
Optimal Hypercube Algorithms for Labeled Images
(Preliminary version)

Russ Miller

Department of Computer Science
State University of New York

Buffalo, NY 14260 USA

Quentin F. Stout

Elec. Eng. and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122 USA

Abstract--Optimal hypercube algorithms are given for determining properties of labeled
figures in a digitized black/white image stored one pixel per processor on a fine-grained
hypercube. A figure (i.e., connected component) is a maximally connected set of black
pixels in an image. The figures of an image are said to be labeled if every black pixel in
the image has a label, with two black pixels having the same label if and only if they
are in the same figure. We show that for input consisting of a labeled digitized image,
a systematic use of divide-and-conquer into subimages of n c pixels, coupled with global
operations such as parallel prefix and semigroup reduction over figures, can be used to
rapidly determine many properties of the figures. Using this approach, we show that in
®(log n) worst-case time the extreme points, area, perimeter, centroid, diameter, width
and smallest enclosing rectangle of every figure can be determined. These times are
optimal, and are superior to the best previously published times of O(log ~ n).

Index Terms--Parallel algorithms, hypercube computer, convexity, area, perimeter, di-
ameter, smallest enclosing rectangle, image analysis, divide-and-conquer.

1 Introduction

The hypercube computer is a popular parallel architecture that has been used for a wide
range of applications. Fine-grained hypercubes are particularly well-suited to solving
problems in the field of image analysis, and numerous hypercube algorithms have been
developed for this al'ea (c.f., [CySa, CSS87a, KaJa, LAN, MiSt87, MuAb, RaSa]). Using
the Gray-code mapping given in Section 2.4, pixels that are neighbors in an image can
be mapped to neighboring processors of the hypercube. This is similar to the natural
mapping of an image onto a mesh-connected computer, a class of computers often used
for pixel-based image processing. In fact, since the hypercube contains the connections
of the mesh-connected computer as a subset of its connections, a single step of a mesh-
connected computer algorithm can be simulated in constant time on a hypercube, and
hence the hypercube can efficiently perform all mesh computer algorithms.

For problems in which communication involves data originating in processors far apart,
a hypercube with n processors can send a message between any pair of processors in
O(logn) time, while if many pairs are exchanging information then one can guarantee
that all messages arrive in O(tog 2 n) time (see Section 2.2). This permits one to view the
hypercube as a pseudo-PRAM (Para~el Random Access Machine), where each PRAM
communication step can be simulated by the hypercube in O(log 2 n) worst-case time.

518

Other sources of hypercube image algorithms come from simulating algorithms for the
mesh-of-trees or pyramid architectures. Both the pyramid aald the mesh-of-trees can be
embedded into the hypercube so that adjacent pyramid or mesh-of-trees processors are
mapped to processors that are separated by no more than two communication links in the
hypercube [MiSt87, Sto]. Therefore, any step of a pyramid or mesh-of-trees algorithm can
be simulated in constant time on a hypercube, and hence the hypercube can efficiently
simulate all image algorithms for these architectures.

While simulation is a powerful technique, it often fails to fully exploit the capabilities
of the simulating architecture. We illustrate this by presenting a hypercube algorithm for
determining the extreme points of every labeled figure in O(log n) time. This algorithm
does not naturally arise from simulating algorithms written for these other architectures,
and it is easy to show that such an algorithm is impossible on all of them except the
PRAM and perhaps the mesh-of-trees. It uses a divide-and-conquer approach that could
also be used to yield an optimal PRAM algorithm, but our algorithm is more complicated
than is needed for an optimal PRAM algorithm. The reason for this complication is that
the hypercube is quite sensitive to the amount of data movement required, and we need to
insure that the amount of data being moved is restricted to 0(n1-¢), for some fixed c, in
order to guarantee that the movement can be completed in O(log n) time (see Section 2).

