
Shells
feat. Bash

:(){ :|:& };:
Do NOT run this

Shells 1 / 48

Overview
1. Understanding the shell

2. Working with the shell
Variables

Command structuring/grouping

Expansion

Control flow

Functions

Scripts

3. Configuring the shell
Configuration files

Prompts

Shells 2 / 48

Shells
Interactive shells vs shell as an interpreter

Interactive shells are the shell that you directly interact with at a terminal
These are a personal choice: some may prefer Bash, some may prefer Zsh, some
may prefer Fish

You can run scripts with different interpreters but personalize your working
environment

Picking a shell as an interpreter for a script is a programming design decision
Do you intend this script to be run on other computers?

sh is a POSIX standard

Bash is so ubiquitous that you can reasonably assume a target system has it

Shells 3 / 48

Before we start...
We'll focus on Bash when it comes to cooler features that sh doesn't have

Bash is a decent mix of additional functionality and presence in the world

This lends itself to being a good target for writing scripts

While additional functionality is about Bash, many other shells have the similar, if not
same, syntax

Zsh is designed to be backwards compatible with Bash, but adds additional
functionality

I'll mention [bash] when it's a Bash enhancement over sh

The horse's mouth: GNU Bash manual
If you like the nitty gritty details it's a great read

These slides summarize major features of Bash

Now for a bit of a review...

Shells 4 / 48

https://www.gnu.org/software/bash/manual/

Basic shell command structure
<command> <argument 1> <argument 2> <argument 3>
 ^ ^ ^
 | | |-- programs are provided these to
 | | interpret (remember argc and argv[]?)
 | |
 | |-- words separated by whitespace
 |
 |-- certain things are actual programs, certain things
 are handled by the shell ("built-ins")

Shells 5 / 48

General shell operation
1. Receive a command from a file or terminal input

ls -l $HOME > some_file

2. Splits it into tokens separated by white-space
Takes into account "quoting" rules

The IFS variable is used as the delimiters

ls, -l, $HOME, >, some_file

3. Expands/substitutes special tokens
ls, -l, /home/brandon, >, some_file

4. Perform file redirections (and making sure they don't end up as command args)
ls, -l, /home/brandon; (set standard output to some_file)

5. Execute command (remember our friend exec()?)
argc = 3, argv = ["ls", "-l", "/home/brandon"]

Standard output redirected to some_file

First "normal" token is the command/utility to run

Shells 6 / 48

Finding programs to execute
If the command has a / in it, it's treated as a filepath and the file will be executed

$ somedir/somescript

$./somescript

Only works if the file has its execute bit set

If the command doesn't have a /, PATH will be searched for a corresponding binary
$ vim -> searches PATH and finds it at /usr/bin/vim

This is why you have to specify ./ to run something in your current directory

Shell built-ins
Some commands are "built-in"/implemented by the shell

These will take precedent over ones in the PATH

Some other commands don't make sense outside of a shell
Think about why cd is a built-in and not a separate utility

(hint: fork() and exec())

Shells 7 / 48

Job control
We're familiar with just launching a process

$ echo "hello world"

There's other things we can do, like launch it in the background with &
$ echo "hello world" &

^C (SIGINT) can cause most process to stop

^Z (SIGTSTP) can cause most processes to suspend

Shells 8 / 48

Job control
jobs can list out processes (jobs table) that the shell is managing

bg can background a process, yielding the terminal back to the shell

fg can foreground a process, giving it active control of the terminal
bg and fg can index off of the jobs table

disown can have the shell give up ownership of a process

The ? variable holds the exit status of the last command
0 means success/true

Not 0 means failure/false

Shells 9 / 48

Shell and environment variables
Shell variables stored inside the shell process

They're handled by the shell itself, stored as program data in the process's
memory

Launched commands don't inherit them (what does exec() do?)

