Shells

feat. Bash
O & 5

Do NOT run this

Shells 1/48

QOverview

1. Understanding the shell

2. Working with the shell
o Variables

o Command structuring/grouping
o Expansion

o Control flow

o Functions

o Scripts

3. Configuring the shell
o Configuration files

o Prompts

Shells 2 /48

Shells

e |nteractive shellsvs shell as an interpreter

e |nteractive shells are the shell that you directly interact with at a terminal

o These are a personal choice: some may prefer Bash, some may prefer Zsh, some
may prefer Fish

o You can run scripts with different interpreters but personalize your working
environment

e Picking a shell as an interpreter for a scriptis a programming design decision
o Do you intend this script to be run on other computers?

o shisaPOSIX standard

o Bash is so ubiquitous that you can reasonably assume a target system has it

Shells 3/48

Before we start...

e We'll focus on Bash when it comes to cooler features that sh doesn't have
o Bash is a decent mix of additional functionality and presence in the world

o This lends itself to being a good target for writing scripts

e While additional functionality is about Bash, many other shells have the similar, if not
same, syntax

o Zshis designed to be backwards compatible with Bash, but adds additional
functionality

o |'ll mention [bash] whenit'sa Bash enhancement over sh

e The horse's mouth: GNU Bash manual

o Ifyou like the nitty gritty details it's a great read
o These slides summarize major features of Bash

e Now for a bit of a review...

Shells 4 /48

https://www.gnu.org/software/bash/manual/

Basic shell command structure

<command> <argument 1> <argument 2> <argument 3>
N A\

interpret (remember argc and argv[]?)

N
| |-— programs are provided these to
|
|
| -— words separated by whitespace

-— certain things are actual programs, certain things
are handled by the shell ("built-ins")

Shells 5/48

General shell operation

1. Receive a command from a file or terminal input
o ls -1 SHOME > some_file

2. Splits it into tokens separated by white-space
o Takesinto account "guoting”rules

o The IFSvariableis used as the delimiters
o 1s,-1,$HOME, > some_file

3. Expands/substitutes special tokens
o 1ls,-1, /home/brandon, >, some_file

4. Perform file redirections (and making sure they don't end up as command args)
o 1s,-1, /home/brandon; (setstandard outputto some_f1ile)

5. Execute command (remember our friend exec () ?)
o argc=3,argv=["1s","-1","/home/brandon"]

o Standard output redirected to some_f1i le

o First "normal" token is the command/utility to run

Shells 6/48

Finding programs to execute

e |fthecommandhasa /init, it's treated as a filepath and the file will be executed
o $ somedir/somescript

o § ./somescript
o Only works if the file has its execute bit set

e |fthecommand doesn'thave a /, PATH will be searched for a corresponding binary
o S vim->searches PATH and findsitat /fusr/bin/vim

o Thisis why you have to specify . / to run something in your current directory

Shell built-ins

e Some commands are "built-in"/implemented by the shell
o These will take precedent over onesin the PATH

e Some other commands don't make sense outside of a shell
o Think aboutwhy cd is a built-in and not a separate utility

o (hint: fork () andexec())

Shells 7/48

Job control

We're familiar with just launching a process
o $ echo "hello world"

There's other things we can do, like launch itin the background with &
o S echo "hello world" &

AC (SIGINT) can cause most process to stop

N7 (SIGTSTP) can cause most processes to suspend

NS 8/48

Job control

e jobs can listout processes (jobs table) that the shell is managing

bg can background a process, yielding the terminal back to the shell

fg can foreground a process, giving it active control of the terminal
o bgand fgcanindexoff of the jobs table

disown can have the shell give up ownership of a process

The ? variable holds the exit status of the last command
o 0 meanssuccess/true

o Not0 means failure/false

Shells 9/48

Shell and environment variables

e Shellvariables stored inside the shell process

o They're handled by the shell itself, stored as program data in the process's
memory

o Launched commands don'tinherit them (what does exec () do?)

e Setthem with varname=varvalue
o Meaningful whitespace!

