
git gud
"Boy I sure do love creating a merge commit every time I pull!"

git gud 1 / 26

https://www.youtube.com/watch?v=Y9nDagqKL7Q


Overview
Review

Rewriting history
Fixing mistakes

Cleaning up

Stashing

Understanding remotes

Workflows
Overview

Centralized workflow

Merge conflicts

git gud 2 / 26



Review
git init

git status

git add

git reset

git checkout (git restore)

git commit

git status

git branch

git checkout (git switch)

git merge

git gud 3 / 26



Review
git remote

git push

git pull

git gud 4 / 26



Review
Creating a local repository

Staging files

Making commits

Making branches

Merging branches

Interacting with remotes

git gud 5 / 26



Rewriting history
This section involves changing up commit history

Use with caution if you have already pushed them to a branch that's shared with other
people

If you force the remote branch to take on the rewritten history, it'll cause the other
peoples' local branches to be incoherent

git gud 6 / 26



Fixing mistakes
Scenario: made a commit by accident and want to
"uncommit"

git reset to the rescue!

git reset HEAD~1 is a common internet answer given without explanation

Dissecting it:

git reset sets the HEAD to a specified state (bringing the current branch along for
the ride)

HEAD~1 specifies that we want the HEAD to take on the state of the commit that is 1
before the HEAD

We could provide the commit's hash or some reference/pointer to a commit
instead (e.g. branch or tag name)

git gud 7 / 26



Fixing mistakes
Scenario: made a commit by accident and want to
"uncommit"

git reset has three major modes in this application:
--soft: undoes the commit, leaves the Working Directory untouched, and
leaves the changed files staged

--mixed: default, undoes the commit, leaves the Working Directory untouched,
and leaves the changed files unstaged

--hard: undoes the commit and brings the Working Directory to the state of the
commit, discarding the changes

git gud 8 / 26



Fixing mistakes
Scenario: forgot to add a file

git add <file>

git commit --amend

git commit --amend will bring the currently staged changes into the current
commit and allow you to edit the commit message

If you forgot to delete a file, just git rm <file> to remove and stage the
removal, the git commit --amend

git commit --amend --no-edit won't ask you to edit the commit
message

Scenario: typo in commit message
git commit --amend with no staged files will just have you edit the commit
message

git gud 9 / 26



Cleaning up
git rebase is an incredible powerful command that allows you to rewrite history

git rebase -i <base tip> is the form you most likely will use
<base tip> is either a commit hash or branch that you want to replay commits
onto

Common use-cases include:
"Squashing" commits

This allows you to put multiple minor commits into a single more substantial one

Reordering commits

Rewording commits

Playing back commits on top of another branch (more on this later)

git gud 10 / 26



Caveats of rewriting commits
rebase and commit --amend rewrite commits if you make changes

A commit's hash depends on the files' data, the commit message, commit info, and the
parent

What does this mean?
A reworded commit is technically a new commit

Adding a file to a commit turns it into a new commit

Child commits will techincally become new commits

Don't believe me? Check the hashes

Be wary if you have rewritten commits that have already made it to a remote branch
that other people access

If you force the remote branch to take on your rewritten history, people who have
previously pulled to their local repositories will no longer have coherent histories

git gud 11 / 26



Stashing
git stash allows you to save the state of your Index and Working Directory into the
"stash" (acts like a stack) and rolls you back to a clean Working Directory

This is particularly useful if you need to jump around different branches while you have
some modified files hanging about that would be changed by the other branches

git checkout <branch> won't let you switch branches if the target branch
modifies files that are currently already modified

git stash will implicitly perform a git stash push and putting your current
Index and Working Directory's state onto the stash's stack

git stash pop will bring the top entry of the stash's stack into your Index and
Working Directory, deleting that entry from the stash

Note how pop will delete automatically delete that entry

git stash apply will do the same thing as pop but without the automatic entry
deletion: useful in case the pop fails/has issues

git stash drop will then delete the item at the top of the stash's stack

git gud 12 / 26



Understanding remotes
Recall that a remote is repository hosted on some server

Recall that remote names have no special meaning: origin is just the default when
you clone

A remote has its own set of branches and commits, being another copy of the
repository in this distributed system

When working locally, note that master is not the same as origin/master
master is an arbitrary local branch with that name that may or may not be
"tracking" origin/master (we'll elaborate later)

origin/master is a branch named master on the remote origin, which
could for example have a URL of
git@gitlab.umich.edu:eecs201/somerepo.git

git gud 13 / 26



Understanding remotes
This is where we get the legendary command git reset --hard
origin/master to undo everything locally

Maybe we have totally borked our local branch master: maybe its history has
been destroyed by a rebase and we just want to go back to something sane

This does a hard reset for master using origin/master's commit as the
target state

git gud 14 / 26



Tracking branches
They may have the similar names, but master is a local branch that is tracking
origin/master

What this means is that master looks at origin/master as the place to push/pull
commits to/from

origin/master is known as its upstream branch

If you checkout a branch that exists on one remote but not locally,
Git will
automatically create a local branch of the same name and have it track that remote
branch.

This only works if there is only a single remote with that branch name.