Set them with varname=varvalue
Meaningful whitespace!

varname = varvalue is interpreted as "run varname with arguments = and
varvalue"

You can set environment variables with export
export varname=varvalue

export existing_variable

Marks a variable to be exported to new processes

Shells 10 / 48

File redirection
<: set file as standard input (fd 0)

$ cmd1 < read.txt

>: set file as standard output, overwrite (fd 1)
$ cmd1 > somefile.txt

Creates file if it doesn't exist already

>>: set file as standard output, append (fd 1)
$ cmd1 >> somelog.txt

Creates file if it doesn't exist already

Shells 11 / 48

File redirection
General form (brackets mean optional)

[n]<: set file as an input for fd n (fd 0 if unspecified)
"input" means that the process can read() from this fd

[n]>: set file as an output for fd n (fd 1 if unspecified)
"output" means that the process can write() to this fd

2>: capture stderr to a file

[n]>>: set file as an output for fd n, append mode (fd 1 if unspecified)

Shells 12 / 48

More file redirection
<<: "Here document"; given a delimiter, enter data as standard input

$ cat << SOME_DELIM
> here are some words
> some more words
> SOME_DELIM

(Bash) <<<: "Here string"; provide string directly as standard input

$ rev <<< "here's a string!"

With this power, no longer will you need to pipe an echo to pass in a string!

echo "some string" | rev

rev <<< "some string"

Here documents and strings will expand variables (coming up)

Shells 13 / 48

More advanced redirection
[n]<>: set file as input and output on fd n (fd 0 if unspecified)

3<>file

[n]<&digit[-]: copies fd digit to fd n (0 if unspecified) for input; - closes digit
<&3

[n]>&digit[-]: copies fd digit to fd n (1 if unspecified) for output; - closes digit
>&2: effectively send stdout to stderr instead

(Bash)

&>: set file as fd 1 and fd 2, overwrite (stdout and stderr go to same file)

&>>: set file as fd 1 and fd 2, append (stdout and stderr go to same file)

Shells 14 / 48

Stringing together commands
cmd1 && cmd2

Run cmd2 if cmd1 succeeded

Like a short-circuiting AND in other languages

cmd1 || cmd2
Run cmd2 if cmd1 failed

Like a short-circuiting OR in other languages

cmd1 ; cmd2
Run cmd2 after cmd1

cmd1 | cmd2
Connect standard output of cmd1 to input of cmd2

cmd1's fd 1 -> cmd2's fd 0

$ echo "hello" | rev

Shells 15 / 48

Command grouping
We can also group commands together as a unit, with redirects staying local to them:

(commands): performs commands in a "subshell" (another shell process/instance;
what does this mean for shell variables?)

{ commands; }: performs commands in the calling shell instance
Note: There has to be spaces around the brackets and a semicolon (or newline or
&) terminating the commands

Shells 16 / 48

Expansion and substitution
Shells have special characters that will indicate that it should expand or substitute to
something in a command

This effectively does a text replacement before the command is run

Shells 17 / 48

Parameter expansion ("variable" expansion)
$varname will expand to the value of varname

${varname}: you can use curly brackets to explicitly draw the boundaries on the
variable name

$ echo ${varname}somestring vs $ echo $varnamesomestring

Note: expansions/substitutions will be further split into individual tokens by their white-
space

More fun things
The [] means the contents are optional

${varname:-[value]}: use default value

${varname:=[value]}: assign default value

${varname:?[value]}: error if variable is null/unset

${varname:+[value]}: use alternate value (opposite of the -)

Shells 18 / 48

Bash has some more parameter expansions
Substring expansion

${varname:offset}

${varname:offset:length}

Negative offsets start from the end

Negative lengths are treated as an offset from the end to serve as the end of the
substring

There's way more of these: see the manual

Shells 19 / 48

Filename expansion ("glob"/"wildcards")
The *, ?, and [characters tells the shell to perform pattern matches against filenames
for a given token/word

* matches any string

? matches any single character

[...] matches one of any of the characters enclosed in the brackets
There's more fun with this: check the manual