o varname = varvalueisinterpreted as"run varname with arguments = and
varvalue"

e You can set environmentvariables with export
o export varname=varvalue

o export existing_variable

o Marks a variable to be exported to new processes

Shells 10 /48

File redirection

e <:setfile asstandard input (fd 0)
o $ cmdl < read.txt

e >:setfile asstandard output, overwrite (fd 1)
o S cmdl > somefile.txt

o Createsfile if it doesn't exist already

e >>:setfile asstandard output, append (fd 1)
o $ cmdl >> somelog.txt

o Createsfile if it doesn't exist already

Shells 11/48

File redirection
General form (brackets mean optional)

e [n]<:setfileasaninputforfd n(fd 0 if unspecified)
o "input" meansthatthe process can read () from this fd

e [n]>:setfileasanoutputforfd n(fd 1 if unspecified)
o "output" meansthatthe process canwrite () to thisfd

o 2>:capture stderr toafie

e [n]>>:setfile asan outputforfd n, append mode (fd 1 if unspecified)

Shells 12 /48

More file redirection

e <<:"Heredocument"; given a delimiter, enter data as standard input

cat << SOME_DELIM
here are some words
some more words
SOME_DELIM

vV VvV VvV Ur

e (Bash) <<<:"Here string"; provide string directly as standard input

S rev <<< "here's a string!"

o With this power, no longer will you need to pipe an echo to passin a string!
o echo "some string" | rev
o rev <<< "some string"

e Here documents and strings will expand variables (coming up)

Shells 13/48

More advanced redirection

e [n]<>:setfileasinputandoutputon fd n (fd 0 if unspecified)
o 3<>file

e [n]<&digit[—]:copiesfd digittofd n (0 if unspecified) for input; — closes digit
o <&3

e [n]>&digit[—]:copiesfd digittofd n(1if unspecified) for output; — closes digit
o >&2:effectively send stdout to stderr instead

(Bash)

e &>:setfileasfd1andfd2,overwrite (stdout and stderr go to same file)

e &>>:setfileasfd 1 andfd?2,append (stdout and stderr go to same file)

NS 14 /48

Stringing together commands

e cmdl && cmd2
o Runcmd2 if cmdl succeeded

o Like a short-circuiting AND in other languages

e cmdl || cmd2
o Runcmd?2 if cmd1 failed

o Like a short-circuiting OR in other languages

e cmdl ; cmd2
o Run cmd?2 aftercmd1

e cmdl | cmd2
o Connectstandard output of cmd1 to input of cmd?2

o cmdl'sfd1l->cmd2'sfd0

o S echo "hello" | rev

Shells 15/48

Command grouping

e \We can also group commands together as a unit, with redirects staying local to them:

e (commands):performs commandsin a "subshell" (another shell process/instance,
what does this mean for shellvariables?)

e { commands; }:performs commandsinthe calling shell instance

o Note: There has to be spaces around the brackets and a semicolon (or newline or
&) terminating the commands

Shells 16 /48

Expansion and substitution

e Shells have special characters that will indicate that it should expand or substitute to
something in a command

e This effectively does a text replacement before the command is run

Shells 17 /48

Parameter expansion ("variable" expansion)

e Svarname will expand to the value of varname

e S{varname}:you can use curly brackets to explicitly draw the boundaries on the
variable name

o $ echo ${varnamel}somestringvs$ echo $varnamesomestring

¢ Note: expansions/substitutions will be further split into individual tokens by their white-
space

e More fun things
o The [] meansthe contents are optiona

o S{varname:-[value]}:usedefaultvalue
o S{varname:=[value] }:assign default value

o S{varname:?[value] }:errorifvariableis null/unset

o

S{varname:+[value] }:usealternate value (opposite of the —)

Shells 18 /48

Bash has some more parameter expansions

e Substring expansion
o S{varname:offset}

o S{varname:offset:length}
o Negative offsets start from the end

o Negative lengths are treated as an offset from the end to serve as the end of the
substring

e There'sway more of these: see the manual

Shells 19 /48

Filename expansion ("glob"/"wildcards")

e The *,?,and [characters tells the shell to perform pattern matches against flenames
for a given token/word

e * matchesany string
e 7 matchesany single character

e [..] matchesone of any of the characters enclosed in the brackets
o There's more fun with this: check the manual

e Atoken/word with these will expand out to matching flenames

e Examples
o * expands to all the files in the current directory

o x.md expandsto all files thatend in . md (x matches against anything)

o file?.txtexpandsto allfilesthatstartwith i le, have asingle character,
thenendin . txt

o file[13579] . txtexpandsto all filesthatstart with 3 le and an odd single
digit numberand endsin . txt

