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Abstract: One important aspect of efficient use of a hypercube compuisslve a given
problem is the assignment of subtasks to processors in swely that the communication
overhead is low. The subtasks and their inter-communicagguirements can be modeled
by a graph, and the assignment of subtasks to processorsd/asan embedding of the task
graph into the graph of the hypercube network. We survey timsvk results concerning
such embeddings, including expansion/dilation tradefaffsgeneral graphs, embeddings
of meshes and trees, packings of multiple copies of a graghcomplexity of finding
good embeddings, and critical graphs which are minimal va#ipect to some property. In
addition, we describe several open problems.

Keywords: hypercube computer-cube, embedding, dilation, expansion, cubical, pack-
ing, random graphs, critical graphs.

1 Introduction

Let ,, denote am-dimensional binary cube where the nodesf are all the binaryn-tuples and
two nodes are adjacent if and only if their correspondintyples differ in exactly one position. (See
Figure 1.) Ann-dimensional hypercube computer,recube, is a parallel computer witif processors
and network topology that ap,,. That is, each node d@,, represents a processor — a fairly power-
ful computer with its own local memory — and each edgeXaf represents a direct communication
link between the corresponding processors. A detailedwstonf one of the commercially available
hypercubes, the N-CUBE, is given by Hayes et al. [17].

Many of the properties of the hypercube that make it a desirgbneral purpose parallel machine
are a direct consequence of the graph-theoretic propefti€s,. For example, the fact th&,, can be
defined recursively as the graph product

Qn = Qn—l X K2
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Figure 1: Some Hypercubes

suggests that a hypercube can support divide-and-conttaggges very well. Certain algorithms such
as Bitonic Sort and the FFT can be implemented efficiently bypeercube network, with all communi-
cation occuring between pairs of adjacent nodes. The rigeudgfinition also shows that a hypercube
can be partitioned among multiple users, each receivingeutie. The fact tha®),, is homogeneous
(given any two nodep andq there exists an automorphismof @,, for which o(p) = ¢), allows al-
gorithms to be written assuming some node has a distingiiigiie and then rotated so that any other
desired node assumes that role. The fact ¢hathas diameter, a relatively small diameter for the
number of nodes it possesses, implies that no single mebs#geen arbitrary processors need travel
very many communication links. Broadcasting (one nodeisgritie same information to all others) is
a crucial operation for many applications such as gauss$immation, and can be implemented in only
n parallel communication steps via simple “recursive douli In addition to the above properties, the
fact that@,, is n-connected suggests that the network enjoys a high degfealtfolerance.

Members of several important classes of graphs includintangular grid graphs and trees appear
as subgraphs aof),,. This suggests that the hypercube can simulate these rastwath little or no
overhead and that algorithms designed for these networkbeaasily adapted to the hypercube. When
the hypercube is used to simulate a network with gi@phe nodes ofy must be mapped to the nodes of
@, and, in order to keep communication overhead down, adjawstes ofG should map to adjacent
nodes of@,, insofar as possible. In designing (or adapting) an algerithat performs a task’ on
the hypercube networkl] is modeled with a “task graphGG, in which the nodes represent subtasks
and the edges represent communication requirements betheeorresponding subtasks. Once again,
the efficiency of the implementation depends strongly omnidieire of the mapping int@,,. To keep
communication overhead low, the nodes(of must be mapped to the nodes @}, so that pairs of
adjacent nodes afr map to pairs of adjacent nodes@y,.

An embedding of a graphG = <V, E > into a graphG’ = < V', E' > is a one-to-one map of V'
into V' such that if(u, v) € E then(¢(u), ¢p(v)) € E' for all (u,v) € E. A graphG is calledcubical
if, for somen, there is an embedding 6f into @,,. Cubical graphs form the central topic of Section 2.

