git gud

"Boy | sure do love creating a merge commit every time | pull!"

git gud 1/26

https://www.youtube.com/watch?v=Y9nDagqKL7Q

QOverview

Review

Rewriting history
o Fixing mistakes

o Cleaning up

Stashing

Understanding remotes

Workflows
o Qverview

o Centralized workflow

o Merge conflicts

git gud 2/26

Review
e git init
e git status
e git add
e git reset
e git checkout (git restore)
e git commit
e git status
e git branch
e git checkout (git switch)

e git merge

git gud 3/26

Review

e git remote
e git push

e git pull

git gud 4 /26

Review

e Creating a local repository
e Staging files

e Making commits

e Making branches

e Merging branches

e Interacting with remotes

git gud 5/26

Rewriting history

¢ This section involves changing up commit history

¢ Use with caution if you have already pushed them to a branch that's shared with other
people

e Ifyou force the remote branch to take on the rewritten history, it'll cause the other
peoples' local branches to be incoherent

git gud 6/26

Fixing mistakes
Scenario: made a commit by accident and want to
‘uncommit’

e git reset totherescue!
e git reset HEAD~1isacommon internetanswer given without explanation
Dissecting it:

e git reset setsthe HEAD to a specified state (bringing the current branch along for
the ride)

e HEAD~1 specifies that we want the HEAD to take on the state of the commit thatis 1
before the HEAD

o We could provide the commit's hash or some reference/pointer to a commit
instead (e.g. branch or tag name)

git gud 7/26

Fixing mistakes
Scenario: made a commit by accident and want to
‘uncommit’

e git reset hasthree major modes in this application:
o --soft:undoesthe commit, leaves the Working Directory untouched, and
leaves the changed files staged

o --mixed:default,undoesthe commit, leaves the Working Directory untouched,
and leaves the changed files unstaged

o --hard:undoesthe commitand brings the Working Directory to the state of the
commit, discarding the changes

git gud 8/26

Fixing mistakes
Scenario: forgot to add a file

e git add <file>
e git commit --amend

e git commit --amend wil bringthe currently staged changes into the current
commit and allow you to edit the commit message

o Ifyou forgotto deleteafile,justgit rm <file>toremove and stage the
removal,thegit commit --amend

o git commit --amend --no-edit won'taskyou to editthe commit
message

Scenario: typo in commit message

e git commit --amend with no staged files will just have you edit the commit
message

git gud 9/26

Cleaning up

e git rebaseisanincredible powerful command that allows you to rewrite history

e git rebase -i <base tip>istheform you most likely will use

o <base tip>iseitheracommithash or branch thatyou wantto replay commits
onto

Common use-cases include:
e "Squashing" commits
o This allows you to put multiple minor commits into a single more substantial one
e Reordering commits
e Rewording commits

e Playing back commits on top of another branch (more on this later)

git gud 10/26

Caveats of rewriting commits

e rebaseandcommit --amend rewritecommits if you make changes

e Acommit's hash depends on the files' data, the commit message, commit info, and the
parent

What does this mean?

e Areworded commitis technically a newcommit

e Adding afile to a committurnsitinto a newcommit
e Child commits will techincally become new commits
e Don't believe me? Check the hashes

e Bewary if you have rewritten commits that have already made it to a remote branch
that other people access

e Ifyou force the remote branch to take on your rewritten history, people who have
previously pulled to their local repositories will no longer have coherent histories

git gud 11/26

Stashing

e git stash allowsyou to save the state of your Index and Working Directory into the
"stash" (acts like a stack) and rolls you back to a clean Working Directory

e Thisis particularly useful if you need to jump around different branches while you have
some modified files hanging about that would be changed by the other branches

o git checkout <branch>won'tletyou switch branches if the target branch
modifies files that are currently already modified

e git stashwilimplicitly performagit stash push and putting your current
Index and Working Directory's state onto the stash's stack

e git stash pop wilbringthe top entry of the stash's stack into your Index and
Working Directory, deleting that entry from the stash

e Note how pop will delete automatically delete that entry

e git stash apply wildothe same thingas pop butwithout the automatic entry
deletion: useful in case the pop fails/has issues

e git stash drop wilthen delete the item atthe top of the stash's stack

git gud 12/26

Understanding remotes

e Recall that a remoteis repository hosted on some server

e Recall thatremote names have no special meaning: origin is just the default when
you clone

e Aremote hasits own set of branches and commits, being another copy of the
repository in this distributed system

e When working locally, note thatmaster is notthe same asorigin/master

o master isan arbitrary local branch with that name that may or may not be
"tracking" origin/master (we'll elaborate later)

o origin/master isabranch named master onthe remote origin, which

could for example have a URL of
git@gitlab.umich.edu:eecs201/somerepo.git

git gud 13/26

Understanding remotes

e Thisiswhere we getthe legendarycommand git reset --hard
origin/master to undo everything locally
o Maybe we have totally borked our local branch master: maybe its history has
been destroyed by a rebase and we just want to go back to something sane

o Thisdoesahard resetformaster usingorigin/master'scommitasthe
target state

git gud 14 /26

Tracking branches

e They may have the similar names, butmaster is a local branch thatis tracking
origin/master

e Whatthismeansisthatmaster looksatorigin/master asthe place to push/pull
commits to/from

o origin/master is known asits upstream branch

e Ifyou checkout a branch that exists on oneremote but not locally, Git will
automatically create a local branch of the same name and have it track that remote
branch.

o This only works if there is only a single remote with that branch name.