Shells 20 /48

Command substitution (via subshell)

e S(command) will substitute the output of a command in the brackets
o $(echo hello | rev) wil be substituted with "olleh"

e Thecommand in the command substitution will be run first to get the output

e Thisoutputis then used as the text substitution

Shells 21/48

Arithmetic expansion

e S((expr)) wilexpandto an evaluated arithmetic expression expr
o Integer only

Process substitution (Bash)

e <(command) will substitute the command output as a filepath, with the output of
command being readable

e > (command) will substitute the commandinput as a filepath, with the input of
command being writeable

e S diff <(echo hello) <(echo olleh | rev)

o diff takesin two file names, but we're replacing them with "anonymous" files
containing the command outputs

Shells 22 /48

Excercises

1.Assign a variable greeting to a string that is concatenation of the string "user:" and
the USER variable

2. Write a mv command that moves all files in the current directory thatend in . txt into
a directory called text

3. Use a command substitution ($ (commands here)) to get the output of whoamsi
and save itinto a variable me

Shells 23/48

But walt...

e Whatif I actually wanted to notexpand a variable and keep the $7?
e Whatifldidn't wanta variable to be split by white-space?

e WhatifI'm lazy and don't want to escape spaces?

Shells 24 /48

Quoting

e Allowsyou to retain certain characters without Bash expanding them and keep them
one string

o Common use case is to preserve spaces e.g. for filepaths that have spaces in them
(spaces delimit tokens in a command)

e Single quotes (") preserves all of the characters between them
o $§ echo 'SHOME' will output SHOME

e Double quotes (") preserve all characters except: $, \, and backtick

o $ 1ls "SHOME/Evil Directory With Spaces'" wil listthe contents of a
directory /home/jdoe/Evil Directory With Spaces

o Variables expanded inside of double quotes retain their white-space

o (without this, that path would've had to have been SHOME /Ev1i 1\
Directory\ With\ Spaces,using \ to escape the space characters)

e Note that when quoting, the quotes don't appear in the program's argument
o $ someutil 'dimastring':someutil'sargv[1l] willbeimastring

Shells 25/48

Compound commands and control flow
if-elif-else

'#' comments out the rest of the Lline
elif and else are optional parts
if test-commands; then
commands
elif more-test-commands; then
more-commands
else
alt-commands

f4
e test-commandsis executed and its exit status is used as the condition
o 0=success="true", everything else is "false"
e You can puttheif-elif-else structure ononeline!

e |fyou need more space, you can enter each part line-by-line
o The shell will promptyou for more to complete your compound command

o This applies to the upcoming control flow structures as well

Shells 26 /48

Commands for conditionals

You can use any commands for conditions, but these constructs should be familiar

e test expr:testcommand
o Shorthand: [expr] (rememberyourspaces! [istechnically a utility name)

o test $a -eq $b
o [Sa -eq $b]
o These setthe exit status (?) to O (true) or 1 (false)

e Thisiswhere our friends | | and && can come into play
o[Sa -eq $b] && [Sa -1t 100]

e \We also have a not operator!
o | expression

o Mind the whitespace!
o !l [$Sa -ge 100]
ol [Sa-eqsb] [| ! [sa -1t 100]

NS 27 /48

Commands for conditionals

These are some additional Bash conditionals

e [[expr]]:Bashcondiional
o Richersetof operators: ==,=, | =, <, > among others

o Note: The symbol operators above operate on strings, thus < and > operators do
lexicographic (i.e. dictionary) comparison; "100" is lexicographically less than "2"
since for the first characters "1" comes before "2"

o Use specific arithmetic binary operators (a la test:e.g. - L t) if you intend on
comparing numeric values

o [[$a == $b]]
o [[Sa < Sb]]:thiswouldevaluate to "true" if a=100, b=2
o [[Sa -1t Sb]]:thiswould evaluate to "false" if a=100, b=2

e ((expr)):Bash arithmetic conditional
o Evaluates as an arithmetic expression

o (($a < $b)):thiswould evaluate to "false" if a=100, b=2

Shells 28 /48

whi le

while test-commands; do
commands
done

e Similarly to 1 f, the exit status of test-commandsis used as the conditional

e Repeats commands until the condition fails

until

until test-commands; do
commands
done

e Repeats commands until the condition succeeds

Shells 29 /48

for

for var in list; do
commands
done

e Fach iteration varwill be set to each member of the /ist

e /istissimply a list of whitespace-delimited strings

e /istwill have any necessary expansions performed

e Note:ifthereisnoin 1ist,itwilimplicitly iterate over the argument list (ie. $@)

e Example lists:
o1 2 345

o S(Ls)
o $S(seq 1 5)

