
Debugging
segmentation fault (core dumped)

Debugging 1 / 14

Overview
printf debugging

Logging

GDB

Checking memory with Valgrind

Debugging 2 / 14

printf debugging
Intuitive: just print stu� out at certain points

What if you're done littering your file with debug prints?

With the power of preprocessors, we can turn it on and o�!

#ifdef DEBUG_PRINT
printf("This be a debug message\n");
#endif // DEBUG_PRINT

#ifdef DEBUG_PRINT
 // this is known as a "variadic macro"
 #define dbgprintf(fmt, ...) printf("DEBUG: " fmt, ##__VA_ARGS__)
#else
 #define dbgprintf(fmt, ...)
#endif
// ...
dbgprintf("This be a debug message\n");

Debugging 3 / 14

Logging
An extension on printing

Provide di�erent verbosity/logging levels

Set your verbosity level to increase/decrease the amount of logging
More logging uses more resources

Log to standard output, standard error, or to some file

Debugging 4 / 14

Common logging levels
Fatal

"We can't continue, I shall die now"

Error
"Something went wrong"

Warning
"Something weird might be going on"

Info
"Hey a cool thing happened"

Debug
"A thing happened, here's some details"

Trace/Verbose
"Here's everything that's going on"

Debugging 5 / 14

GDB (GNU Debugger)
Debugging tool that lets you look around during execution

Once again, this tool is pretty deep: look at the GDB manual for details

A neat video

We'll go over some big overarching concepts and features
Interface

Breakpoints and watchpoints

Stack frames

If you want to follow along, you can install the gdb package on Ubuntu or use the
course server

Example file:
https://www.eecs.umich.edu/courses/eecs201/fa2022/files/examples/debug/func.cpp

Debugging 6 / 14

https://www.gnu.org/software/gdb/documentation/
https://www.youtube.com/watch?v=PorfLSr3DDI
https://www.eecs.umich.edu/courses/eecs201/fa2022/files/examples/debug/func.cpp

Interface
Invoking: $ gdb [options] [executable file] [core file]

$ gdb ./myapp, $ gdb myapp

Hitting return/enter without anything will repeat the previous command

Entering incomplete commands (such as a single) letter will run a command if there is
no ambiguity:

r -> run

n -> next

b -> break

Also has an approximation of a windowing interface in "Text User Interface" (TUI) mode
tui enable, tui disable

C-x s ('C' being control): single-key mode (e.g. hitting 'n' will execute "next")

C-x o: switch window focus

Debugging 7 / 14

Commands
run [arguments] [file redirects]

next [count]: step over functions, "next line"

step [count]: step into functions

finish: step out of current function

print <expression>: print expression (e.g. variables)

list [location]: list source code

break <location>: set breakpoint

watch <expression>: set watchpoint

info breakpoints, info watchpoints: list break/watchpoints

where, backtrace, bt: list stack frames

frame <stack frame>: change stack frame

Debugging 8 / 14

Breakpoints
Stop at a certain location in the program

Can be conditional!

info breakpoints, info break, info b will list breakpoints

Examples:
break 20

break main.cpp:21

break main.cpp:21 if argc == 4

break coolfunction

Debugging 9 / 14

Watchpoints
Stop when an expression changes

info watchpoints, info watch will list watchpoints

Examples:
watch somevar

watch a + b

disable <number>: disable a break/watchpoint

delete <number>: delete a break/watchpoint

(Catchpoint: stop when an event such as a C++ exception occurs)

Debugging 10 / 14

Stack frames
A stack frame holds all information local to a particular function call

Local variables

Arguments

(Return address)

Function calls will push a frames on the stack

Function returns will pop the frame o� the stack
where, backtrace (bt) can show us the current stack frames

frame <number> can have us switch to a stack frame so we can look at its
variables

Debugging 11 / 14

Valgrind
General dynamic analysis tool

Valgrind manual

Most known for its Memcheck tool for checking memory accesses (which we'll be
focusing on)

Memcheck manual entry

Super useful at finding things like:
Memory leaks

Use-a�er-frees

Invalid reads

Use of uninitialized variables

Easy to invoke:
$ valgrind ./myapplication

$ valgrind --leak-check=full ./myapplication

Debugging 12 / 14

http://valgrind.org/docs/manual/manual.html
http://valgrind.org/docs/manual/mc-manual.html

Valgrind
Playing with it

Example file:
https://www.eecs.umich.edu/courses/eecs201/fa2022/files/examples/debug/badmem.cpp

Debugging 13 / 14

https://www.eecs.umich.edu/courses/eecs201/fa2022/files/examples/debug/badmem.cpp

Closing thoughts
Ultimately use the right tool for the job

GDB doesn't work particularly well in complex systems
Logging can help out here, but it does incur some overhead

Valgrind can seriously slow down your program

Debugging 14 / 14

