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Embeddings in Hypercubes
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Abstract: One important aspect of efficient use of a hypercube computerto solve a given
problem is the assignment of subtasks to processors in such away that the communication
overhead is low. The subtasks and their inter-communication requirements can be modeled
by a graph, and the assignment of subtasks to processors viewed as an embedding of the task
graph into the graph of the hypercube network. We survey the known results concerning
such embeddings, including expansion/dilation tradeoffsfor general graphs, embeddings
of meshes and trees, packings of multiple copies of a graph, the complexity of finding
good embeddings, and critical graphs which are minimal withrespect to some property. In
addition, we describe several open problems.
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1 Introduction

Let Qn denote ann-dimensional binary cube where the nodes ofQn are all the binaryn-tuples and
two nodes are adjacent if and only if their correspondingn-tuples differ in exactly one position. (See
Figure 1.) Ann-dimensional hypercube computer, orn-cube, is a parallel computer with2n processors
and network topology that ofQn. That is, each node ofQn represents a processor — a fairly power-
ful computer with its own local memory — and each edge ofQn represents a direct communication
link between the corresponding processors. A detailed account of one of the commercially available
hypercubes, the N-CUBE, is given by Hayes et al. [17].

Many of the properties of the hypercube that make it a desirable general purpose parallel machine
are a direct consequence of the graph-theoretic propertiesof Qn. For example, the fact thatQn can be
defined recursively as the graph product

Qn = Qn−1 × K2
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Figure 1: Some Hypercubes

suggests that a hypercube can support divide-and-conquer strategies very well. Certain algorithms such
as Bitonic Sort and the FFT can be implemented efficiently on ahypercube network, with all communi-
cation occuring between pairs of adjacent nodes. The recursive definition also shows that a hypercube
can be partitioned among multiple users, each receiving a subcube. The fact thatQn is homogeneous
(given any two nodesp andq there exists an automorphismσ of Qn for which σ(p) = q), allows al-
gorithms to be written assuming some node has a distinguished role and then rotated so that any other
desired node assumes that role. The fact thatQn has diametern, a relatively small diameter for the
number of nodes it possesses, implies that no single messagebetween arbitrary processors need travel
very many communication links. Broadcasting (one node sending the same information to all others) is
a crucial operation for many applications such as gaussian elimination, and can be implemented in only
n parallel communication steps via simple “recursive doubling”. In addition to the above properties, the
fact thatQn is n-connected suggests that the network enjoys a high degree offault-tolerance.

Members of several important classes of graphs including rectangular grid graphs and trees appear
as subgraphs ofQn. This suggests that the hypercube can simulate these networks with little or no
overhead and that algorithms designed for these networks can be easily adapted to the hypercube. When
the hypercube is used to simulate a network with graphG the nodes ofG must be mapped to the nodes of
Qn, and, in order to keep communication overhead down, adjacent nodes ofG should map to adjacent
nodes ofQn insofar as possible. In designing (or adapting) an algorithm that performs a taskT on
the hypercube network,T is modeled with a “task graph”,GT , in which the nodes represent subtasks
and the edges represent communication requirements between the corresponding subtasks. Once again,
the efficiency of the implementation depends strongly on thenature of the mapping intoQn. To keep
communication overhead low, the nodes ofGT must be mapped to the nodes ofQn so that pairs of
adjacent nodes ofGT map to pairs of adjacent nodes ofQn.

An embedding of a graphG = <V,E > into a graphG′ = <V ′, E′ > is a one-to-one mapφ of V
into V ′ such that if(u, v) ∈ E then(φ(u), φ(v)) ∈ E′ for all (u, v) ∈ E. A graphG is calledcubical
if, for somen, there is an embedding ofG into Qn. Cubical graphs form the central topic of Section 2.

Many graphs that emerge as task graphs are not cubical. Thus,we are motivated to study mappings
of graphs with no adjacency requirement. We will callφ a weak embedding of G into G′ provided
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only thatφ is one-to-one. Now it is the case that every graphG with at most2n nodes can be weakly
embedded intoQn, but pairs of adjacent nodes ofG may map to pairs of nodes which are connected
but not adjacent. The practical considerations associatedwith this type of embedding give rise to the
following notions. Thedilation of φ, denoteddil(φ), is defined as

dil(φ) = max{dist(φ(u), φ(v)) | (u, v) ∈ E}

wheredist(a, b) denotes the Hamming distance between the binaryn-tuplesa and b. Dilation is a
measure of the communication overhead induced by the mapφ. Theexpansion of φ, denotedex(φ),
measures processor utilization and is defined as

ex(φ) = |V ′|/|V |.

