Build Systems

gcc -1 inc -o app S$(find . -name x.c) -lsomelib

Build Systems and Make 1/33



QOverview

Building programs

Build systems

® make

Other build systems

Build Systems and Make 2/33



What are programs?

Sequence of instructions to perform

Typical computers speak binary ("machine code")
o Not all computers speak the same kind of binary

o "Add 5 to variable"
o x86-64: [Ox48,0x83,0xcO,0x05]

o aarch64 (ARMv8): Oxe2800005

Compiled high-level languages get turned into this binary form
o e.g. C,C+t Java”

Interpreted high-level languages are interpreted by another program
o The other program is probably in binary form

o (Or not, but atsome point there will be binary!)

o e.g. Shell scripts, Python

Build Systems and Make 3/33



Building programs

Traditional compiled programs have multiple steps to produce an executable

Source code: human readable code in a (high-level) language

o Assembly code: human readable "low-level" code that maps to CPU-
understandable commands

o x86-64:add rax, #5->[0x48,0x83,0xcO,0x05]

o aarch64 (ARMv8):add ro, r0, #5->0xe2800005

Object code: chunk of CPU-understandable machine code
o File formatsinclude additional metadata for tools to deal with

o Can have dangling references to functions or other data to be resolved when
linking

Executable: fully put together ("linked") chunks of machine code
o Ready for the operating system to load and run as a new process!

o On many systems has the same file format as object code

Build Systems and Make 4/33



Steps

e Compiling: turn high-level code into lower-level code
o High-level source to lower-level "high-level" language (e.g. Java to C)

o High-level source to assembly
o High-level source to object code
e Assembling: turn low-level (assembly) code into object code

e Linking: putting object code together into something usable
o Object code is usually just floating chunks of machine code

o Produces executables: has a starting point (e.g. main), has resolved dangling
references

o Produces libraries: code that other programs can call on

Build Systems and Make 5/33



Building programs

#
#
#
gcc -0 app filel.c file2.c file3.c

L

Build Systems and Make 6/33



Building programs

gcc -c -o filel.o filel.c
gcc -c -o file2.o file2.c
gcc -c -o file3.o file3.c
gcc -0 app filel.o file2.o file3.o

Build Systems and Make 7/33



Building code

gcc -0 app filel.c file2.c file3.c

gcc -c -o filel.o filel.c
gcc -c -o file2.o file2.c
gcc -c -o file3.o file3.c
gcc -0 app filel.o file2.o file3.o

e |tcan beannoyingto type these out every time you compile...

Build Systems and Make 8/33



Build systems
Whatis a build system?

e Tool/system to automate building software
o Compilation

o Packaging

o Testing

Build Systems and Make 9/33



A simple build system

build.sh

#!/bin/bash
gcc -o myapp src/filel.c src/file2.c src/file3.c src/main.c

build.sh

#!/bin/bash
gcc -o myapp $(find src -name "x.c")

Build Systems and Make 10/33



Some Issues

e Can be a bit of work to custom write a script, especially with larger projects
e Will blindly compile everything, every time

e Whatifwe made a small change to one file and didn't want to recompile all the code?

Build Systems and Make 11/33



Aside: incremental building

e |ttakes mylab computer about 30 minutes to do a clean build of LLVM and Clang while
maxing out my CPU's 8 (logical) cores

o Hoursif | restrict how many cores | give it...

o Took ~4 hoursto clean build Android + camera driver at one of my internships
e Imagine if | had to recompile everythingevery time | made a small code change
e Puttogetherindependent bits instead of compiling/building everything every time

e Classic model: C and C++ programs
o Compile individual C and C++files into object code (. o files)

o [inkthe object code files into the final output executable binary

o Change only one C or C++file? Just build the object code for that file, then link the
object code

e ..now asimple shell script doesn't seem to cut it

Build Systems and Make 12 /33



Make

(We'll be focusing on GNU Make asit's probably the most popular)

e (Classic tool that helps with build automation
e Provides more abstractions over a plain shell script
e Invoke it by running make

o Will look foraMakefile (ormakefile)torun

o (It'sactually possible to run without a Make 1 Le, but we won't really getinto
that)

Build Systems and Make 13/33


https://www.gnu.org/software/make/manual/

General Makefile rule structure

e The Makefile will specify rules that have prerequisites that have to be met/built
before running its recipe to build a target file

target: prerequisites
recipe # <- actual tab character, not spaces!

e Make is able tell if the built target file is newer than prerequisite files to avoid
unnecessarily performing the recipe

e The recipe consists of shell commands

e make <target> will build a specific target

Build Systems and Make 14 /33



Simple example

myapp: src/filel.c src/file2.c src/file3.c src/main.c
gcc -0 myapp src/filel.c src/file2.c src/file3.c src/main.c

A bit more sophisticated

myapp: src/filel.c src/file2.c src/file3.c src/main.c
gcc -o $@ $A

Invocation
S make myapp

Build Systems and Make 15/ 33



Philosophy

e Overallideais to have rulesthat depend on other rules that build smaller bits of the
system

o e.g. building the final executable depends on object code, which depends on
corresponding source code files

e This composability means that we can incrementally build our project

o Invaluable with enormous code bases: don't want to recompile everyfile of the
Linux kernel if you made a single line change to one file

e Can have additional rules that run/test/debug the application and clean the directory
of build output