Many graphs that emerge as task graphs are not cubical. Weuae motivated to study mappings
of graphs with no adjacency requirement. We will calk weak embedding of G into G’ provided



only that¢ is one-to-one. Now it is the case that every gr@pkvith at most2™ nodes can be weakly
embedded intd@),,, but pairs of adjacent nodes 6f may map to pairs of nodes which are connected
but not adjacent. The practical considerations associatddthis type of embedding give rise to the
following notions. Thedilation of ¢, denotedlil(¢), is defined as

dil(¢) = max{dist(¢(u), p(v)) | (u,v) € E}

wheredist(a,b) denotes the Hamming distance between the bimatyplesa andb. Dilation is a
measure of the communication overhead induced by the ¢nafhe expansion of ¢, denotedex(¢),
measures processor utilization and is defined as

ex(¢) = |V'|/IV].

Other measures of efficiency, such as the maximum numbergafseof1” mapped onto a single edge
of V/, will not be considered here.

In practice, one would like to have embeddings with dilatom expansion near one, but for many
graphs this is an impossible situation. Often one can makketoffs between the two, increasing one
at the expense of the other. Section 3 contains a discus$itire elevant results concerning weak
embeddings and the trade-offs that exist between dilationexpansion. In Section 4 some extensions
are discussed, and several open problems are described.

Throughout, Ig denote$og,.

2 Cubical Graphs

As defined in Section 1, a gragh is cubical if there is an embedding 6f into @,, for somen. If
G is cubical, then the least positive integerfor which G can be embedded intQ,, is called the
cubical dimension of GG, denoted:d(G). The star graph witln + 1 nodes K ,,,, is clearly cubical and
cd(K1,m) = m. Itis equally straightforward to see that a simple path withodes,P,,,, is cubical, and
the fact thaicd(P,,) = [lgm| follows from the existence of a Hamiltonian pathdp, for anyn. On
the other hand, note that neither the complete grdphor the complete bipartite gragky, 3 is cubical.

In an early paper on isometric embeddings i@tg, Firsov [5] showed that all trees are cubical, and
also noted that all cubical graphs are bipartite. Later,dHamd Moravek [16] discovered necessary and
sufficient conditions that a graph be cubical. (These camditare given below.) Using this, Havel and
Liebl [14, 15] deduced that trees, rectangular meshes, exagonal meshes are cubical, and they gave
embeddings of these. They also proved that a cycle is cubeadl only if it is even. These results have
been rediscovered numerous times.

The embeddings of rectangular meshes are quite simple lasttative, as well as being useful in
many applications. Al-dimensional mesi/ of sizen; x ny X ... x ng has nodeg(a,...,aq)|0 <
a; < n; for 1 < i < d}, where an edge exists between two nodes if and only if thie@l$adiffer by one
in one component, and are identical in all other compondimtembed\/ into a hypercube, one utilizes
binary Gray codes [7]. The most common Gray codes, the retldshary ones, are recursively defined
as follows: G, is a bijection from{0, 1, ...,2" — 1} onto{0, 1}", given byG;(0) =0, G;(1) = 1, and
{ 0Gn_1(x) 0<z<2mt_1

Gn(2) 1G, (2" —1—2) v l<a<om—1
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for n > 2. Let ¢ denote the mapping that associates dreple (a1, ..., aq) with the concatenation
Gr(a1) - ... Gr,(aq), wherer; = [lgn;]. Itis straightforward to show that indegds an embedding
of M into Q,, wherer = Y, r;. Thereforecd(M) < r, and by using the labeling conditions given
below one can show thati(M) = r.

2.1 Decidingif a Graph isCubical

Note that a graph is cubical if and only if all of its connectsmmponents are cubical. The work of
Havel and Moravek [16] can be rephrased slightly to showdh@onnected grapy can be embedded
into @,, if and only if it is possible to label the edges@fwith the integer1,...,n} such that

1. Edges incident with a common node are of different labels;
2. In each path of7 there is some label that appears an odd number of times; and
3. In each cycle of7 no label appears an odd number of times.

Each such labeling gives rise to a (not necessarily unigoddeeding in which the label of an edge is
the dimension along which its endpoints differ.

Using these embedding conditions, it is straightforwardhow that embeddings of crossproducts
of nonempty connected graphs must be crossproducts (emat&ns) of embeddings of the factors.
This implies that connected nonempty grapghsandGs are cubical if and only it7; x G+ is cubical,
and that

Cd(Gl X Gg) = Cd(Gl) + Cd(Gg).