Other measures of efficiency, such as the maximum number of edges ofV mapped onto a single edge
of V ′, will not be considered here.

In practice, one would like to have embeddings with dilationand expansion near one, but for many
graphs this is an impossible situation. Often one can make trade-offs between the two, increasing one
at the expense of the other. Section 3 contains a discussion of the relevant results concerning weak
embeddings and the trade-offs that exist between dilation and expansion. In Section 4 some extensions
are discussed, and several open problems are described.

Throughout, lg denoteslog2.

2 Cubical Graphs

As defined in Section 1, a graphG is cubical if there is an embedding ofG into Qn for somen. If
G is cubical, then the least positive integern for which G can be embedded intoQn is called the
cubical dimension of G, denotedcd(G). The star graph withm + 1 nodes,K1,m, is clearly cubical and
cd(K1,m) = m. It is equally straightforward to see that a simple path withm nodes,Pm, is cubical, and
the fact thatcd(Pm) = ⌈lg m⌉ follows from the existence of a Hamiltonian path inQn for anyn. On
the other hand, note that neither the complete graphK3 nor the complete bipartite graphK2,3 is cubical.

In an early paper on isometric embeddings intoQn, Firsov [5] showed that all trees are cubical, and
also noted that all cubical graphs are bipartite. Later, Havel and Morávek [16] discovered necessary and
sufficient conditions that a graph be cubical. (These conditions are given below.) Using this, Havel and
Liebl [14, 15] deduced that trees, rectangular meshes, and hexagonal meshes are cubical, and they gave
embeddings of these. They also proved that a cycle is cubicalif and only if it is even. These results have
been rediscovered numerous times.

The embeddings of rectangular meshes are quite simple and illustrative, as well as being useful in
many applications. Ad-dimensional meshM of sizen1 × n2 × . . . × nd has nodes{(a1, . . . , ad) | 0 ≤
ai < ni for 1 ≤ i ≤ d}, where an edge exists between two nodes if and only if their labels differ by one
in one component, and are identical in all other components.To embedM into a hypercube, one utilizes
binary Gray codes [7]. The most common Gray codes, the reflected binary ones, are recursively defined
as follows:Gn is a bijection from{0, 1, . . . , 2n − 1} onto{0, 1}n, given byG1(0) = 0, G1(1) = 1, and

Gn(x) =

{

0Gn−1(x) 0 ≤ x ≤ 2n−1 − 1
1Gn−1(2

n − 1 − x) 2n−1 ≤ x ≤ 2n − 1
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for n ≥ 2. Let φ denote the mapping that associates thed-tuple (a1, . . . , ad) with the concatenation
Gr1

(a1) · . . . · Grd
(ad), whereri = ⌈lg ni⌉. It is straightforward to show that indeedφ is an embedding

of M into Qr, wherer =
∑

i ri. Thereforecd(M) ≤ r, and by using the labeling conditions given
below one can show thatcd(M) = r.

2.1 Deciding if a Graph is Cubical

Note that a graph is cubical if and only if all of its connectedcomponents are cubical. The work of
Havel and Morávek [16] can be rephrased slightly to show that a connected graphG can be embedded
into Qn if and only if it is possible to label the edges ofG with the integers{1, . . . , n} such that

1. Edges incident with a common node are of different labels;

2. In each path ofG there is some label that appears an odd number of times; and

3. In each cycle ofG no label appears an odd number of times.

Each such labeling gives rise to a (not necessarily unique) embedding in which the label of an edge is
the dimension along which its endpoints differ.

Using these embedding conditions, it is straightforward toshow that embeddings of crossproducts
of nonempty connected graphs must be crossproducts (concatenations) of embeddings of the factors.
This implies that connected nonempty graphsG1 andG2 are cubical if and only ifG1 × G2 is cubical,
and that

cd(G1 × G2) = cd(G1) + cd(G2).

The conditions also show that a tree ofn nodes can be embedded intoQn−1 by using a labeling which
is a bijection between the edges and{1, . . . , n− 1}. Using this, it is easy to show that a graph is cubical
if and only if its biconnected components are, since the biconnected components form a forest.