We systematically use the same divide-and-conquer approach, combined with effi-
cient global operations for routing, sorting, PRAM simulation, parallel prefix, search,
and semigroup reduction over figures, to determine many properties of figures. Algo-
rithms requiring only O(log n) worst-case time are given for finding the extreme points,
area, perimeter, centroid, diameter, width and smMlest enclosing rectangle of every fig-
ure. Since the solutions to such problems involve combining information from processors
arbitrarily far apart, any hypercube algorithm must take fl(log n) time, and therefore all
of these algorithms are optimal.

2 Background

In a hypercube with n processors, the processors can be labeled by unique (log 2 n)-bit
strings, where two processors have a communication link between them if and only if their
labels differ by exactly one bit. We assume that each processor has some fixed number
of registers, each of length fl(log n), and that standard operations, including exchanging
a word of information with an adjacent processor, take constant time. We assume that
each processor initially contains the label of its pixel and any associated data, where the
assignment of pixels to processors is given in Section 2.4.

We make the weak assumption that in any time unit a processor can send or re-
ceive along only a single communication link. Notice that any pair of processors can
communicate in O(log n) time, if no other communication interferes, since there are no
more than log s n communication links in a shortest path between any pair of processors.
Further, since there are pairs of processors that are log s n communication links apart,
and since every problem considered in this paper may involve communication between
arbitrary processors, a worst-case lower bound on the time required to solve any problem
considered in this paper is fl(tog n). Throughout, all times are worst-case.

519

2.1 P a r a l l e l P r e f i x

One simple global operation that we will make repeated use of is parallel prefix [KRS].
Let * denote an assodative binary operation over the values in some set S, and assume
that • can be computed in unit time. For example, * may denote maximum over the
set of integers. Suppose every processor p of a hypercube with n processors stores a
value v(p) E S. Then, using a very simple implementation [Ble], in O(log n) time every
processor p can end up with the value v (0) . v (1) * v (p - 1) * v (p - 1) , for all 0 < p _< n - 1.
(Notice that processor 1 ends up with v(0), while processor 0 receives no value.)

Parallel prefix is similar to the "scan" operation in APL, but it can be more flexible.
For example, suppose every processor p has a [label, value] pair [l(p), v(p)], where the
pairs are ordered so that l(p) <_ I(p + 1), and suppose * is defined by

{ [/1,vii ll =12
Ill, Vl] ~' [12, V21 = [12, V2] l l ¢ 12

Then the parallel prefix will result in every processor having the value from the smallest
numbered processor with its label. (Notice that processors which are not the smallest
numbered with their label obtain this value by the parallel prefix algorithm, while proces-
sors which are the smallest numbered with their label already have this value, and may
therefore discard the value received during the parallel prefix since the value is attached
to the previous label.) By combining a parMlel prefix operation with the mirror-image
parallel postfix operation, one can perform operations such as starting with an ordered set
of labels and having every processor determine, say, the sum of all values with its label,
all in O(log n) time.

2.2 R o u t i n g a n d S o r t i n g

While an arbitrary pair of hypercube processors can communicate in O(Iog n) time, if
many pairs of processors are simultaneously trying to communicate, then the time re-
quired for all pairs to finish may be significantly worse. For our purposes, it suffices to
consider only routing steps in which every processor sends at most one message, and
every processor is the destination of at most one message. Obviously, severe bottle-
necks can occur at a single processor if it must either send or receive many messages,
but even in our restricted routing situation bottlenecks can occur. Any deterministic
oblivious routing scheme (in which the path taken by a message depends only upon its
source and destination, and not upon any other messages) must have a worst-case time

of f~(nl/2/log l"s n) [BoHo]. Randomized oblivious routing can have an expected time of
O(log n) [Va182], but cannot guarantee good worst-case behavior.

The best way known to guarantee good worst-case routing time is to use sorting.
Messages are sorted according to their destination, using pseudo-records with an infinite
destination for every processor not sending a message. After the sort, the actual mes-
sages are stored in increasing destination order in an initial segment of the processors.
These messages can then be routed to their destination in log~ n constant-time lock-step
stages [MiSt89].

