorerror(m) and its level
sets can be recovered ®(¢) time from the values stored in
e the level set of all points with indices in the interval left andmean, wherel is the number of level sets. The recov-
[left(¢—1), ¢—1], with valuemean(i—1) ery proceeds exactly as above, in right-to-left order. Nadé



when the point at indexis added, only théeft(i), mean(i), ~ {SUMWy(): weighted sum of values in z;'s level set}
anderror(i) entries are updated, with the earlier entries un-{SUMWy2(i): weighted sum of squares of values in z;'s
changed since values for other indices within the mergeqlsivnilwsg)t.}sum of weights of z.'s level set}

level set will never be referred to again. Tleé&, mean, and ' ’

error arrays form gersistent data structurallowing one to
rapidly recreate the intermediate regressions.

To apply the algorithm in Figure 5 to a specific metric, one
needs to determine how to do the operations inside the while-
loop, i.e., how to determine the mean and error of the merged
level sets. As will be shown in Sections 3.1, 3.2 and 3.3fo merge level set of j into level set of 4
efficiently implementing these operations depends upon the  sumwy(:) = sumwy(i)+sumwy(j)
metric. sumwy2(¢) = sumwy?2(z)+sumwy2(j)
sumw(z) = sumw(z)-+sumw(y)
mean(z) = sumwy(z)/sumw(z)

to initialize level set of i:
sumwy(i) = w; - y;
sumwy2(i) = w; - y7
sumw(i) = w;

Observation: If the operations of determining the
mean and error in the while-loop can be accom-
plished inO(f(n)) time for an increasing function
f, then the algorithm requires oni®(n - f(n))
time. This is because the total number of iterations
of the while-loop can be at most— 1. This may
not be obvious since the while-loop may be iterated
O(n) times for a single value af, and the loop is

levelerror = sumwy2(i)—sumwy(:)%/sumw(z)

Figure 7: Modifications for., Regression

encountered times. However, every time the loop
is iterated, two disjoint nonempty level sets have
been merged. One can view the data set as initially
beingn disjoint sets, and these can be merged at
mostn — 1 times. All of the other operations within
the while-loop take constant time per iteration, and
the operations outside the while-loop take a con-

where all of the weights are 1. The unweighted, mean
of values{yi,...,yx} IS (Ymin + Ymax)/2, Whereyy,i, =
min{yi, . .., yx} andymax IS defined similarly. The error of
using this mean i$ymax — Ymin)/2-

The simplistic nature of thd ., mean and error makes
the isotonic regression particularly easy. We introducefu
tionsmaxy andminy, as shown in Figure 8, wheneaxy(i) is

stant time per iteration of the maximum, anahniny(4) is the minimum, of the, values

Notice that if one determines the mean and error functions. the level set containing These operations take only con-

for a level set by just calling a function to compute them Stant time, and hence by the Observation the total time is onl

. o : 'O(n).
given all the_el_ements, then it wil ta_l(é(m) time fo_r aset of While the regression determined by Figure 8 is quite natu-
sizem, and it is easy to see that this would require the algo-

rithm to takeQ(n?) total time in the worst case. To achieve ral, itis not the only optimalo, regression. F_or exa_mple, i
. . the data values are (1, 4, 2, 6), then the algorithm will poedu
better results, one needs to utilize previous calculatfons

L . he fitted values (1, 3, 3, 6), with error 1. However, another
the level sets to aid in the calculations for the newly merge . . . .
. . . solution with the same error is (0, 3, 3, 7), and there are in-
sets. Techniques to do this depend upon the metric.

finitely many solutions with optimal error. It is easy to see

that the solution found here has the property that if a lesel s

L with valuey is created on indices. .. j, thenL is an op-

To apply the prefix isotonic regression algorithm to the timal Lo |sotqn|c.regre53|on on the values for t_hose |n.d|c.es.
lH some applications one may prefer to specify a criterion

metric, one needs procedures for determining the mean 213 select among the optimal regressions, though it is usuall
error of theL, level sets. Fortunately, itis well known thatthe . > ng P reg ' Ug up
. . . : : . difficult to achieve a given criterion for all prefix regresss
algebraic properties of this metric make this a simple task, . : ! - ,
without substantially more time and revisions from one prefi

is shown in Figure 7. These operations require only constar{t0 the next
time, and hence by the Observation the algorithm takes only '

O(n) time.