The conditions also show that a treerohodes can be embedded irdy_; by using a labeling which
is a bijection between the edges &d. .., n — 1}. Using this, it is easy to show that a graph is cubical
if and only if its biconnected components are, since therbected components form a forest.

Graham [9] has given a condition which can be used to proveatheaph is not cubical. A graph
is decomposable if it has a minimal cutse€’ of edges such that no two edgegirhave a common node,
and the removal of” disconnectss. G is completely decomposable if every subgraph of more than one
node is decomposable. Graham proved that(#) denotes the number of 1's in the binary expansion
of k, andW (k) = Z;?:l w(j), then every completely decomposable graph withodes and edges
satisfiese < W (n —1). Cycles of odd length greater than 3 show that not all corajylelecomposable
graphs are cubical, but all hypercubes are completely dposatble since, for any connected subgraph,
once can pick any edge in the subgraph and choose as a cuasetge and all edges parallel to it.
Therefore a cubical grapf with n nodes is completely decomposable and has no moréihan— 1)
edges. Further, this bound is best possible, as is shownebinduced subgraph @,,, consisting of
nodes{0,...,n — 1}, n < 2™, where we have made the natural identification betweenyinatuples
and integers. A direct divide-and-conquer approach camtasused to prove the slightly weaker fact
thatG has at mosb.5 - nlgn edges.

Garey and Graham [6], and earlier Havel and Moravek [16hsiered the problem of finding
cube-critical graphs, that is, graphs that are not cubical though all af gneper subgraphs are cubical.
Cycles of odd length are cube-critical, as is a diamond wiith jair of opposite nodes connected by an
extra path of length two. Garey and Graham, and Gorbatov amhisky [8], have given procedures
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for constucting arbitrarily large cube-critical grapherfr other cube-critical graphs, and Havel [12] has
constructed arbitrarily large cube-critical graphs usmeshes with extra edges.

Deciding if agraph is cubical, or deciding if a noncubicagjn is cube-critical, can be quite difficult.
Afrati, Papidimitriou, and Papageorgiou [1] and Krummenk@&taraman, and Cybenko [20], showed
that the problem of deciding whether an arbitrary graph waal is NP-complete. The proof of NP-
completeness given in [1] shows that the problem remaingdiRplete even if the problem is restricted
so that the maximum degree of any node is 4. If the maximaledegf any node is 2 then the problem
can be decided in linear time, and it is apparently an opestourewhether the problem is NP-complete
when the maximum degree is 3. However, the authors have sti@awdeciding if a graph is cubical, or
deciding if a noncubical graph is cube-critical, can be clateg in constant expected time for random
graphs in which edges between nodes are included with a fixdxhpility.

2.2 Cubical Dimension

If G is a cubical graph with connected componegts ..., C, then simple packings of subcubes,
coupled with an obvious lower bound, shows that

max cd(C;) < cd(G) < [ngTd(Ci)w .

Unfortunately, upper and lower bounds for the cubical disi@m of an arbitrary connected cubical
graph are quite far apart, with the best bounds for a cubiegdhy with n nodes being

lgn] < cd(G) < n-—1.

The lower bound is obtained from a simple count of the noded,sattained by a patR,,. The upper
bound was first proven in Garey and Graham [6], and is attaiyetie star grapt; ,— 1.

For more restricted cubical graphs slightly better bounaéehbeen determined. In [1], Afrati,
Papadimitriou, and Papageorgiou proved that/ifs a biconnected cubical graph efnodes, then
cd(G) < n/2, and they observed that the graph shown in Figure 2 showgHisabound is the best
possible. Using this result, Stout has shown thét i§ a cubical graph of. nodes where each node has
degree at least 2, the(G) < 2(n — 1)/3. The graph in Figure 3 shows that this bound is the best
possible. There should be analogues of these results-donnected graphs, and for graphs in which
each node has degree at leadior arbitrary integers, d > 3.