Shells 30/48

case

e Aswitch-case that matches against "patterns”
o See the documentation for how exactly pattern matching works

o The filename expansion follows roughly similar rules

e The documentation's generic form is..ugly: here's a simple example form

case value 1in
patternl) commandsl ;;
pattern2) commands2? ;;
multpatl | multpat2) commands3 ;;
x) commands
esac

e valueis matched against patterns
e \When a pattern is matched its command(-list) is run

e Awildcard pattern is often used to represent a "default" case

Shells 31/48

Excercises

1. Write an 1 f statement that prints "success!" if the last command ran successfully
o Remember the ? variable?

o echo can print text for you

2. Write a for loop that creates 5 files,named i lelto file5
o seq 1 5canproduce a listofintegersfrom 1to5

o touch can create empty files for you

Shells 32 /48

Functions

func-name () compound-command # parens are mandatory
or
function func-name () compound-command # [Bash], parens are optiona

»

e A compound command is a command group ((), {}) or a control flow element (i f-
elif-else, for)

e Called by invoking them like any other utility, including passing arguments
o Arguments can be accessed via $n, where nis the argument number

o S@:list of arguments

o S$#:number of arguments

Shells 33/48

Examples

hello-world ()

{
if echo "Hello world!"; then

echo "This should print"

i

}

calling

hello-world

Bash

function touch-dir for x in $(ls); do touch $x; done
calling

touch-dir

Shells 34 /48

echo-args ()
{

for x in s@; do

echo $x

done
}
calling
echo-args a bcde fg

Bash
function divide
{
if (($2 == 0)); then
echo "Error: divide by zero" 1>&2
the redirection copies stderr to stdout so when echo
outputs it's really going to the caller's stderr
else
echo $(($1 / $2))
f4
J
calling
divide 10 2
divide 10 0

Shells 35/48

What even is an executable, anyway?

There are two classes of executable program

e Binaries

o These are files that contain instructions that the computer understands natively at
a hardware level (machine code)

o You get these when you tell GCC or Clang to compile your C or C++ program
o Various kinds of formats: ELF, Mach-O, PE, etc.

o The first few bytes of these files usually have some special byte sequence to
identify the file type

e Interpreted programs/scripts

o These are plain-text files that contain human readable text that map to some
programming language

o These files are run through another program called an "interpreter" to do tasks
specified in the program

o Python scripts are typically run through a Python interpreter

o Shell scripts are run through a shell

Shells 36 /48

What even is an executable, anyway?

e Thefirstline of a script should contain a shebang
o This tells the OS what program to use as an interpreter

o Startswith #! with the path to the interpreting program right after

o

#1/bin/sh:"Run this script with sh"

o

#!/bin/bash:"Run this script with Bash"

o

#!/usr/bin/env python3:"Run this script with whatever env finds as
python3"

o

If there is no shebang specified, the OS usually assumes sh

Shells 37/48

Shell scripts

e [t'sannoying to have to type things/go to the history to repeatedly run some
commands

e Scripts are just plain-text files with commands in them

e There's no special syntax for scripts: if you enter the commands in them line by line at
the terminal it would work

e Generally good practice to specify a shebang
o |t'susually a good idea to go with sh for universal compatibility

o bash can also be a good choice due to ubiquity; just be aware it's not a standard
o Don't mix up special Bash featuresin a script marked for sh!