3.1 L, Prefix Isotonic Regression

3.3 L Prefix Isotonic Regression

3.2 L Prefix Isotonic Regression WeightedL; regression is more complex than the previous

metrics. Given a weighted set of values, thejrmean is the

Efficient algorithms for weighted. ., isotonic regression are . . . . .
. . weighted median. Weighted medians are not always unique,
rather complicated, see [8], so here we only consider the cas S 2
so for simplicity we utilize the smallest such value. In an



{miny(¢): minimum value in z;’s level set} {root(z): root of tree containing all y values in z;'s level set}

{maxy(i): maximum value in z;'s level set} {p.y: the y value stored in node p}
{p.w: the weight corresponding to p.y}
to initialize level set of i: {p.sumw: sum of weights in p's subtree}
miny(z) = y; {p.sumwy: sum of w - y in p's subtree}
maxy(i) = yi
to initialize level set of i:
to merge level set of j into level set of i: initialize tree(:) to have single node, root
miny(z) = min{miny(z), miny(j)} root.y = y;
maxy(i) = max{maxy(i), maxy(j)} root.w = w;
mean(z) = [miny(i)+maxy(z)]/2 root.sumw = w;

root.sumwy = wj - y;
levelerror = (maxy/(z) —miny(z))/2

error(i) = max{error(left(:)-1), levelerror} to merge level set of j into level set of i:
merge tree(j) and tree(z), updating sumw and sumv
Figure 8: Modifications for Unweightell.. Regression fields while merging

determine mean(z) from tree(z)

L . . L determine levelerror from tree(:) and mean(z)
application one might wish to add secondary criteria tordete

mine which weighted median to use. Figure 9: Modifications fof.; Regression

While it is well-known that one can determine a weighted
median in time that is linear in the number of values, a naive
approach based on this would only yield an algorithm tak- . .
ing ©(n?) time. Unfortunately there are no algebraic identi- weights corresponding to values less than (greater than)

ties which easily allow one to reuse calculations when merg‘:ijI W_Y< (WY) be the sum of alk - y products corre-
ing level sets, so a more complicated approach is needed. ipondlng to_ va_lues less than (greater than) The error of
O(n logn) algorithm is presented in [1], but its use of scal- the regression is

ing does not seem to translate into an efficient algorithm for WYs —m-Ws +m-We —WYe

the prefix problem. The author presented a prefix algorithm

in [16], but the following is much simpler and can be applied Once m has been determined, another top-down path
in more general settings. This approach is outlined in Figtraversal involvingp.sumw andp.sumwy can be used to de-

ure 9. termineW., Ws, WY., and WY~ in time linear in the
For a level set corresponding to (value,weight) pairsheight of the tree, i.e. i®(logn) time. Analyzing the time
{(y;,w;), (Wi, win), - - -, (i, wi)}, create a red-black tree to do all tree mergers is a bit more delicate. A straightfor-

T containingi — j + 1 nodes which have as keys the values,ward merger of trees of sizeandt, wheres > ¢, repeatedly
i.e., the tree is ordered by the values. Red-black trees aigserts the elements of the smaller tree into the largeingak
not specifically required, in that other balanced tree stimes ~ O(t log s) time, which would result io(n log? n) worst-
(AVL, weight-balanced, etc.) could be used equally welp If case total time. However, the merge procedure in [3] takes
is a node of the tree, theny represents the value it contains, ©(1 + t - log(s/t)) time, and their results show that all of
andp.w the value’s associated weight. Each node also hathe mergers can be done @(n logn) total time. Standard

additional fields: extensions to their procedure allow one to maintain all ef th
fields associated with each node without altering the time re
psuw = Y qw quired, and thus the total time &(n logn) time. This im-
psumwy = Z 4w - q.y {?roves upon the algorithm in [12], which tak€gn log® n)
ime.