The fastest hypercube sorting algorithm currently known is bitonic sort [Bat], which

takes ®(log = n) time. Using this will result in routing finishing in ®(log 2 n) time. How-

520

ever, when significantly fewer messages are being sent, faster routing is possible. For
any fixed c > 0, if there are O(n 1-c) messages, then they can be sorted in O(log n) time
[NaSa], where the implied constant inside the 0 depends upon c. Using this sort in the
routing scheme will result in all messages being delivered in O(logn) time. Throughout
this paper, algorithms are designed so that this faster routing can be achieved.

2.3 P R A M S i m u l a t i o n

A parallel random access machine (PRAM) is an idealized parallel model of computation,
with a unit-time communication diameter. A PRAM is often described as a machine that
consists of a set of identical processors and a global memory, where all processors have
unit-time access to any memory location. A Concurrent Read, Exclusive Write (CREW)
PRAM permits multiple processors to read data from the same memory location simulta-
neously, but permits only one processor at a time to a t tempt to write to a given memory
location. A Concurrent Read, Concurrent Write (CRCW) PRAM permits concurrent
reads as above, but allows several processors to at tempt writing to the same memory
location simultaneously, with some tie-breaking scheme used so that only one of the com-
peting processors succeeds in the write. An Exclusive Read, Exclusive Write (EREW)
PRAM is the most restrictive version of a PRAM in that only one processor can read
and write from a given memory location at a given time.

It is well-known that a combination of sorting and parallel prefix can be used to
simulate the ER, CR, EW, and CW PRAM operations on other architectures [MiSt89].
Using this, all of the EW, ER, CW, and CR operations can be simulated on a hypercube
with n processors in worst-case O(log 2 n) time. Further, if there is some fixed c > 0
such that no more than O(n 1-c) processors are reading and writing, then each of these
operations can be completed in O(log n) time.

2.4 M a p p i n g I m a g e s o n t o H y p e r c u b e s

Given an n 1/2 x n 1/~ image, where n 1/~ is a power of 2, there are two principle ways to
map the image in a 1-1 fashion onto the processors of a hypercube with n processors.
In the row-major ordering, pixel (i , j) is mapped to hypercube processor i . j , where •
indicates the concatenation of the (0.5log 2 n)-bit representations of i and j . While this
is quite simple and natural, it has the disadvantage that adjacent pixels, such as (0,1)
and (0,2), are not mapped onto adjacent processors.

Mappings which preserve adjacency are based upon Gray codes. The standard binary
reflected Gray-code [RND] is a permutation Gd of the integers {0,1, 2 , . . . ,2 d - 1}, and
is defined recursivety by GI(0) = 0,GI(1) = 1, and

0. Gd(x) x < 2 d
Gd+l(X) 1.Gd(2 d + l - l - x) x > 2 d

This mapping has the property that for any integers d >__ 1 and 0 _< x < 2 d, Gd(x)
and Gg((x :1= 1) rood 2 d) differ by exactly one bit. By mapping pixel (i,j) to hypercube
processor Go(i). Go(j), where c = 0.5 log 2 n, pixels sharing edges are mapped to adjacent
hypercube processors.

521

For our purposes, either of these mappings could be used, and from now on we will
assume that whenever an image is stored on a hypercube it is stored via one of these

mappings. Both of them have the property that if x < n 1/2 is a power of 2, then when
the image is partitioned into x x x subsquares, the subsquares reside in disjoint subcubes
of the hypercube. This is the only property we need for our algorithms to ~vork in the
times claimed. However, for algorithms that require that every pixel determine the values
of its adjacent pixels, where "adjacent" means adjacent in the image, if the row-major
mapping is used then the pixels can be moved into the Gray-coded mapping in @(log n)
time.