While trees are easily shown to be cubical, determining ttgical dimension has proven to be a
difficult problem. Havel and Liebl [15] showed that the cullidimension of the complete binary tree
T,, with heightn and2"*! — 1 nodes is a most + 2 for n > 2, and Nebesky [21] later proved that
cd(T,) = n+2whenn > 2. Other bounds on cubical dimensions of specific trees appétavel and
Liebl [14, 15] and Wagner [24]. Afrati, Papadimitriou, andgageorgiou [1] gave a polynomial time
algorithm which embeds a tree into a cube with dimension atri@ square of the cubical dimension
of the tree, and they conjectured that the problem of caicgjahe cubical dimension of a tree is NP-
complete.

For general cubical graphs, the problem of calculating thigcal dimension is NP-complete. In
fact, Krumme found a family of graphs where each member #fthodes embeds int§ 4, but it is
NP-complete to decide if it embeds intg;.



Figure 2: A bipartite graph with large cubical Figure 3: A graph with minimal degree 2 and
dimension large cubical dimension

Call a cubical grapldr dimension-critical if the deletion of any edge reduces the cubical dimension.
Stars with more than 3 nodes are dimension-critical, ant ealsical grapl of n nodes withed(G) >
[lg n] must contain a dimension-critical subgraffhwith » nodes andd(G) = cd(H). Although this
is a natural analogue of cube-critical graphs, we know ofnar pvork on this class of graphs.

2.3 Packings

In some applications it is desirable to embed multiple copiea given cubical grap&' into @,, so that
the embeddings are edge-disjoint or node-disjoint, withgbal of using as many copies as possible.
For example, on some machines processors have little mearahsome programs need more memory
at each node. In such a setting it may be necessary tophaveprocessors working together, with one
master ang slaves supplying information. To minimize communicatiand, the processors should
be arranged as the stéf; ,,, with the master in the middle. Further, to utilize as manycpssors as
possible, one wants to pack in as many stars as possible. of@ sommunication problems edge-
disjoint embeddings are desired instead, where diffengiormation travels in different copies of a
graph and the object is to simultaneously use as many congation links as possible [18, 23].

We will usepacy(G, Q) to denote the maximum number of node-disjoint copie& @hat can be
embedded irQ,,, andpac; (G, @Q,,) to denote the maximum number of edge-disjoint copie& dhat
can be embedded @,,. It is easy to show that

pacO(G7 Qn) > 2n—mpa60(G’ Qm)

for n > m, and hence if node-disjoint copies Gfcover(@),, then node-disjoint copies @ cover@,,
for all n > m. Itis also easy to show that

pacl(G> Qn) > 2n_mpacl(Ga Qm)

for n > m, but since the number of edges@h, is n2"~! it is not necessarily true that if edge-disjoint
copies ofG cover@,, then edge-disjoint copies @f coverQ,,+1. For examplepaci(Qm,Qn) =
|n/m|2"~™, so edge-disjoint copies 6}, cover@,, if and only if n is an integral multiple ofrn. One
can show that

pacl(Gy Qan—l—bm) > az(a—l)n—i—bmpacl(G’ Qn) + b2an+(b—1)mpacl(G’ Qm)



for arbitrary nonnegative integetsandb. This shows that if edge-disjoint copies @fcover@,, and
Q. for relatively primen andm then edge-disjoint copies @f cover all cubes of sufficiently high
dimension.

The theory of error-correcting codes shows that node-disfmpies of the staf(; ,, cover@), if
and only ifn + 1 is an integral power of 2. Using Hamiltonian paths and a namenting argument,
is easy to see that node-disjoint copies of the pdthcover @, if and only if n divides 2™, and
Eulerian paths show that that edge-disjoint copie®gpfcover Q),,, wheneverm is even andn — 1
dividesm2™~1. Fink [4] and Stout [22] independently showed thafifis a tree withn edges, then
edge-disjoint copies df’ cover(@),,. Stout also showed that ¢ is a cubical graph witln nodes, then
lim,, o0 paco (G, Qu)n /2™ = 1.