where the sums are over all nodes the subtree rooted at To show thaB(n logn) time is optimal, note thak, pre-
p. GivenT, an easy top-down path traversal uspgumw  fix isotonic regression is as hard as sorting real numbers. To
can determine a weighted median in time linear in the heighsee this, lef{y; : 1 < i < n} be any set of real numbers,
of the tree, i.e., irB(i—j) time. Search trees with additional and let{y} : 1 < ¢ < n} be the same set in decreasing or-
fields such ap.sumw and p.sumwy are sometimes called der. Letu = —1 + min;y; andv = 1 + max; y;. Then
augmented treeand are often used for dynamic order statis-for the weighted sequendé,v,n+1), (1,y1,1), (2,92, 1),
tics such as this. e (nyyn, 1), (n+1,u,2), (n+2,4,2), ..., 2n+1,u,2),

To determine the error of the regression on a level set, lefso,; is a single level set of valug’, for 1 < ¢ < n. This
m be a weighted median. Lév_. (W) be the sum of all is because at+: there are at least+i+ 1 weighted values



{Throughout, 7 was in r's level set in Iso, }
{R is the minimal index such that Iso0,, (i)=Isor(R)}

p=i's node
r=cover()
while r > largest element under p do
{R is in a subtree to the right of p}
p=parent of p
if cover(p) < m then r=max{r,cover(p)}
g=right child of p
Figure 10: Coverage Tree if cover(g) < m then r=max{r,cover(q)}
end while

while p not a leaf {R is in p’s subtree
greater than or equal tg* (n+1 of valuev, andy; ...y), 5:Ieft child O{fp P }

and at least+-i+1 less than or equal tg/f ...y and2i of if cover(g) < m then r=max{r,cover(q)}
valuewu). (The use of “at least” and “equal to” takes care of p=child of p containing r

the possibility of ties.) Thug; is the weighted median. In end while

Iso,.; no prefix has smaller median nor does any final inter-

val have higher median, so there is a single level set. Thuso,, (i) = Iso.(r) = mean(r)

determining these regressions yields the values in dangeas

sorted order, so the algorithm is optimal. Figure 11: Algorithm to Determine Isg(i)

3.4 Pointwise Evaluation

= t(p). If llest(q), 1 t is a subset
There are other reasonable goals for prefix isotonic regre%—f la Cga:ﬁgn(@etcove][fg;)a :es d(qi) a:rgzs éq)]: parent(q)

sion. For example, once the regressions have been comz repeat the process. If it is not a subset then stop

puted, one might Wa_nt to be able to detern_wing,JQo) for because no higher node can be newly covered. Notegthat
1 < m < nand arbitraryr. One can do this i®(logn) 6,4 not have been previously covered. The values in the
time by creating another persistent structure in the génerg, o< in Figure 10 are the cover values that would result if
prefix algorithm, adding only9(n) time to the algorithm. = y,;ing the prefix construction with 8 data points, the level
Note that ifz is not an abscissa of one of the data points then, oo \yere: ¥1); 2:{10{2): 3:{1}{2,3}; 4:{1}{2,3}{4}:

_the value of Isg,(z) is the interval [IS%(¢i), 150, (Z241)] 5{1}{2,3,4,3: 6:{11{2,3,456; 7:{11{2,3,456{7};

if z; < = <- Xiq, OF (—OO,I?Om(I-l)] if x < =z, or 8{1}{2,3,4,5,6{7,8}

[sop (2n), 00) if & > z,,. Thus it suffices to be able to de- g to1) time to compute the cover valuesign), since
termine Isq, («;) for arbitrary index. Note that giverr one \hanever an upward path is being followed it does not use
can determine the appropriati © (logn) time. any edge previously used and there are enlyl edges.