2.5 Labeling F i g u r e s

In a digitized black/white image, two black pixels are said to be adjacen t if and only if
they share an edge. Two black pixels are said to be connec ted if and only if there is a
path of adjacent black pixels between them. A f igure is a maximally connected set of
black pixels, which presumably represents some object in the image. By labeling f igures

we mean that every black pixel receives a label, where two pixels receive the same label
if and only if they are in the same figure.

The fastest known hypercube algorithms for labeling the figures of a digitized image,
distributed one pixel per processor on a hypercube, finish in O(log 2 n) time. One such
algorithm appears in [CSS87a], and is based on simulating the O(logn) time CRCW
PrCAM algorithm [ShVi] for labeling the connected components of a graph given as a
set of n unordered edges, coupled with the idea of subdividing the image into n c x n c

subimages, c < 1/2. This approach can also be used to convert the O(logn) time EREW

PRAM algorithm of [LAN, CSS87b] into a O(log 2 n) algorithm for the hypercube.
We note that since f~(log n) is the largest lower bound known for labeling figures on

a hypercube, it is an open question as to the fastest time possible for labeling figures on
a hypercube.

3 E x t r e m e P o i n t s

The ex t reme po in t s of a figure axe the vertices of the smallest convex polygon containing
the figure. (See Figure 1.) Extreme points provide a succinct representation of a figure
and can be used in efficient algorithms to determine a variety of geometric properties
of figures [PrSh, MiSt89]. For several of the algorithms presented in this paper, it will
be convenient to have a consistent numbering scheme for the extreme points of a figure.
Without loss of generMity, we assume the extreme points of a figure are numbered in a
counterclockwise fashion, starting with the easternmost point (in case of ties, we start
with the southernmost-easternmost point), as shown in Figure 1.

Throughout the rest of the paper, we assume that the hypercube starts with an
image in which the figures have been labeled. For determining extreme points, when
the algorithm is finished, every processor containing a black pixel will have a Boolean
variable "extreme" which is true if and only if its pixel is an extreme point of its figure.
Further, every processor containing an extreme point will also contain the coordinates
of the precedil.g and succeeding extreme points, with respect to the counterclockwise
numbering of the extreme points.

522

4

2

• Labeled Figure

Edges of Convex Hull

• Extreme Points

6 7

Figure 1: Enumerated Extreme Points.

Our extreme point enumeration algorithm uses a bot tom-up divide-and-conquer ap-
proach. We partition the image into n c × n c subimages, c < 1/2, and find the extreme
points of every figure restricted to its subimage, i.e., we temporarily treat each subim-
age/subcube as if it were an entire image/hypercube. Notice that if p is an extreme point
of a figure F, then p is an extreme point of the restriction of F to any subimage containing
p. Further, the extreme points of F are the extreme points of the set of extreme points
corresponding to all of F ' s subimages. Therefore, the extreme points of the subimages
contain all the information needed to determine the extreme points of the entire image.

When the extreme points of the subimages have been determined, the only figures
which are not finished are those that are in more than one subimage. Since figures are
connected, every figure in more than one subimage must have a pixel on the border of
every subimage that it is in. For each such figure, all of its extreme points from all
of the subimages are combined to determine the extreme points of the figure. In every

n c × n c subimage, a given figure has only O(n 2c/3) extreme points [VoK1]. Further, each
subimage has only 4n c - 4 border pixels, and hence has information pertaining to O(n ~)

figures that are not finished. Since there are n 1-2c subimages, there are only O(n 1-~/3)
total extreme points from all subimages of all figures which are not finished. A hypercube
algorithm for enumerating the extreme points of a set of points in the plane, where the
algorithm finishes in t ime proportional to the time needed to sort, appears in [MiSt88].
Using this algorithm, and the O(log n) time algorithm to sort a restricted amount of data
(Section 2.2), the extreme points of every unfinished figure can now be determined in
O(log n) time.