3 Weak Embeddings

This section is concerned witlheak embeddings into hypercubes, that is, maps which are not required
to preserve adjacency. Throughout this section we willamlgedding to mean weak embedding. As
was mentioned in the introduction, considerations of comigations overhead and processor utiliza-
tion lead one to consider the dilation and expansion of ewlibgd. Any graph has an embedding with
expansion less than 2, and an embedding with dilation naeréaan 2, though simultaneously min-
imizing dilation and expansion is usually quite difficult.nA2mbedding of minimal expansion can be
attained by mapping a graph withnodes intaQ), ,,1 via any one-to-one mapping, though the dilation
may be as large ddgn|. To achieve dilation no greater than 2, note thgtcan be mapped intQ,,;
by mapping one node df’,, onto node 0 ofY,,_; and mapping all other nodes onto neighbors of node
0. This shows thaf(,,, and hence any graph af nodes, can be mapped inf®, 1 with dilation 2,
though the expansion &1 /n.

Some properties of cubical embeddings carry over to wealeddibgs with minor modifications.
For example, itp; is an embedding af7; into @,,, and¢s is an embedding aff; into @, theng; x ¢-
mapsG x Ga into @y, +n,, and

dil(p1 x ¢2) = max{dil(¢1),dil(¢2)}
ex(p1 X p2) = ex(p1)*ex(p2) .

However, not all embeddings of crossproduct graphs aresgroducts of embeddings of the factors,
and as is discussed below, Greenberg [10] has used thiswothhball 2-dimensional meshes can be
embedded with dilation no greater than 3, while keeping ¥pamlsion less than 2.

Suppos€= is a graph with connected components ..., C, andg; is an embedding of’; into
Qn, for 1 <4 < k. By using packings of subcubes, there is an embedding G into @Q,,, where
n = [lg>,; 2™, with dil(¢) = max; dil(¢;). Notice that

min ex(¢;) < ex(¢) < 2max ex(¢;).

If G has biconnected componerts, ..., Cy, and¢; is an embedding of’; for 1 < i < k, then there
is an embedding of G such thatlil(¢) = max; dil(¢;).



3.1 Dilation/Expansion Trade-offs

Among all possible embeddings of a graph, those with smialtidh and expansion are the most desir-
able. Unfortunately, it is often impossible to simultangiguminimize both of these, in which case there
is often a range of trade-offs possible. To help measurel#ii& be a graph of: nodes, and define the
closely related functionsandd by:

€(G,d) = min{ex(¢)|¢ embeds G,dil(¢) = d},
0(G,m) = min{dil(¢)|¢ embeds G into Q,,}.

For example, the star grapki, ,, hasé(K, ,,m) = d, where2™ > n 4 1 andd is the least positive

integer for which
d
m
< .
<2 (7)

An embedding which achieves this maps the center of thestawde 0, and all other nodes into nodes
of Q,,, within distanced of node 0. Ifn + 1 is a power of 2, then by varying: one observes that

e(Kin,1) = 2"/(n+1)
e(K1n,2) = 290)/(n + 1)
(K1 n,3) = 2909 /(n 4 1)
€(Kin,lgn+1)) = 1.

As was noted in Section 2, the full binary trég of heightn with 21 — 1 nodes has cubical
dimensionn + 2 for n > 2, and therefore any embedding with dilation 1 must have esipargreater
than 2. However, as was noted by Nebesky [21], and redisedver[2], T,, can be embedded into
Qn+1 With only one edge undergoing dilation 2. For such an emlmegdthe expansion is as small as
possible for a graph with”+! — 1 nodes.

Several other authors have considered embeddings of inegs/with small dilation or small expan-
sion. Bhatt and Ipsen [3] showed that for an arbitrary birteeg 7" with n nodese(7,1) < O(n ™).
They also showed that(7',1 + [lgn]) < lglgn + 9. This result was superceded by that of Bhatt et
al. [2], who gave a polynomial time algorithm which showstth@’, [1gn]) < 10. Their methods ex-
tend to graphs with O(1)-separators, such as trees of bdutetgee and outerplanar graphs of bounded
degree. For binary trees, the best uniform bound@n [lgn]) is unknown, as is the best bound on
e(T,1), as well as all of the trade-offs inbetween.