e We can arbitrarily create tracking branches of arbitrary names that track remote
branches
o git checkout -b top-of-tree origin/dev will create alocal branch
top-of-tree thattracksorigin/dev (and switch the current branch to
top-of-tree)

o git branch -u origin/issuel149 will cause the currentlocal branch to
track origin/issuel49 (ie. setting the upstream)

git gud 15/26

Tracking branches
e Thisiswhatgit push's -u/--set-upstreamflagisfor
o |twill setthe upstream of the given branch

o git push -u origin main will push alocal branch main to
origin/main,settingorigin/main asthe upstream

o git push -u origin main:devV wil push alocal branch main to
origin/dev,settingorigin/dev as the upstream

e Your local repo does keep a cached copy of origin/master, which gets updated
wheneveryou git fetch:itdoesn'tautomatically keep in touch with the server

e git pullperformsgit fetchthen mergesorigin/master intomaster
o Many a Git beginner has been victim to this automatic merging (me included)...

o There's also rebase mode where it rebasesmaster onto origin/master
instead

git gud 16 /26

Worktlows
Maybe you have run into this scenario...

e You are working with a group of people on a project and decide to use Git to
collaborate, and host your repo on the campus GitLab

e Perhapsnone of you are particularly versed in Git (with one member even opting to
use the GitLab webpage to upload/edit files!)

e Soeach ofyou doyourwork, pushing and pulling to master

git gud 17/26

Worktlows
Maybe you have run into this scenario...

e Almostimmediately you're going to run into a situation where two (or more) people
race to push their commits

o Person A pushes their commit first

o Person B tries to push, but the server refuses and tells them that their local
branch is behind

o Person B pulls, causing a superfluous merge commit between
origin/master and Person B'smaster branch

o Person B then pushes their original commit and a merge commit that has the
amazing default message that saysmaster got merged with
origin/master..

e Asthe project continues, each person is pushing tiny incremental commits.

git gud 18/26

Workflows

e Workflows give a structure to how we should perform our versioning work
e Git does not explicitly lay out workflows for us to follow

e This lecture we'll be focusing on what Atlassian would call a "Centralized Workflow"

o |'ve chosen this as it's fairly standard and is manageable and suitable for school
life, while giving you the fundamentals

o Read more about Workflows in the Atlassian tutorials

git gud 19/26

https://www.atlassian.com/git/tutorials/comparing-workflows

(Basic) Centralized Workflow

¢ |nthis we have a main branch that code is being contributed to (e.g. master, dev)
e For brevity, let's refer to the remote asorigin and the main branch as dev

e |ocallyeach usertracksorigin/dev on some local tracking branch (e.g. dev)

e Fach user works on this local tracking branch on their feature/fix

e The user makesthe commits they want

e Theuserusesgit rebase tosquash,reorder,and reword commits to package up
their feature/fix more nicely

o Probably a good idea to squash two commits where one has a sizeable change
and the other fixes a typo in the first

e The user then pushes their change

git gud 20/ 26

(Basic) Centralized Workflow

e |fitfailsdue tothelocal branch being behind, then the new commits need to be pulled

o git pull --rebase origin dev will perform arebase of your new
commit on top of the commits fetched from origin instead of a merge, avoiding
the merge commit

o Local branch dev will be fast forwarded to origin/dev, and your new
commits will be put on top of dev's new up to date spot

e Now the user should be able to push (if they can't due to some other speedy user,
they simply just have to do another pull)

e Asaresult,we now have a relatively clean history with meaningful commits free of
'superfluous”"merge commits

git gud 21/26

+Feature Branching

e Theidea behind thisis to have a main branch (e.g. dev) represent a stable, passing
codebase

e Feature branches are spawned off, have their features completed and committed, and
have their commits brought backinto the main branch

e Feature/topic branches could range from actual remote branches with multiple
contributors to a single person handling their issue locally

e The flowisvery similar, with feature/topic branches that have multiple contributors
having something like a miniature Centralized Workflow

o When the feature is complete (and tested), it can be locally merge-ed into dev
and pushed toorigin/dev

o This merge commit will capture this branching and merging behavior in the
history

o Alternatively if you want to have a linear history, you can use rebase instead of
merge

o One option at this pointis to have a person responsible for bringing feature
commits into the main branch

git gud 22 /26

+Feature Branching

e You can also do this locally

e Sayyou were assigned bugs 1,2, and 3

e You have alocal tracking branch dev that tracks origin/dev

e You then have three local feature/topic branches bugl, bug2, and bug3

e You can perform your fixes for each of them, switching between them when you get
stuck, etc.

e When you finish up bug 2, you can get the latest changes for dev and then
rebase/merge bug2 onto/into the newly updated dev and perform the appropriate
push

e You then repeat this process for bugs 1 and 3

git gud 23 /26

Merge contlicts

e Sometimes when you perform amerge or rebase the commits of one branch
conflict with the commits of another

e Thisiscalled a "merge conflict"

e Themerge or rebase process stops, allowing for you to edit the files that have
conflicts to get the file to have the correct contents

o This conflict resolution stage will insert some special strings into your code saying
that one branch/commit had these particular contents and another
branch/commit had these certain other contents.

o You might've seen <<K<K<<<L ======= and >>>>>>> gt some point

e When you finish up with the conflict resolution, stage the necessary files and finish the
merge/rebase procedure

o git status will tell you the appropriate command to run to continue

git gud 24 /26

Workflows

e Thiswasonly a taste of workflows
e There are different kinds

e You may develop your own style of local workflow as you get more used to Git

o The Centralized Workflow and its kind are more of remote collaboration
workflows

o You don't have to go strictly by the local workflows described here

o Gitis very flexible by nature, so workflows themselves aren't really built into the
tool

Now go forth!
You are officially dangerous with Git ;)

(There's more stuff, like git cherry-pick,git blame,andgit bisect!)

git gud 25 /26

Questions?

git gud 26 /26