e Arguments are presented as special variables (just like functions)
g P P J

e Sn:Argument n,where nisthe number (e.g. $1 isthe Istargument)
o Note: $O will refer to the script's name, as per *nix program argument convention

e $@:Listofall arguments

e S#:Numberofarguments

Shells 38/48

Shell scripts

e Now with a file you can expand the horizons of complexity
o It'ssaved and you can easily work with multiple lines

e You can treatit like programming, but with the twist of running programs as the main
form of work

e [Excellentatbeing able to leverage the various programs/utilities on the system
o Notso great at basic operations a "normal" programming language has

e You can manage abstraction by declaring functions and calling them

Shells 39/48

Running scripts

e There'sanuance between$./my-scriptand$ bash my-script

o S ./my-scripttellsthe OSto execute the my-script fie
o The OS will try to identify the file and will look for a shebang for the interpreter

o The OS will run the interpreter, feeding t my—-script

e S bash my-scripttellsthe OS to execute bash with my-scriptasan
argument

o |t'sup to Bash to figure out what to do with my-script

o In this case, Bash just reads the file and executes each line in it

Shells 40 /48

Exercise

e Write a shell script that appends an ISO 8601 format timestamp, and if there are
arguments, appends each argument on its own line to a file named log. If there are no
arguments, it then appends "No arguments" after the timestamp.

o date -Isec can getthistimestamp foryou
o Make sure to give it a shebang
o Make sure to chmod it so it's executable

o Runitwithanargumente.g.$./myscript this-is-an-argument

Shells 41 /48

Running vs sourcing

e Running (executing) a script puts it into its own shell instance; shell variables set won''t
be visible to the parent shell

o ./script.sh
o bash script.sh

e Sourcing a script makes your currentshell instance run each command in it; shell
variables set will be visible

o source script.sh
o . script.sh

e Think aboutthe nuance here
o Behavior of cd when running a script vs sourcing a script?

Shells 42 /48

Running vs sourcing

Say your shellis currently at /home /bob

There's a script called go—-p laces with the following contents:

cd /var/log

Q1: Where would your currentshell beifyouran $ bash go-places?

Q2: Where would your currentshell beifyouran $ source go-places?

Shells 43 /48

Running vs sourcing

e Sayyourshelliscurrently at /home/bob

e There'sascriptcalled go-places with the following contents:
cd /var/log
e QIl:Wherewouldyour currentshellbeifyouran$ bash go-places?
o A: /home/bob
o This will create a new Bash instance, which will then perform the cd.

o The currentshell stays in the current directory as it never ran cd in the first place

e Q2:Where would your currentshell beifyouran $ source go-places?
o A:/var/log

o This will cause the current shell to read in and execute the cd

o This will resultin the current shell changing directories

Shells 44 /48

Configuring the shell

e Shells will automatically source certain files to perform configuration
o /etc/profile:system-wide configuration

o ~/.bashrc:Bash's user shell configuration file
o ~/.zshrc:Zsh'suser shell configuration file

e You can make your own additions to your ~/ .bashrcor~/.zshrc etc.

o Maybe you want to add a directory to PATH?:
export PATH="newdir:$SPATH"

o Maybe | wantto alias a word to a command that navigates to my Windows side?
alias cdw='cd /mnt/c/Users/brandon/'

o Maybe | wantto change up my prompt?..

Shells 45 /48

Prompts

e The PS1 and PS2 variables hold the prompt information
o PS1isthe primary prompt: the one you're probably familiar with

o PS2isthe secondary prompt: shown when you're entering a multi-line structure
o Other shells might have more: Zsh supports right-side prompts

e You can make a strictly static assignment to PS1 inside of your configuration file if you
wish
o Depending on the shell it might support special characters that expand to things
like the username, time, etc.

e "Enhanced" (relative to sh) shells like Bash and Zsh often have hooks to run code that
dynamically generate a promptand set PS1

o By taking advantage of this, you can do fancier things than what's built in with
special characters

o Bash has PROMPT_COMMAND for this

o Zsh hasan entire prompt framework for setting prompts

Shells 46 /48

Tricks at the terminal

Ctr L+r:search command history in Bash

o Zsh mayneed some configuration to bind it to that key combination:
bindkey 'AR' history-incremental-search-backward

e Ctrl+Ll:clearthescreen
e reset:resetthe terminal (useful if the terminal was corrupted by bad outputs)

e Ctrl+d:sendEOF;running commands that take in input may handle thatas "no
more input" and close cleanly

Shells 47 /48

Any other questions?

Shells 48 /48