T h e o r e m 1 Given a labeled n :/2 × n:/2 image stored one pixel per processor in a hy-
percube with n processors, in O(logn) time the extreme points of every figure can be
determined.

Proof: To prove that the algorithm finishes in the time claimed, notice that the running

523

time obeys the recurrence

T(n) = T(n 2c) + O(log n),

which is O(log n) since c < 1/2.

4 Determining Properties of Figures

By using Theorem 1 to determine the extreme points for every figure, along with the
divide-and-conquer approach of using subdivisions of n c x n c subimages, one can deter-
mine several properties of figures in logarithmic time. When we say that a property is
determined for every figure, we mean that every processor containing a black pixel will
know the property with respect to the figure that its pixel is in.

4.1 S e m i g r o u p R e d u c t i o n Over Figures

Let * represent a commutat ive semigroup operation over some set S, where • can be
computed in unit time. For example, , may denote addition over the set of integers.
Given that every processor containing a black pixel also stores some data value from S,
the following theorem shows that a commutative semigroup operation can be performed
over the data values associated with every figure.

T h e o r e m 2 Given a labeled n 1/2 x n x/2 image stored one pixel per processor in a hyper-
cube with n processors, suppose every black pixel p has an associated data value v(p) E S.
Then in O(log n) time every black pixel p can determine the result of applying a commu-
tative semigroup operation * to all values associated with the black pixels in its figure.

Proof: Our algorithm initially uses the bot tom-up divide-and-conquer strategy employed
in Theorem 1. Suppose that the image has been parti t ioned into n c × n c subimages,
c < 1/2, and that in each subimage the result of applying * has been determined for
every figure. Since the only figures not finished are those in more than one subimage, a
count similar to the one preceding Theorem 1 shows that there are only O(n 1-c) values
to be combined at the final stage. These values can be combined by sorting the restricted
number of pieces of da ta by their figure's label, and then using a parallel prefix operation
to combine the values corresponding to the same figure.

If at the end of each bot tom-up combination stage a parallel postfix operation is used
to inform all pixels involved in the combination as to the combined value for their label,
then at the end of the entire bot tom-up pass, for every figure the answer is known to
those pixels on the borders of the last stage to involve the figure. To disseminate the
answer to a~ pixels in a figure, a final top-down pass is needed. This pass is essentially
just the bot tom-up pass run in reverse, except that at each stage the border pixels that
are acquiring their figure's value merely need to perform a concurrent read from one of
the figure's border pixels that is on the border of the next larger subimage. Note that
this requires that on the bot tom-up pass, a border pixel which had reached the last step
that it participated in must also have stored with it the location of a border pixel in the
same figure that will participate in later stages, if any such pixel exists. If no such pixel
exists then it will have the correct value because it participated in the last stage.

524

Both the bottom-up and top-down stages satisfy a recurrence of the form

T(n) = T(n 2~) + O(log n),

and hence finish in O(log n) time. []

The algorithm of Theorem 2 performs an operation which is sometimes called semi-
group reduction over figures. This can be viewed as a useful "tool" for constructing
parallel algorithms to determine properties of figures, much as parallel prefix is a use-
ful operation for a fairly wide class of parallel algorithms. Simple applications of this
operation solve problems such as determining for every figure its area (i.e., the number
of pixels in the figure), its perimeter (i.e., the number of pixels along the border of the
figure), its centroid (the x-coordlnate of the centroid of a figure is the total x-moment
divided by the area, and the y-coordinate is the total y-moment divided by the area),
and so on. These properties can also be determined with respect to the convex hull of
every figure. For example, in order to determine the area of the convex hull of every
figure, first determine the extreme points of every figure, then use semigroup reduction
over figures so that all extreme points know the extreme point numbered 1 in their figure,
use this point to conceptually triangulate the figure, and finally, use semigroup reduction
over figures to sum the areas of the triangles for every figure.