Graham [9] has given a condition which can be used to prove that a graph is not cubical. A graphG
is decomposable if it has a minimal cutsetC of edges such that no two edges inC have a common node,
and the removal ofC disconnectsG. G is completely decomposable if every subgraph of more than one
node is decomposable. Graham proved that ifw(k) denotes the number of 1’s in the binary expansion
of k, andW (k) =

∑k
j=1 w(j), then every completely decomposable graph withn nodes ande edges

satisfiese ≤ W (n− 1). Cycles of odd length greater than 3 show that not all completely decomposable
graphs are cubical, but all hypercubes are completely decomposable since, for any connected subgraph,
once can pick any edge in the subgraph and choose as a cutset that edge and all edges parallel to it.
Therefore a cubical graphG with n nodes is completely decomposable and has no more thanW (n− 1)
edges. Further, this bound is best possible, as is shown by the induced subgraph ofQm consisting of
nodes{0, . . . , n− 1}, n ≤ 2m, where we have made the natural identification between binary m-tuples
and integers. A direct divide-and-conquer approach can also be used to prove the slightly weaker fact
thatG has at most0.5 · n lg n edges.

Garey and Graham [6], and earlier Havel and Morávek [16], considered the problem of finding
cube-critical graphs, that is, graphs that are not cubical though all of their proper subgraphs are cubical.
Cycles of odd length are cube-critical, as is a diamond with one pair of opposite nodes connected by an
extra path of length two. Garey and Graham, and Gorbatov and Kazansky [8], have given procedures

4



for constucting arbitrarily large cube-critical graphs from other cube-critical graphs, and Havel [12] has
constructed arbitrarily large cube-critical graphs usingmeshes with extra edges.

Deciding if a graph is cubical, or deciding if a noncubical graph is cube-critical, can be quite difficult.
Afrati, Papidimitriou, and Papageorgiou [1] and Krumme, Venkataraman, and Cybenko [20], showed
that the problem of deciding whether an arbitrary graph is cubical is NP-complete. The proof of NP-
completeness given in [1] shows that the problem remains NP-complete even if the problem is restricted
so that the maximum degree of any node is 4. If the maximal degree of any node is 2 then the problem
can be decided in linear time, and it is apparently an open question whether the problem is NP-complete
when the maximum degree is 3. However, the authors have shownthat deciding if a graph is cubical, or
deciding if a noncubical graph is cube-critical, can be completed in constant expected time for random
graphs in which edges between nodes are included with a fixed probability.

2.2 Cubical Dimension

If G is a cubical graph with connected componentsC1, . . . , Ck, then simple packings of subcubes,
coupled with an obvious lower bound, shows that

max
i

cd(Ci) ≤ cd(G) ≤
⌈

lg
∑

i

2cd(Ci)
⌉

.

Unfortunately, upper and lower bounds for the cubical dimension of an arbitrary connected cubical
graph are quite far apart, with the best bounds for a cubical graphG with n nodes being

⌈lg n⌉ ≤ cd(G) ≤ n − 1 .

The lower bound is obtained from a simple count of the nodes, and is attained by a pathPn. The upper
bound was first proven in Garey and Graham [6], and is attainedby the star graphK1,n−1.

For more restricted cubical graphs slightly better bounds have been determined. In [1], Afrati,
Papadimitriou, and Papageorgiou proved that ifG is a biconnected cubical graph ofn nodes, then
cd(G) ≤ n/2, and they observed that the graph shown in Figure 2 shows thatthis bound is the best
possible. Using this result, Stout has shown that ifG is a cubical graph ofn nodes where each node has
degree at least 2, thencd(G) ≤ 2(n − 1)/3. The graph in Figure 3 shows that this bound is the best
possible. There should be analogues of these results fork-connected graphs, and for graphs in which
each node has degree at leastd, for arbitrary integersk, d ≥ 3.

While trees are easily shown to be cubical, determining their cubical dimension has proven to be a
difficult problem. Havel and Liebl [15] showed that the cubical dimension of the complete binary tree
Tn with heightn and2n+1 − 1 nodes is a mostn + 2 for n ≥ 2, and Nebesky [21] later proved that
cd(Tn) = n + 2 whenn ≥ 2. Other bounds on cubical dimensions of specific trees appearin Havel and
Liebl [14, 15] and Wagner [24]. Afrati, Papadimitriou, and Papageorgiou [1] gave a polynomial time
algorithm which embeds a tree into a cube with dimension at most the square of the cubical dimension
of the tree, and they conjectured that the problem of calculating the cubical dimension of a tree is NP-
complete.