Build Systems and Make 16 /33



Make concepts

Make gives us more abstractions to make our lives easier
It's a pretty deep tool; we're going to look at the basics

e Targetsandrules

"Phony" targets

Powerful variable assignments

Functions and other expansions

Automatic variables

Pattern matching

Build Systems and Make 17 /33



Targets and rules

target: prerequisites
recipe # <- actual tab character, not spaces!

e Prerequisite targets will be built before the target's recipe will be able to be run
e The recipe consists of shell commands

e make <target> wil build a specific target

e Thetargetis assumed to be some actual file that gets produced

e Make is able tell if the built target file is newer than prerequisite files to avoid
unnecessarily performing the recipe

o Done by determining if the targetis "newer" than the prerequisites by modification
timestamp

o touch can update this timestamp

e |fthere are no prerequisites and the targetfile is present, the recipe won't be run again

Build Systems and Make 18 /33



Exercise 1:

e Download and extract this archive

https://www.eecs.umich.edu/courses/eecs201/fa2022/files/examples

»

o Youcanusewgetorcurl -0
o Unarchive with tar xzf make.tar.gz

o cdinto the make directory
Write a Makefile that:

e Produces an output executable file called app
o gcc -0 <output file name> <source files>

e Have proper prerequisites
o gcc shouldn'trun again if you've already built app

o Try touching a source file and see what happens when you make

Build Systems and Make 19/33



"Phony" targets

e Whatifyou have a targetthat you want to be a word/concept?
o eg.clean,all, test

e |fafilecalledcleanorallispresent, the target won't ever be run

e The .PHONY target can specify phony targets that don't have actual files

.PHONY: all clean test

e Common phony targets
o all:buildeverything

o clean:delete generated files

o test:run tests

Build Systems and Make 20 /33



Variable assignments

e You can define variables in Makefiles as well (you can put spaces around the '="l)
e Oftentimes are things like compilation flags, compiler selection, directories, files etc.

e To use Makefile variables and "expand" them, you use $ (varname) or S{varname}
o Parentheses are more common

Build Systems and Make PANACE



Two flavors of variables

e Define how they get assigned and how they get expanded

e varA = $(varB) recursively expands the right hand side whenever the variable
gets expanded

o If varB gets reassigned after this, an expanded varA will expand the current
value of varB

o "varA'svalueiswhatever varB'sis"

e varA := $(varB) performsa simple expansion, taking on the value of the right
hand side at assignment time

o If varB gets reassigned after this, an expanded varA will expand to the value of
varBwhen varA got assigned

o "varA'svalueis "some-value

e varA ?= bar wilassignvariable varAifithasn't been assigned before

Build Systems and Make 22 /33



Exercise 2:

Modify the Makefile from the previous Exercise 1

Use a variable called CC for the C compiler (e.g. gcc)

Use a variable to have a list of the source code files

Use a variable for the output executable

Build Systems and Make 23 /33



Automatic variables

e Inarule, Make has some automatically assigned variables

S@: target's file name

$<: First prerequisite

$7?7: All prerequisites newer than the target

SA:All prerequisites

e _.and more

Build Systems and Make 24 /33



Exercise 3:

e We'll be adding the object code step
e Modify the Makefile from the previous exercises

e Use avariable for object code files
o Each file will have the same name but the . o extension

e Add rulesto compile each object code file with prerequisite
o Usethe -cflagto tell the compiler to produce object code

e Modify the output executable to "compile" (link) the object code
o Be sure to make sure the prerequisites reflect this

e Take advantage of automatic variables

Build Systems and Make 25 /33



Functions and other expansions

e There are some functions that can be expanded to help with text manipulation

e S(wildcard <pattern>) canexpand to afile list for files that match the pattern
o $(wildcard *.c)

e S(shell <commands>) canrun ashellcommand and expand tothe command's
output

o S(shell find . -name "x.c")

e S(<var>:<pattern>=<replacement>),known as a substitution reference, can
perform replacements

o $(SOURCES:%.c=%.0)

e There'salotmore cool ones as well, check outthe manual:)

Build Systems and Make 26 /33



Using what we've learned so far...

CC := gcc
BIN := myapp
SRCS := S(shell find src -name *.c)
S(BIN): S(SRCS)
$(CC) -o s@ s

Build Systems and Make 27 /33



Pattern matching
Pattern rules

(04 . (014
0.0 . J0.C

S(CC) -c -o $@ $<

e Uses % to match file names
e This example compiles . cfilesinto . ofiles

e Note thatthisis a general rule that applies to all . o files
o Thisis known as an implicit rule

Static pattern rules

OBJS := $(SRCS:src/%.c=obj/%.0) # substitution reference
S(OBJS): obj/%.0 : src/%.c # static pattern rule
$(CC) -c -o s@ s<

e Cannarrow down a pattern rule to a particular list of targets

Build Systems and Make 28 /33



Exercise 4:

e Automatically find the source code files in the directory
e Automatically determine the object code files based off of the source code files

e Replace the object code rules with a (static) pattern rule

Build Systems and Make 29 /33



Make

e Thisis a brief overview of some of the features of Make

e Thisis by no meansa comprehensive look at Make: refer to the manual for more
features and details

e Make isn't just for compiling code: you can use it to build anything that has a sense of
dependencies

Build Systems and Make 30/33



Other build systems

e Make is a fairly general build system, but other build systems have more abstractions
and may be tailored towards a particular language

e General:Ninja, CMake (actually more of a Makefile generator)
e Java: Ant, Maven, Gradle
e Ruby: Rake

e Continuous integration: Jenkins, Travis Cl

Build Systems and Make 31/33



Demo

Build Systems and Make 32 /33



Questions?

Build Systems and Make 33/33