The followmg ISa sketch of the procedure. The data struc- The second loop in Figure 11 shows how this tree is used.
ture is illustrated in Figure 10, where the leaf nodes corre-By the end of the first loop is the lowest node that has both
spond to the indices of the values. This tree is maintaineg and R beneath it. To see that is beneatty, if i is in the
in addition to the data structures in Figure 5. Let smaligst( right subtree ofy then the value of whenp was reached is

and Iarges_t() denote the ir!dices of the smallest and IargesE:]reater than largegf( and the loop would have continued. If
elements in the subtree with roptand let coverf) denote 1 is in the left subtree anf is not beneatl then the level set

the smallest- > largest(p) such that all indices beneath 55, () containingR also contained all elements in the
are contained in the same level set in,Isie., they are con- iy subtree of; since they are betwesrandR. Hence that
tained in the level set containing I§0). Note that all ele- g hiree is covered, so the loop would have continued because
ments ofp are contalneq in the level set containinm Iso;, the value of would have been larger than largest(
for s > r, and thaflso, (i) = Iso,(s) for the largest < m A similar argument can be applied to the second loop,
such that.the level set contalmm_gvas merged with the level showing that at all times? will be underp. This does not
set c_o_ntamlng. Let R denote this value. say thatR is known wherp is encountered, merely that it is
Initially all nodes have an empty cover value. Whenever,onoaih, sincep keeps decreasing in height, eventually it is
a level set with indices in the intervét, b] is mgrged with |eaf node, i.e., the node correspondingito
!evel set[c,d], b < ¢ the node corresp-ondmg to has Implementing this tree is straightforward. To store the
its cover value set tal. Let p denote this node and let cover value of the leaf nodes use the arkayer[1:n] where



Icover(i) is the value of the node correspondingtd-or the As noted earlier, the optimum mode is not necessarily
nonleaf nodes use the arrapver[1:n—1]. Leti € [1,n—1] unique. The algorithm in Figure 3 merely selects an arhjtrar
and letk be the largest power of 2 evenly dividing Then = mode among the optimal ones, but in some applications one
tcover(i) stores the value of the node ojer 2% +1, i +2%]. may want to apply secondary criteria to make this selection,
It is easy to show that this is a 1-1 correspondence betweeor to list all optimal modes.

elements ofcover and nonleaf nodes in the tree.

3.5 Time Required 5 Final Comments

Combining the algorithms in the previous sections gives thdt has been shown that the problem of determining the uni-
modal regression of a set of data can be optimally solved

following:

by using an approach based on prefix isotonic regression.
Theorem 1 Given weighted data{(x;,y;,w;) : @ =  This approach is quite similar to that in [4, 5, 9, 13, 17],
1,...,n} sorted byz;, the prefix isotonic regression problem put achieves greater efficiency by organizing the regrassio
can be solved in calculations into a systematic prefix calculation. The grefi

approach not only reduces the asymptotic time of unimodal

* ©(n) time for theL, metric, regression, it does so in a manner which is noticeable even fo

e O(n) time for theL .. metric with unweighted date, small data sets. Prefix isotonic regression on a set of values
_ . needs only the same amount of time as regular isotonic re-
e O(n logn) time for theL; metric. gression, and unimodal regression needs only twice as much.

Prefix isotonic regression is of interest in its own right.
For example, if the data is from an ongoing time series, then
e In constant time one can determine the error of, and init allows one to continually update the regression using, on

O(¢) time can determine the level sets of,Jsavhere/ average, only a constant number of calculations per obser-

Further, given this solution, for all <m < n,

is the number of level sets. vation. Further, the algorithm in Section 3.4 allows one to
quickly determine how later observations have changed the
e In @(log m) time one can determine |,$LQ$) for arbi- regression on earlier points_
trary x. One can extend unimodal regression to index structures

other than the linear ordering of the index set used here. For

example, for an arbitrary rooted tree @iodes, the., iso-

Note that one can also use tt@ver information to deter- ~ tonic regression can be determineddin logn) time [11].
mine Isg;! (y) in ©(logm) time. An algorithm for L, regression on rooted trees has also been
presented, but there was no analysis of its time complex-
. . ity [14]. L., regression on rooted trees can be determined

4 Unimodal Regression in ©(n log® n) time by using the general digraph algorithm

in [8]. If the tree structure was given as an undirected graph

Itis a very simple process to modify the algorithm in Figure 3yyith no root, then a unimodal regression would be needed to
to utilize prefix isotonic regression. Therorl values are cal- |gcate the best root.

culated via a standard prefix increasing isotonic regraessio
and theerrorr values are calculated via a prefix increasing iso-
tonic regression going through the data in right-to-leftesr Acknowledgements
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