Debugging

segmentation fault (core dumped)

Debugging 1/14



QOverview

printf debugging

Logging
e GDB

Checking memory with Valgrind

Debugging 2/14



printt debugging

e Intuitive: just print stuff out at certain points
o Whatifyou're done littering your file with debug prints?

e \With the power of preprocessors, we can turn it on and off!

#ifdef DEBUG_PRINT
printf("This be a debug message\n");
#endif // DEBUG_PRINT

#1ifdef DEBUG_PRINT
// this is known as a '"variadic macro"

#define dbgprintf(fmt, ...) printf("DEBUG: " fmt, ##__VA_ARGS__)
#telse

#define dbgprintf(fmt, ...)
#tendif
//

dbgprintf("This be a debug message\n");

Debugging 3/14



Logging

e An extension on printing
e Provide different verbosity/logging levels

e Setyour verbosity level to increase/decrease the amount of logging
o More logging uses more resources

e |Logtostandard output, standard error, or to some file

Debugging 4/14



Common logging levels

e Fatal
o "We can't continue, | shall die now"

e Error
o "Something wentwrong"

Warning
o "Something weird mightbe going on"

Info

o "Hey a cool thing happened"

Debug
o "Athing happened, here's some details"

Trace/Verbose
o "Here's everything that's going on"

Debugging 5/14



GDB (GNU Debugger)

e Debugging tool that lets you look around during execution

e Once again, this tool is pretty deep: look at the GDB manual for details

e A neatvideo

e We'll go over some big overarching concepts and features
o Interface

o Breakpoints and watchpoints
o Stack frames

e |fyouwantto follow along, you can install the gdb package on Ubuntu or use the
course server

e Example file:
https://www.eecs.umich.edu/courses/eecs201/fa2022 /files/examples/debug/func.cpp

Debugging 6/14


https://www.gnu.org/software/gdb/documentation/
https://www.youtube.com/watch?v=PorfLSr3DDI
https://www.eecs.umich.edu/courses/eecs201/fa2022/files/examples/debug/func.cpp

Interface

Invoking: $ gdb [options] [executable file] [core file]
o $ gdb ./myapp,$ gdb myapp

Hitting return/enter without anything will repeat the previous command

Entering incomplete commands (such as a single) letter will run a command if there is
no ambiguity:
O r->run

0 N->next

o b->break

Also has an approximation of a windowing interface in "Text User Interface" (TUI) mode
o tui enable, tui disable

o C-xs('C' being control): single-key mode (e.g. hitting 'n' will execute "next")

o C-x0:switch window focus

Debugging 7/14



Commands

e run [arguments] [file redirects]

e next [count]:step overfunctions, "nextline"

e step [count]:stepintofunctions

e finish:step outofcurrentfunction

e print <expression>:printexpression (e.g.variables)

e list [location]:listsource code

e break <location>:setbreakpoint

e watch <expression>:setwatchpoint

e info breakpoints,info watchpoints:list break/watchpoints
e where,backtrace, bt:list stack frames

e frame <stack frame>:change stack frame

Debugging 8/14



Breakpoints

Stop at a certain location in the program

Can be conditional!

info breakpoints,info break,info b willlist breakpoints

Examples:
o break 20

o break main.cpp:21
o break main.cpp:21 if argc == 4

o break coolfunction

Debugging 9/14



Watchpoints

e Stop when an expression changes
e info watchpoints,info watch will list watchpoints

e Examples:
o watch somevar

o watch a + b
e disable <number>:disable a break/watchpoint

e delete <number>:delete a break/watchpoint

(Catchpoint: stop when an event such as a C++ exception occurs)

Debugging 10/14



Stack frames

e A stack frameholds all information local to a particular function call
o localvariables

o Arguments
o (Return address)
e Function calls will push a frames on the stack

e Function returns will pop the frame off the stack
o where,backtrace (bt) can show usthe current stack frames

o frame <number> can have usswitch to a stack frame so we can look at its
variables

Debugging 11/14



Valgrind

e General dynamic analysis tool
o Valgrind manual

e Most known for its Memcheck tool for checking memory accesses (which we'll be
focusing on)

o Memcheck manual entry.

e Super useful atfinding things like:
o Memory leaks

o Use-after-frees
o |nvalid reads
o Use of uninitialized variables

e Fasytoinvoke:
o $ valgrind ./myapplication

o $ valgrind --leak-check=full ./myapplication

Debugging 12/14


http://valgrind.org/docs/manual/manual.html
http://valgrind.org/docs/manual/mc-manual.html

Valgrind
Playing with it

e Example file:
https://www.eecs.umich.edu/courses/eecs201/fa2022 /files/examples/debug/badmem.cpp

Debugging 13/14


https://www.eecs.umich.edu/courses/eecs201/fa2022/files/examples/debug/badmem.cpp

Closing thoughts

e Ultimately use the right tool for the job

e GDB doesn'twork particularly well in complex systems
o Logging can help out here, but it does incur some overhead

e Valgrind can seriously slow down your program

Debugging 14/ 14