As was shown in Section 2, a mesh of sizex ... x ng can be embedded intQ, with dilation
1, wherer = Y",[lgn;|, and the embedding conditions of Havel and Moravek [16] lsarused to
show that this is the smallest cube for which a dilation 1 esdbeg is possible. If each factor is a
power of 2 then the expansion is also 1, but otherwise thensiga can increase by almost a factor of
2 for each dimension that is not a power of 2. Thus, for exapgl@-dimensional mesh may require
expansion arbitrarily close to 4 in order to achieve dilatlo Greenberg [10] has shown that any 2-
dimensional mesh can be embedded with dilation no greaar2tand expansion no greater than 3, and



Ho and Johnson [19] have shown that many 2-dimensional mesirebe embedded with dilation and
expansion no greater than 2. It is an open question wheth2idainensional meshes can be embedded
with dilation and expansion both no greater than 2, and teelimunds for meshes of higher dimensions
are also unknown.

3.2 Dilation with Minimal Expansion

Supposé€~ hasn nodes. Since processor utilization is often the most atiparameter of performance,
in many applications only embeddings i@, ,,; are possible, and hence determinifg:, [1gn]) is
particularly important. Unfortunately it is also quitefoilt, and the results of Krumme mentioned in
Section 2 show that it is NP-complete to decidé(ifz, [lgn|) = 1.

It is easy to show that any embedding®finto (), ,,; must map onto a pair of antipodal nodes
of Qpgrn1- Suppose an embedding maps nogesdq of G onto antipodal nodes. A path of minimal
length inG betweerp andq has at most diameté&r() edges, and is mapped onto a path in the hypercube
with length at leastlg n]. Therefore

0(G, [lgn]) > [lgn]/diameter(G).

One natural problem is to determine whi, [1g n]) equals[lg n|. This can be answered in terms
of the complement grap&'. If n is a power of 2, themd(G,lgn) < lgn if and only if it is possible
to partition the nodes inte/2 pairs, where no pair is adjacent @ Mapping each pair to antipodal
nodes in the hypercube shows thé&tr, g n) < lgn. Moreover,GG having such a partition is equivalent
to G having a maximal matching. Whenis not a power of 2 some nodes can be mapped to hypercube
nodes where no other node is mapped to the antipodal hyperode, and it is then easily seen that
§(G, [lgn]) < [lgn] if and only if G has a matching with at least— 2/'¢"1-1 pairs.

4 Final Remarks

We have surveyed some results concerning embeddings andemgzeddings of graphs into hyper-
cubes. Several open questions were listed in previousossctand many more immediately suggest
themselves. For example, one could extend the notions @-critical and dimension-critical to say a
graph@G is e(d)-critical if ¢(G,d) > €(H,d) for every proper subgrapl, andG is §(m)-critical if
0(G,m) > 6(H,m) for every proper subgrapH. Each cube-critical graph &m)-critical for some
m, and each dimension-critical grapheid )-critical. If 6(G,m) > 2 thenG contains &(m)-critical
subgraph, and i€(G,d) > 2 thenG contains &(d)-critical subgraph, but very little is known abowt

or §-critical graphs.

For any class of graphs, one could attempt to analyze thensiqrddilation trade-offs, as well as
consider the complexity of determining optimal or nearlyim@l embeddings. A particularly interest-
ing class of graphs are random graphs where edges betwees amdincluded with some probability
p, wherep may be a nonincreasing function of the number of nodes. Tti®eihave begun an inves-
tigation of expected expansion/dilation trade-offs fardam graphs, and of algorithms to find nearly
optimal embeddings in small expected time. Other intargstlasses include planar graphs of bounded



degree, arbitrary graphs of bounded degree, anteighbor graphs consisting efpoints in the plane
(or 3-space), where there is an edge between two points ibalydf they are withinA of each other.