A token/word with these will expand out to matching filenames

Examples
* expands to all the files in the current directory

.md expands to all files that end in .md (matches against anything)

file?.txt expands to all files that start with file, have a single character,
then end in .txt

file[13579].txt expands to all files that start with file and an odd single
digit number and ends in .txt

Shells 20 / 48

Command substitution (via subshell)
$(command) will substitute the output of a command in the brackets

$(echo hello | rev) will be substituted with "olleh"

The command in the command substitution will be run first to get the output

This output is then used as the text substitution

Shells 21 / 48

Arithmetic expansion
$((expr)) will expand to an evaluated arithmetic expression expr

Integer only

Process substitution (Bash)
<(command) will substitute the command output as a filepath, with the output of
command being readable

>(command) will substitute the command input as a filepath, with the input of
command being writeable

$ diff <(echo hello) <(echo olleh | rev)
diff takes in two file names, but we're replacing them with "anonymous" files
containing the command outputs

Shells 22 / 48

Excercises
1. Assign a variable greeting to a string that is concatenation of the string "user:" and

the USER variable

2. Write a mv command that moves all files in the current directory that end in .txt into
a directory called text

3. Use a command substitution ($(commands here)) to get the output of whoami
and save it into a variable me

Shells 23 / 48

But wait...
What if I actually wanted to not expand a variable and keep the $?

What if I didn't want a variable to be split by white-space?

What if I'm lazy and don't want to escape spaces?

Shells 24 / 48

Quoting
Allows you to retain certain characters without Bash expanding them and keep them
one string

Common use case is to preserve spaces e.g. for filepaths that have spaces in them
(spaces delimit tokens in a command)

Single quotes (') preserves all of the characters between them
$ echo '$HOME' will output $HOME

Double quotes (") preserve all characters except: $, \, and backtick
$ ls "$HOME/Evil Directory With Spaces" will list the contents of a
directory /home/jdoe/Evil Directory With Spaces

Variables expanded inside of double quotes retain their white-space

(without this, that path would've had to have been $HOME/Evil\
Directory\ With\ Spaces,
using \ to escape the space characters)

Note that when quoting, the quotes don't appear in the program's argument
$ someutil 'imastring': someutil's argv[1] will be imastring

Shells 25 / 48

Compound commands and control flow
if-elif-else
'#' comments out the rest of the line
elif and else are optional parts
if test-commands; then
 commands
elif more-test-commands; then
 more-commands
else
 alt-commands
fi

test-commands is executed and its exit status is used as the condition
0 = success = "true", everything else is "false"

You can put the if-elif-else structure on one line!

If you need more space, you can enter each part line-by-line
The shell will prompt you for more to complete your compound command

This applies to the upcoming control flow structures as well

Shells 26 / 48

Commands for conditionals
You can use any commands for conditions, but these constructs should be familiar:

test expr: test command
Shorthand: [expr] (remember your spaces! [is technically a utility name)

test $a -eq $b

[$a -eq $b]

These set the exit status (?) to 0 (true) or 1 (false)

This is where our friends || and && can come into play
[$a -eq $b] && [$a -lt 100]

We also have a not operator!
! expression

Mind the whitespace!

! [$a -ge 100]

! [$a -eq $b] || ! [$a -lt 100]

Shells 27 / 48

Commands for conditionals
These are some additional Bash conditionals

[[expr]]: Bash conditional
Richer set of operators: ==, =, !=, <, >, among others

Note: The symbol operators above operate on strings,
thus < and > operators do
lexicographic (i.e. dictionary) comparison;
"100" is lexicographically less than "2"
since for the first characters "1" comes before "2"

Use specific arithmetic binary operators (a la test: e.g. -lt) if you intend on
comparing numeric values

[[$a == $b]]