For general cubical graphs, the problem of calculating the cubical dimension is NP-complete. In
fact, Krumme found a family of graphs where each member with2d nodes embeds intoQd+1, but it is
NP-complete to decide if it embeds intoQd.
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Figure 2: A bipartite graph with large cubical
dimension

Figure 3: A graph with minimal degree 2 and
large cubical dimension

Call a cubical graphG dimension-critical if the deletion of any edge reduces the cubical dimension.
Stars with more than 3 nodes are dimension-critical, and each cubical graphG of n nodes withcd(G) >
⌈lg n⌉ must contain a dimension-critical subgraphH with n nodes andcd(G) = cd(H). Although this
is a natural analogue of cube-critical graphs, we know of no prior work on this class of graphs.

2.3 Packings

In some applications it is desirable to embed multiple copies of a given cubical graphG into Qn so that
the embeddings are edge-disjoint or node-disjoint, with the goal of using as many copies as possible.
For example, on some machines processors have little memory, and some programs need more memory
at each node. In such a setting it may be necessary to havep + 1 processors working together, with one
master andp slaves supplying information. To minimize communication time, the processors should
be arranged as the starK1,p, with the master in the middle. Further, to utilize as many processors as
possible, one wants to pack in as many stars as possible. For some communication problems edge-
disjoint embeddings are desired instead, where different information travels in different copies of a
graph and the object is to simultaneously use as many communication links as possible [18, 23].

We will usepac0(G,Qn) to denote the maximum number of node-disjoint copies ofG that can be
embedded inQn, andpac1(G,Qn) to denote the maximum number of edge-disjoint copies ofG that
can be embedded inQn. It is easy to show that

pac0(G,Qn) ≥ 2n−mpac0(G,Qm)

for n ≥ m, and hence if node-disjoint copies ofG coverQm then node-disjoint copies ofG coverQn

for all n ≥ m. It is also easy to show that

pac1(G,Qn) ≥ 2n−mpac1(G,Qm)

for n ≥ m, but since the number of edges inQn is n2n−1 it is not necessarily true that if edge-disjoint
copies ofG coverQm then edge-disjoint copies ofG coverQm+1. For example,pac1(Qm, Qn) =
⌊n/m⌋2n−m, so edge-disjoint copies ofQm coverQn if and only if n is an integral multiple ofm. One
can show that

pac1(G,Qan+bm) ≥ a2(a−1)n+bmpac1(G,Qn) + b2an+(b−1)mpac1(G,Qm)
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for arbitrary nonnegative integersa andb. This shows that if edge-disjoint copies ofG coverQn and
Qm for relatively primen andm then edge-disjoint copies ofG cover all cubes of sufficiently high
dimension.

The theory of error-correcting codes shows that node-disjoint copies of the starK1,n coverQn if
and only ifn + 1 is an integral power of 2. Using Hamiltonian paths and a node counting argument,
is easy to see that node-disjoint copies of the pathPn cover Qm if and only if n divides 2m, and
Eulerian paths show that that edge-disjoint copies ofPn cover Qm wheneverm is even andn − 1
dividesm2m−1. Fink [4] and Stout [22] independently showed that ifT is a tree withn edges, then
edge-disjoint copies ofT coverQn. Stout also showed that ifG is a cubical graph withn nodes, then
limm→∞ pac0(G,Qm)n/2m = 1.

3 Weak Embeddings

This section is concerned withweak embeddings into hypercubes, that is, maps which are not required
to preserve adjacency. Throughout this section we will useembedding to mean weak embedding. As
was mentioned in the introduction, considerations of communications overhead and processor utiliza-
tion lead one to consider the dilation and expansion of embeddings. Any graph has an embedding with
expansion less than 2, and an embedding with dilation no greater than 2, though simultaneously min-
imizing dilation and expansion is usually quite difficult. An embedding of minimal expansion can be
attained by mapping a graph withn nodes intoQ⌈lg n⌉ via any one-to-one mapping, though the dilation
may be as large as⌈lg n⌉. To achieve dilation no greater than 2, note thatKn can be mapped intoQn−1

by mapping one node ofKn onto node 0 ofQn−1 and mapping all other nodes onto neighbors of node
0. This shows thatKn, and hence any graph ofn nodes, can be mapped intoQn−1 with dilation 2,
though the expansion is2n−1/n.