C o r o l l a r y 3 Given a labeled n 1/: × n 1/~ image stored one pixel per processor in a hy-
percube with n processors, in O(logn) time every black pixel can determine the area,
perimeter, centroid, topmost row, bottommost row, leftmost row, and rightmost row of its
figure, and the corresponding properties of the convex hull of its figure. []

4.2 D i a m e t e r a n d S m a l l e s t E n c l o s i n g R e c t a n g l e

The diameter of a figure is the maximum distance between any two pixels of the figure.
It is straightforward to show that the diameter of a figure F is the maximum distance
between two extreme points of F. Further, for any extreme point p, if q is the extreme
point farthest from p, then there is some angle c~ E [0, 2~r) such that the halfplane through
p at angle ~ contains the entire figure, and the halfplane through q at angle ((~+~r) mod 27r
contains the entire figure. (See Figure 2.) The angle (~ must be in the range from the angle
of the halfplane through p and its preceding extreme point (and containing the figure),
to the angle of the halfplane through p and its following extreme point (and containing
the figure). These angles axe known as the angles of support at p. For example, given
an iso-oriented rectangle, the angles of support of the northwest corner are [Tr,31r/2], of
the southwest corner are [3~/2, 2~) 0 0, of the southeast corner are [0, ~r/2], and of the
northeast corner are [~r/2, ~r].

The following search algorithm can be used for every extreme point of a figure to find
the distance to a farthest extreme point in its figure. For every extreme point Pi of a
figure, with Pi+l its succeeding extreme point and Pi-1 its preceding extreme point, with
respect to the counterclockwise ordering of extreme points, we create two point records
and an edge record. The first point record contains the label of the figure as major key, the
angle of the halfplane (which contains the figure) of hull edge pi-lPi as minor key, with
the identity of Pi-1 and Pi, as well as the ID of the processor creating the record as data.

525

Figure 2: Lines of Support.

The second point record contains the label of the figure as major key, the angle of the
halfplane (which contains the figure) of hull edge PiPi+I as minor key, with the identity
of Pi and Pi+l, as well as the ID of the processor creating the record as data. The edge

record consists of the label of the figure as major key, the angle of the halfplane (which
contains the figure) plus ~r mod 2~r of hull edge Pipi+l as minor key, with the identity of
Pi and Pi+l as well as the ID of the processor creating the record as data.

All point and edge records are sorted together by the major key (figure label), breaking
ties by the minor key (angle in [0,2~r)), and breaking additional ties in favor of a first
point record, then an edge record, and finally a second point record. After sorting,
an exclusive read is used for every first record to determine the processor index of its
associated second record. Within intervals delimited by pairs of point records, perform a
semigroup operation to determine the farthest point corresponding to an edge record fl'om
the point that determines the interval. A final sort returns all records to the processors
that created them. This search is dominated by the time to perform sort, semigroup,
prefix, and exclusive read operations. Further, once the search is complete, a simple
maximum operation by a semigroup reduction over a figure will determine the diameter
of every figure.

To implement this so that every figure determines its diameter, we use a bottom-up
procedure similar to that used to find extreme points. As before, if an n 1/2 × n 1/2 image

is partitioned into n c x n c subimages, c < 1/2, then there are at most O (n 1-c/3) total
extreme points. Therefore the search operation can be completed in O(log n) time, giving
a total time of O(log n) for the algorithm.

T h e o r e m 4 Given a labeled n 1/2 X n 1/2 image stored one pixel per processor in a hyper-

cube with n processors, in 0(log n) t ime the d iameter o f every figure can be determined.
[]

The width of a figure can be defined as the minimum of the distances determined by

526

finding for every extreme point p of the figure, the (minimum) distance from a line of
support of p to a parallel line of support on the opposite side of the figure. Similarly, a
smallest enclosing rectangle of a figure, namely a rectangle of minimal area containing
the figure, can also be determined using lines of support [FrSh]. Simple modifications to
the previous algorithm yield the following.