[[$a < $b]]: this would evaluate to "true" if a=100, b=2

[[$a -lt $b]]: this would evaluate to "false" if a=100, b=2

((expr)): Bash arithmetic conditional
Evaluates as an arithmetic expression

(($a < $b)): this would evaluate to "false" if a=100, b=2

Shells 28 / 48

while
while test-commands; do
 commands
done

Similarly to if, the exit status of test-commands is used as the conditional

Repeats commands until the condition fails

until
until test-commands; do
 commands
done

Repeats commands until the condition succeeds

Shells 29 / 48

for
for var in list; do
 commands
done

Each iteration var will be set to each member of the list

list is simply a list of whitespace-delimited strings

list will have any necessary expansions performed

Note: if there is no in list, it will implicitly iterate over the argument list (i.e. $@)

Example lists:
1 2 3 4 5

$(ls)

$(seq 1 5)

Shells 30 / 48

case
A switch-case that matches against "patterns"

See the documentation for how exactly pattern matching works

The filename expansion follows roughly similar rules

The documentation's generic form is...ugly: here's a simple example form

case value in
 pattern1) commands1 ;;
 pattern2) commands2 ;;
 multpat1 | multpat2) commands3 ;;
 *) commands
esac

value is matched against patterns

When a pattern is matched its command(-list) is run

A wildcard pattern is often used to represent a "default" case

Shells 31 / 48

Excercises
1. Write an if statement that prints "success!" if the last command ran successfully

Remember the ? variable?

echo can print text for you

2. Write a for loop that creates 5 files, named file1 to file5
seq 1 5 can produce a list of integers from 1 to 5

touch can create empty files for you

Shells 32 / 48

Functions
func-name () compound-command # parens are mandatory
or
function func-name () compound-command # [Bash], parens are optional

A compound command is a command group ((), {}) or a control flow element (if-
elif-else, for)

Called by invoking them like any other utility, including passing arguments
Arguments can be accessed via $n, where n is the argument number

$@: list of arguments

$#: number of arguments

Shells 33 / 48

Examples

hello-world ()
{
 if echo "Hello world!"; then
 echo "This should print"
 fi
}
calling
hello-world

Bash
function touch-dir for x in $(ls); do touch $x; done
calling
touch-dir

Shells 34 / 48

echo-args ()
{
 for x in $@; do
 echo $x
 done
}
calling
echo-args a b c d e f g

Bash
function divide
{
 if (($2 == 0)); then
 echo "Error: divide by zero" 1>&2
 # the redirection copies stderr to stdout so when echo
 # outputs it's really going to the caller's stderr
 else
 echo $(($1 / $2))
 fi
}
calling
divide 10 2
divide 10 0

Shells 35 / 48

What even is an executable, anyway?
There are two classes of executable program

Binaries
These are files that contain instructions that the computer understands natively at
a hardware level (machine code)

You get these when you tell GCC or Clang to compile your C or C++ program

Various kinds of formats: ELF, Mach-O, PE, etc.

The first few bytes of these files usually have some special byte sequence to
identify the file type

Interpreted programs/scripts
These are plain-text files that contain human readable text that map to some
programming language

These files are run through another program called an "interpreter" to do tasks
specified in the program

Python scripts are typically run through a Python interpreter

Shell scripts are run through a shell

Shells 36 / 48

What even is an executable, anyway?
The first line of a script should contain a shebang

This tells the OS what program to use as an interpreter

Starts with #! with the path to the interpreting program right after

#!/bin/sh: "Run this script with sh"

#!/bin/bash: "Run this script with Bash"

#!/usr/bin/env python3: "Run this script with whatever env finds as
python3"

If there is no shebang specified, the OS usually assumes sh

Shells 37 / 48

Shell scripts
It's annoying to have to type things/go to the history to repeatedly run some
commands

Scripts are just plain-text files with commands in them

There's no special syntax for scripts: if you enter the commands in them line by line at
the terminal it would work

Generally good practice to specify a shebang
It's usually a good idea to go with sh for universal compatibility

bash can also be a good choice due to ubiquity; just be aware it's not a standard

Don't mix up special Bash features in a script marked for sh!