Some properties of cubical embeddings carry over to weak embeddings with minor modifications.
For example, ifφ1 is an embedding ofG1 into Qn1

andφ2 is an embedding ofG2 into Qn2
, thenφ1×φ2

mapsG1 × G2 into Qn1+n2
, and

dil(φ1 × φ2) = max{dil(φ1), dil(φ2)}

ex(φ1 × φ2) = ex(φ1) ∗ ex(φ2) .

However, not all embeddings of crossproduct graphs are crossproducts of embeddings of the factors,
and as is discussed below, Greenberg [10] has used this to show that all 2-dimensional meshes can be
embedded with dilation no greater than 3, while keeping the expansion less than 2.

SupposeG is a graph with connected componentsC1, . . . , Ck, andφi is an embedding ofCi into
Qni

for 1 ≤ i ≤ k. By using packings of subcubes, there is an embeddingφ of G into Qn, where
n = ⌈lg

∑

i 2
ni⌉, with dil(φ) = maxi dil(φi). Notice that

min
i

ex(φi) ≤ ex(φ) < 2max
i

ex(φi).

If G has biconnected componentsC1, . . . , Ck, andφi is an embedding ofCi for 1 ≤ i ≤ k, then there
is an embeddingφ of G such thatdil(φ) = maxi dil(φi).
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3.1 Dilation/Expansion Trade-offs

Among all possible embeddings of a graph, those with small dilation and expansion are the most desir-
able. Unfortunately, it is often impossible to simultaneously minimize both of these, in which case there
is often a range of trade-offs possible. To help measure this, let G be a graph ofn nodes, and define the
closely related functionsǫ andδ by:

ǫ(G, d) = min{ex(φ) |φ embeds G, dil(φ) = d},

δ(G,m) = min{dil(φ) |φ embeds G into Qm}.

For example, the star graphK1,n hasδ(K1,n,m) = d, where2m ≥ n + 1 andd is the least positive
integer for which

n ≤
d
∑

i=1

(

m

i

)

.

An embedding which achieves this maps the center of the star to node 0, and all other nodes into nodes
of Qm within distanced of node 0. Ifn + 1 is a power of 2, then by varyingm one observes that

ǫ(K1,n, 1) = 2n/(n + 1)

ǫ(K1,n, 2) = 2Θ(
√

n)/(n + 1)

ǫ(K1,n, 3) = 2Θ( 3
√

n)/(n + 1)
...

ǫ(K1,n, lg(n + 1)) = 1 .

As was noted in Section 2, the full binary treeTn of height n with 2n+1 − 1 nodes has cubical
dimensionn + 2 for n ≥ 2, and therefore any embedding with dilation 1 must have expansion greater
than 2. However, as was noted by Nebesky [21], and rediscovered in [2], Tn can be embedded into
Qn+1 with only one edge undergoing dilation 2. For such an embedding the expansion is as small as
possible for a graph with2n+1 − 1 nodes.

Several other authors have considered embeddings of binarytrees with small dilation or small expan-
sion. Bhatt and Ipsen [3] showed that for an arbitrary binarytreeT with n nodes,ǫ(T, 1) ≤ O(n0.71).
They also showed thatδ(T, 1 + ⌈lg n⌉) ≤ lg lg n + 9. This result was superceded by that of Bhatt et
al. [2], who gave a polynomial time algorithm which shows that δ(T, ⌈lg n⌉) ≤ 10. Their methods ex-
tend to graphs with O(1)-separators, such as trees of bounded degree and outerplanar graphs of bounded
degree. For binary trees, the best uniform bound onδ(T, ⌈lg n⌉) is unknown, as is the best bound on
ǫ(T, 1), as well as all of the trade-offs inbetween.