Coro l l a ry 5 Given a labeled n 1/2 X n 112 image stored one pixel per processor in a hyper-
cube with n processors, in O(log n) time the width of every figure, and a smallest enclosing
rectangle for every figure, can be determined. E]

5 Final C o m m e n t s

We have given several hypercube algorithms which systematically use a divide-and-
conquer strategy to determine properties of labeled figures. By dividing an n 1/2 × n 1/2
image into subimages of size n c × n c, c < 1/2, the amount of data from the subimages

which must be combined to finish the entire image is reduced t o o(nd) , for some fixed
d < 1, where d depends upon c and the problem being solved. This enables us to per-
form global operations such as sorting, routing, or simulating a communication step of
a CRCW PRAM, in only O(log n) time, rather than the ®(log 2 n) time required if E)(n)
items are being moved. We also note that if our algorithms had used the more standard
subdivision into a fixed number of pieces, then the time would have satisfied a recurrence
equation of the form

7'(n) = ®(log n) + T(n/c) ,

which would have a solution of ®(log 2 n).
The use of a divide-and-conquer strategy into data sets of size n d, d < 1, is not

new, with its first use in parMlel algorithms being for PRAMs [ACGOY, AtGo, Val75].
This strategy was later incorporated into hypercube algorithms, giving the best known
algorithms for image component labeling (see Section 2.5) and convex hulls of point
sets [CySa, MiSt88]. However, these previous hypercube algorithms require @(log: n)
time, as opposed to the ®(log n) time attained here.

Given an image with labeled figures, our approach yields an optimal worst-case
O(log n) time algorithm to enumerate the extreme points of every figure. Further, using
this approach, a variety of properties such as area, perimeter, diameter, width, and a
smallest enclosing rectangle, can be determined for every figure, or, where appropriate,
for every convex hull of a figure, all in O(log n) time. The final version of this paper will
add additional properties to this list, such as deciding for every figure whether or not it is
convex. Two useful ®(log n) time global operations for determining such properties are
the semigroup reduction over figures, introduced in Theorem 2, and the search operation,
introduced in Section 4.2.

Since all of the algorithms presented in this paper involve combining information in
processors arbitrarily far apart, and since the communication diameter of the hypercube
is O(log n), all of these algorithms are optimal. This is particularly satisfying since the
optimal times to sort, route, label figures, or find extreme points of arbitrary sets of
points on a hypercube are not known.

527

Finally, while we have concentrated on the hypercube because of the widespread inter-
est in such machines, all of the algorithms can be easily modified to run on other machines
such as a shuffie-connected computer, cube-connected cycles, or an asynchronous EItEW
PRAM, so that they still finish in optima] O(log n) time. Further, the final version of this
paper will show that the problems considered here can be solved on these machines in
O(n/p + log p) time, where p is the number of processors. Therefore all of these machines
achieve linear speedup for p < n/log(n).

Acknowledgments

This work was partially supported by NSF grants DCIt-8608640, IIti-8800514, and DCR-
8507851, and by an Incentives for Excellence Award from Digital Equipment Corporation.

References

[ACGOY]

[AtGo]

[Bat]

[Ble]

[BoHo]

[CySa]

[csssTa]

[CSS87b]

[FrSh]

[KaJa]

A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and C. Yap, "Parallel
computational geometry", Algorithmica 3 (1988), pp. 293-327.

M.J. Atallah and M.T. Goodrich, "Efficient parallel solutions to some geomet-
ric problems", J. Parallel and Distrib. Comput. 3 (1986), pp. 492-507.

K.E. Batcher, "Sorting networks and their applications", Proc. AFIPS Spring
Joint Comput. Conf. 32 (1968), pp. 307-314.