We can arbitrarily create tracking branches of arbitrary names that track remote
branches

git checkout -b top-of-tree origin/dev will create a local branch
top-of-tree that tracks origin/dev (and switch the current branch to
top-of-tree)

git branch -u origin/issue149 will cause the current local branch to
track origin/issue149 (i.e. setting the upstream)

git gud 15 / 26



Tracking branches
This is what git push's -u/--set-upstream flag is for

It will set the upstream of the given branch

git push -u origin main will push a local branch main to
origin/main, setting origin/main as the upstream

git push -u origin main:dev will push a local branch main to
origin/dev, setting origin/dev as the upstream

Your local repo does keep a cached copy of origin/master, which gets updated
whenever you git fetch: it doesn't automatically keep in touch with the server

git pull performs git fetch then merges origin/master into master
Many a Git beginner has been victim to this automatic merging (me included)...

There's also rebase mode where it rebases master onto origin/master
instead

git gud 16 / 26



Workflows
Maybe you have run into this scenario...

You are working with a group of people on a project and decide to use Git to
collaborate, and host your repo on the campus GitLab

Perhaps none of you are particularly versed in Git (with one member even opting to
use the GitLab webpage to upload/edit files!)

So each of you do your work, pushing and pulling to master

git gud 17 / 26



Workflows
Maybe you have run into this scenario...

Almost immediately you're going to run into a situation where two (or more) people
race to push their commits

Person A pushes their commit first

Person B tries to push, but the server refuses and tells them that their local
branch is behind

Person B pulls, causing a superfluous merge commit between
origin/master and Person B's master branch

Person B then pushes their original commit and a merge commit that has the
amazing default message that says master got merged with
origin/master...

As the project continues, each person is pushing tiny incremental commits.

git gud 18 / 26



Workflows
Workflows give a structure to how we should perform our versioning work

Git does not explicitly lay out workflows for us to follow

This lecture we'll be focusing on what Atlassian would call a "Centralized Workflow"
I've chosen this as it's fairly standard and is manageable and suitable for school
life, while giving you the fundamentals

Read more about Workflows in the Atlassian tutorials

git gud 19 / 26

https://www.atlassian.com/git/tutorials/comparing-workflows


(Basic) Centralized Workflow
In this we have a main branch that code is being contributed to (e.g. master, dev)

For brevity, let's refer to the remote as origin and the main branch as dev

Locally each user tracks origin/dev on some local tracking branch (e.g. dev)

Each user works on this local tracking branch on their feature/fix

The user makes the commits they want

The user uses git rebase to squash, reorder, and reword commits to package up
their feature/fix more nicely

Probably a good idea to squash two commits where one has a sizeable change
and the other fixes a typo in the first

The user then pushes their change

git gud 20 / 26



(Basic) Centralized Workflow
If it fails due to the local branch being behind, then the new commits need to be pulled

git pull --rebase origin dev will perform a rebase of your new
commit on top of the commits fetched from origin instead of a merge, avoiding
the merge commit

Local branch dev will be fast forwarded to origin/dev, and your new
commits will be put on top of dev's new up to date spot

Now the user should be able to push (if they can't due to some other speedy user,
they simply just have to do another pull)

As a result, we now have a relatively clean history with meaningful commits free of
"superfluous" merge commits

git gud 21 / 26



+Feature Branching
The idea behind this is to have a main branch (e.g. dev) represent a stable, passing
codebase

Feature branches are spawned off, have their features completed and committed, and
have their commits brought back into the main branch

Feature/topic branches could range from actual remote branches with multiple
contributors to a single person handling their issue locally

The flow is very similar, with feature/topic branches that have multiple contributors
having something like a miniature Centralized Workflow

When the feature is complete (and tested), it can be locally merge-ed into dev
and pushed to origin/dev

This merge commit will capture this branching and merging behavior in the
history

Alternatively if you want to have a linear history, you can use rebase instead of
merge

One option at this point is to have a person responsible for bringing feature
commits into the main branch

git gud 22 / 26



+Feature Branching
You can also do this locally

Say you were assigned bugs 1, 2, and 3

You have a local tracking branch dev that tracks origin/dev

You then have three local feature/topic branches bug1, bug2, and bug3

You can perform your fixes for each of them, switching between them when you get
stuck, etc.

When you finish up bug 2, you can get the latest changes for dev and then
rebase/merge bug2 onto/into the newly updated dev and perform the appropriate
push

You then repeat this process for bugs 1 and 3

git gud 23 / 26



Merge conflicts
Sometimes when you perform a merge or rebase the commits of one branch
conflict with the commits of another

This is called a "merge conflict"

The merge or rebase process stops, allowing for you to edit the files that have
conflicts to get the file to have the correct contents

This conflict resolution stage will insert some special strings into your code saying
that one branch/commit had these particular contents and another
branch/commit had these certain other contents.

You might've seen <<<<<<<, =======, and >>>>>>> at some point

When you finish up with the conflict resolution, stage the necessary files and finish the
merge/rebase procedure

git status will tell you the appropriate command to run to continue

git gud 24 / 26



Workflows
This was only a taste of workflows

There are different kinds

You may develop your own style of local workflow as you get more used to Git
The Centralized Workflow and its kind are more of remote collaboration
workflows

You don't have to go strictly by the local workflows described here

Git is very flexible by nature, so workflows themselves aren't really built into the
tool

Now go forth!
You are officially dangerous with Git :)
(There's more stuff, like git cherry-pick, git blame, and git bisect!)

git gud 25 / 26



Questions?

git gud 26 / 26