As was shown in Section 2, a mesh of sizen1 × . . . × nd can be embedded intoQr with dilation
1, wherer =

∑

i⌈lg ni⌉, and the embedding conditions of Havel and Morávek [16] canbe used to
show that this is the smallest cube for which a dilation 1 embedding is possible. If each factor is a
power of 2 then the expansion is also 1, but otherwise the expansion can increase by almost a factor of
2 for each dimension that is not a power of 2. Thus, for example, a 2-dimensional mesh may require
expansion arbitrarily close to 4 in order to achieve dilation 1. Greenberg [10] has shown that any 2-
dimensional mesh can be embedded with dilation no greater than 2 and expansion no greater than 3, and
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Ho and Johnson [19] have shown that many 2-dimensional meshes can be embedded with dilation and
expansion no greater than 2. It is an open question whether all 2-dimensional meshes can be embedded
with dilation and expansion both no greater than 2, and the best bounds for meshes of higher dimensions
are also unknown.

3.2 Dilation with Minimal Expansion

SupposeG hasn nodes. Since processor utilization is often the most critical parameter of performance,
in many applications only embeddings intoQ⌈lg n⌉ are possible, and hence determiningδ(G, ⌈lg n⌉) is
particularly important. Unfortunately it is also quite difficult, and the results of Krumme mentioned in
Section 2 show that it is NP-complete to decide ifδ(G, ⌈lg n⌉) = 1.

It is easy to show that any embedding ofG into Q⌈lg n⌉ must map onto a pair of antipodal nodes
of Q⌈lg n⌉. Suppose an embedding maps nodesp andq of G onto antipodal nodes. A path of minimal
length inG betweenp andq has at most diameter(G) edges, and is mapped onto a path in the hypercube
with length at least⌈lg n⌉. Therefore

δ(G, ⌈lg n⌉) ≥ ⌈lg n⌉/diameter(G).

One natural problem is to determine whenδ(G, ⌈lg n⌉) equals⌈lg n⌉. This can be answered in terms
of the complement graph̄G. If n is a power of 2, thenδ(G, lg n) < lg n if and only if it is possible
to partition the nodes inton/2 pairs, where no pair is adjacent inG. Mapping each pair to antipodal
nodes in the hypercube shows thatδ(G, lg n) < lg n. Moreover,G having such a partition is equivalent
to Ḡ having a maximal matching. Whenn is not a power of 2 some nodes can be mapped to hypercube
nodes where no other node is mapped to the antipodal hypercube node, and it is then easily seen that
δ(G, ⌈lg n⌉) < ⌈lg n⌉ if and only if Ḡ has a matching with at leastn − 2⌈lg n⌉−1 pairs.

4 Final Remarks

We have surveyed some results concerning embeddings and weak embeddings of graphs into hyper-
cubes. Several open questions were listed in previous sections, and many more immediately suggest
themselves. For example, one could extend the notions of cube-critical and dimension-critical to say a
graphG is ǫ(d)-critical if ǫ(G, d) > ǫ(H, d) for every proper subgraphH, andG is δ(m)-critical if
δ(G,m) > δ(H,m) for every proper subgraphH. Each cube-critical graph isδ(m)-critical for some
m, and each dimension-critical graph isǫ(1)-critical. If δ(G,m) ≥ 2 thenG contains aδ(m)-critical
subgraph, and ifǫ(G, d) ≥ 2 thenG contains aǫ(d)-critical subgraph, but very little is known aboutǫ-
or δ-critical graphs.

For any class of graphs, one could attempt to analyze the expansion/dilation trade-offs, as well as
consider the complexity of determining optimal or nearly optimal embeddings. A particularly interest-
ing class of graphs are random graphs where edges between nodes are included with some probability
p, wherep may be a nonincreasing function of the number of nodes. The authors have begun an inves-
tigation of expected expansion/dilation trade-offs for random graphs, and of algorithms to find nearly
optimal embeddings in small expected time. Other interesting classes include planar graphs of bounded
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degree, arbitrary graphs of bounded degree, and∆-neighbor graphs consisting ofn points in the plane
(or 3-space), where there is an edge between two points if andonly if they are within∆ of each other.

Only one-to-one mappings have been considered here. Other useful possibilities include one-to-
many mappings in which nodes are mapped to subcubes, and many-to-one mappings. The latter are
needed in the common situation where the task graph has more nodes than the target hypercube com-
puter. In such a setting one is still concerned with dilation, as well as various measures of load-balancing
for the hypercube nodes and edges, perhaps starting with a task graph having weighted nodes and edges.
The use of multiple objective functions makes such problemsintractible, so there has tended to be an
emphasis on mapping heuristics, or on algorithms applicable to a very narrow range of graphs. This is
the most important class of embeddings from a practical standpoint, but so far it has had the least exact
analysis.
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