G. Blelloch, "Scans as primitive parallel operations" Proc. 1987 Int'l. Conf.
Parallel Proc., pp. 355-362.

A. Borodin and J.E. Hopcroft, "Routing, merging and sorting on parallel
models of computation", J. Comp. and Sys. Sci. 30 (1985), pp. 130-145.

R. Cypher and J.L.C. Sanz, "Data reduction and fast routing: a strategy for
efficient algorithms for message-passing parallel computers", Atgorithmica, to
appear.

It. Cypher, J.L.C. Sanz, and L. Snyder, "Hypercube and shuffie-exchange
algorithms for image component labeling", Proc. Comp. Arch. Pat. Anal. and
Mach. Intel. '87, pp. 5-10.

It. Cypher, J.L.C. Sanz, and L. Snyder, "EREW PItAM and Mesh Connected
computer algorithms for image component labeling", IEEE Trans. Pat. Anal.
and Machine Intel., 11 (1989), pp. 258-262.

H. Freeman and It. Shapira, "Determining the minimal-area encasing rectangle
for an arbitrary closed curve", Comm. ACM 18 (1975), pp. 409-413.

A.E. Kayaalp and It. Jain, "Parallel implementation of an algorithm for three-
dimensional reconstruction of integrated circuit pattern topography using the

[KRSI

[LAN]

[MiSt87]

[MiSt88]

[MiSt89]

[MuAb]

[NaSa]

[PrSh]

[RaSa]

[RND]

[ShVi]

[Sto]

[Va175]

[w82]

[VoK1]

528

scanning electron microscope stereo technique on the NCUBE", Hypercube
Multiprocessors 1987, pp. 438-444.

C.P. Kruskal, L. Rudolf, and M. Snir, The power of parallel prefix, Proc. 1985
Intl. Conf. Parallel Proc., pp. 180-185.

W. Lim, A. Agrawal, and L. Nekludova, "A fast parallel algorithm for label-
ing connected components in image arrays", Tech. report NA86-2, Thinking
Machines Corp., 1986.

R. Miller and Q.F. Stout, "Some graph and image processing algorithms for
the hypercube", Hypercube Multiprocessors 1987, pp. 418-425.

R. Miller and Q.F. Stout, "Efficient parallel convex hull algorithms", IEEE
Trans. Computers 37 (1988), pp. 1605-1618.

R. Miller and Q.F. Stout, Parallel Algorithms for Regular Architectures, The
MIT Press, 1989.

T.N. Mudge and T.S. Abdel-Rahman, "Vision algorithms for hypercube ma-
chines", J. Parallel and Distrib. Comp. 4 (1987), pp. 79-94.

D. Nassimi and S. Sahni, "Parallel permutations and sorting algorithms and
a new generalized connection network", J. ACM 29 (1982), pp. 642-667.

F.P. Preparata, and M.I. Shamos, Computational Geometry, Springer-Verlag,
1985.

S. Ranka and S. Sahni, "hnage template matching on SIMD hypercube mul-
ticomputers", Proc. 1988 Intl. Conf Parallel Proc., pp. 84-91.

E.M. Reingold, J. Nievergelt, and N. De<), Combinatorial Algorithms, Prentice
Hail, New York, 1977.

Y. Shiloach and U. Vishkin, "An O(log n) parallel connectivity algorithm", J.
Algorithms 3 (1982), pp. 57-67.

Q.F. Stout, "Hypercubes and pyramids", Pyramidal Systems for Computer
Vision, V. Cantoni and S. LeviMdi, eds., Springer-Verlag, 1986, pp. 75-89.

L.G. Valiant, "Parallelism in comparison problems", SIAM J. Comput. 4
(1975), pp. 151-162.

L.G. Valiant, "A scheme for fast parallel communication", SIAM J. Comput.
11 (1982), pp. 350-361.

K. Voss and R. Klette, "On the maximum number of edges of convex dig-
ital polygons included into a square", Friedrich-Schiller-Universitat Jena,
Forschungsergegnisse, no. N/82/6.