Arguments are presented as special variables (just like functions)

$n: Argument n, where n is the number (e.g. $1 is the 1st argument)
Note: $0 will refer to the script's name, as per *nix program argument convention

$@: List of all arguments

$#: Number of arguments

Shells 38 / 48

Shell scripts
Now with a file you can expand the horizons of complexity

It's saved and you can easily work with multiple lines

You can treat it like programming, but with the twist of running programs as the main
form of work

Excellent at being able to leverage the various programs/utilities on the system
Not so great at basic operations a "normal" programming language has

You can manage abstraction by declaring functions and calling them

Shells 39 / 48

Running scripts
There's a nuance between $./my-script and $ bash my-script

$./my-script tells the OS to execute the my-script file
The OS will try to identify the file and will look for a shebang for the interpreter

The OS will run the interpreter, feeding it my-script

$ bash my-script tells the OS to execute bash with my-script as an
argument

It's up to Bash to figure out what to do with my-script

In this case, Bash just reads the file and executes each line in it

Shells 40 / 48

Exercise
Write a shell script that appends an ISO 8601 format timestamp, and if there are
arguments, appends each argument on its own line to a file named log. If there are no
arguments, it then appends "No arguments" after the timestamp.

date -Isec can get this timestamp for you

Make sure to give it a shebang

Make sure to chmod it so it's executable

Run it with an argument e.g. $./myscript this-is-an-argument

Shells 41 / 48

Running vs sourcing
Running (executing) a script puts it into its own shell instance; shell variables set won't
be visible to the parent shell

./script.sh

bash script.sh

Sourcing a script makes your current shell instance run each command in it; shell
variables set will be visible

source script.sh

. script.sh

Think about the nuance here
Behavior of cd when running a script vs sourcing a script?

Shells 42 / 48

Running vs sourcing
Say your shell is currently at /home/bob

There's a script called go-places with the following contents:

cd /var/log

Q1: Where would your current shell be if you ran $ bash go-places?

Q2: Where would your current shell be if you ran $ source go-places?

Shells 43 / 48

Running vs sourcing
Say your shell is currently at /home/bob

There's a script called go-places with the following contents:

cd /var/log

Q1: Where would your current shell be if you ran $ bash go-places?
A: /home/bob

This will create a new Bash instance, which will then perform the cd.

The current shell stays in the current directory
as it never ran cd in the first place

Q2: Where would your current shell be if you ran $ source go-places?
A: /var/log

This will cause the current shell to read in and execute the cd

This will result in the current shell changing directories

Shells 44 / 48

Configuring the shell
Shells will automatically source certain files to perform configuration

/etc/profile: system-wide configuration

~/.bashrc: Bash's user shell configuration file

~/.zshrc: Zsh's user shell configuration file

You can make your own additions to your ~/.bashrc or ~/.zshrc etc.
Maybe you want to add a directory to PATH?:
export PATH="newdir:$PATH"

Maybe I want to alias a word to a command that navigates to my Windows side?
alias cdw='cd /mnt/c/Users/brandon/'

Maybe I want to change up my prompt?...

Shells 45 / 48

Prompts
The PS1 and PS2 variables hold the prompt information

PS1 is the primary prompt: the one you're probably familiar with

PS2 is the secondary prompt: shown when you're entering a multi-line structure

Other shells might have more: Zsh supports right-side prompts

You can make a strictly static assignment to PS1 inside of your configuration file if you
wish

Depending on the shell it might support special characters that expand to things
like the username, time, etc.

"Enhanced" (relative to sh) shells like Bash and Zsh often have hooks to run code that
dynamically generate a prompt and set PS1

By taking advantage of this, you can do fancier things than what's built in with
special characters

Bash has PROMPT_COMMAND for this

Zsh has an entire prompt framework for setting prompts

Shells 46 / 48

Tricks at the terminal
Ctrl+r: search command history in Bash

Zsh may need some configuration to bind it to that key combination:
bindkey '^R' history-incremental-search-backward

Ctrl+l: clear the screen

reset: reset the terminal (useful if the terminal was corrupted by bad outputs)

Ctrl+d: send EOF; running commands that take in input may handle that as "no
more input" and close cleanly

Shells 47 / 48

Any other questions?

Shells 48 / 48