Only one-to-one mappings have been considered here. Ogleéul possibilities include one-to-
many mappings in which nodes are mapped to subcubes, andtoxang mappings. The latter are
needed in the common situation where the task graph has mdesihan the target hypercube com-
puter. In such a setting one is still concerned with dilgtemwell as various measures of load-balancing
for the hypercube nodes and edges, perhaps starting wish gtaph having weighted nodes and edges.
The use of multiple objective functions makes such problertractible, so there has tended to be an
emphasis on mapping heuristics, or on algorithms appkctbh very narrow range of graphs. This is
the most important class of embeddings from a practicaldgiaint, but so far it has had the least exact
analysis.

10



References

[1] F. Afrati, C. Papadimitriou, and G. Papageorgiou. Thmptexity of cubical graphdnform. and
Control 66 (1985) 53-60.

[2] S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg. Optisiraulations of tree machine®roc.
Found. of Comp. Sc. (1986) 274-282.

[3] S. Bhatt and I. Ipsen. How to embed trees in hypercubesh.TRept. YALEU/DC/RR-443 Yale
Univ. (1985).

[4] J. Fink. On the isomorphic decompositionrefcubes into trees. PresentedLath Midwest Graph
Theory Conf. (1987) Eastern Mich. U.

[5] V. Firsov. Onisometric embeddings of a graph into a banleubeCybernetics 1 (1965) 112-113.
[6] M. Garey and R. Graham. On cubical graphsComb. Th.(B) 18 (1975) 84-95.
[7] E.N. Gilbert. Gray codes and paths on theube.Bell System Tech. J. May (1958) 815-826.

[8] V. Gorbatov and A. Kazanskiy. Characterization of grajgmbedded im-cubes.Engin. Cyber-
netics, IEEE 20 No. 2 (1983) 96-102.

[9] R.L. Graham. On primitive graphs and optimal vertex gssients.Ann. N. Y. Acad. ci. 175
(1970) 170-186.

[10] D.S. Greenberg. Optimal embeddings of meshes in hypec Tech. Rept. YALEU/CSD/RR-
535, Yale U. (1987), in preparation.

[11] F. Harary, J.P. Hayes, and H. Wu. A survey of the theoryngdercube graphgComput. Math.
Appl. (to appear)

[12] I. Havel. Embedding grids with diagonals into cubesoc. Sympos. on Combin. Anal. Ed. by M.
Borowiecki, Z. Skupien, and L. Szamkolowicz. Zielona Gfi®76) 89-103.

[13] I. Havel. Embedding graphs in undirected and directgloles.Spr. Verl. Lect. Notes 1018 (1983)
60-68.

[14] I. Havel and P. Liebl. Embedding the dichotomic treepitiie n-cube.Casopis Pest. Mat. 97
(1972) 201-205.

[15] I. Havel and P. Liebl. Embedding the polytomic tree ititen-cube.Casopis Pest. Mat. 98 (1973)
307-314.

[16] I. Havel and J. Moravek. B-valuations of grapkzech. Math. J. 22 (1972) 338-351.
[17] J.P. Hayes, T.N. Mudge, Q.F. Stout, S. Colley, and JnBalA microprocessor-based hypercube
supercomputetEEE Micro 6 (1986) 6-17.

11



[18] C. Ho and S.L. Johnsson. Spanning graphs for optimadwasting and personalized communi-
cation in hypercubes. Tech. Rept. YALEU/CSD/RR-500, Yal¢1986).

[19] C. Ho and S.L. Johnsson. On the embedding of arbitrarshe®in boolean cubes with expansion
two dilation two.Proc. Int’l. Conf. Parallel Proc. (1987) 188-191.

[20] D. Krumme, K. Venkataraman, and G. Cybenko. Hypercubbexlding is NP-completéiyper-
cube Multiprocessors 1987. Ed. by M. Heath. 148-157.

[21] L. Nebesky. On cubes and dichotomic tre€asopis Pest. Mat. 99 (1974) 164-167.
[22] Q.F. Stout. Packings into hypercubes. In preparation.

[23] Q.F. Stout and B. Wagar. Passing messages in link-bbypdrcubesHypercube Multiprocessors
1987, Ed. by M. Heath. 251-257.

[24] A.Wagner. Embedding binary trees in a hyperculbay. of Toronto Tech. Rept. CSRI-175 (1985)

12



