
Build Systems
gcc -I inc -o app $(find . -name *.c) -lsomelib

Build Systems and Make 1 / 33

Overview
Building programs

Build systems

make

Other build systems

Build Systems and Make 2 / 33

What are programs?
Sequence of instructions to perform

Typical computers speak binary ("machine code")
Not all computers speak the same kind of binary

"Add 5 to variable"

x86-64: [0x48,0x83,0xc0,0x05]

aarch64 (ARMv8): 0xe2800005

Compiled high-level languages get turned into this binary form
e.g. C, C++, Java*

Interpreted high-level languages are interpreted by another program
The other program is probably in binary form

(Or not, but at some point there will be binary!)

e.g. Shell scripts, Python

Build Systems and Make 3 / 33

Building programs
Traditional compiled programs have multiple steps to produce an executable

Source code: human readable code in a (high-level) language
Assembly code: human readable "low-level" code that maps to CPU-
understandable commands

x86-64: add rax, #5 -> [0x48,0x83,0xc0,0x05]

aarch64 (ARMv8): add r0, r0, #5 -> 0xe2800005

Object code: chunk of CPU-understandable machine code
File formats include additional metadata for tools to deal with

Can have dangling references to functions or other data to be resolved when
linking

Executable: fully put together ("linked") chunks of machine code
Ready for the operating system to load and run as a new process!

On many systems has the same file format as object code

Build Systems and Make 4 / 33

Steps
Compiling: turn high-level code into lower-level code

High-level source to lower-level "high-level" language (e.g. Java to C)

High-level source to assembly

High-level source to object code

Assembling: turn low-level (assembly) code into object code

Linking: putting object code together into something usable
Object code is usually just floating chunks of machine code

Produces executables: has a starting point (e.g. main), has resolved dangling
references

Produces libraries: code that other programs can call on

Build Systems and Make 5 / 33

Building programs
#
#
#
gcc -o app file1.c file2.c file3.c

Build Systems and Make 6 / 33

Building programs
gcc -c -o file1.o file1.c
gcc -c -o file2.o file2.c
gcc -c -o file3.o file3.c
gcc -o app file1.o file2.o file3.o

Build Systems and Make 7 / 33

Building code
gcc -o app file1.c file2.c file3.c

gcc -c -o file1.o file1.c
gcc -c -o file2.o file2.c
gcc -c -o file3.o file3.c
gcc -o app file1.o file2.o file3.o

It can be annoying to type these out every time you compile...

Build Systems and Make 8 / 33

Build systems
What is a build system?

Tool/system to automate building software
Compilation

Packaging

Testing

Build Systems and Make 9 / 33

A simple build system

build.sh

#!/bin/bash
gcc -o myapp src/file1.c src/file2.c src/file3.c src/main.c

build.sh

#!/bin/bash
gcc -o myapp $(find src -name "*.c")

Build Systems and Make 10 / 33

Some issues
Can be a bit of work to custom write a script, especially with larger projects

Will blindly compile everything, every time

What if we made a small change to one file and didn't want to recompile all the code?

Build Systems and Make 11 / 33

Aside: incremental building
It takes my lab computer about 30 minutes to do a clean build of LLVM and Clang while
maxing out my CPU's 8 (logical) cores

Hours if I restrict how many cores I give it...

Took ~4 hours to clean build Android + camera driver at one of my internships

Imagine if I had to recompile everything every time I made a small code change

Put together independent bits instead of compiling/building everything every time

Classic model: C and C++ programs
Compile individual C and C++ files into object code (.o files)

Link the object code files into the final output executable binary

Change only one C or C++ file? Just build the object code for that file, then link the
object code

...now a simple shell script doesn't seem to cut it

Build Systems and Make 12 / 33

Make
(We'll be focusing on GNU Make as it's probably the most popular)

Classic tool that helps with build automation

Provides more abstractions over a plain shell script

Invoke it by running make

Will look for a Makefile (or makefile) to run
(It's actually possible to run without a Makefile, but we won't really get into
that)

Build Systems and Make 13 / 33

https://www.gnu.org/software/make/manual/

General Makefile rule structure
The Makefile will specify rules that have prerequisites that have to be met/built
before running its recipe to build a target file

target: prerequisites
 recipe # <- actual tab character, not spaces!

Make is able tell if the built target file is newer than prerequisite files to avoid
unnecessarily performing the recipe

The recipe consists of shell commands

make <target> will build a specific target

Build Systems and Make 14 / 33

Simple example

myapp: src/file1.c src/file2.c src/file3.c src/main.c
 gcc -o myapp src/file1.c src/file2.c src/file3.c src/main.c

A bit more sophisticated

myapp: src/file1.c src/file2.c src/file3.c src/main.c
 gcc -o $@ $^

Invocation
$ make myapp

Build Systems and Make 15 / 33

Philosophy
Overall idea is to have rules that depend on other rules that build smaller bits of the
system

e.g. building the final executable depends on object code, which depends on
corresponding source code files

This composability means that we can incrementally build our project
Invaluable with enormous code bases: don't want to recompile every file of the
Linux kernel if you made a single line change to one file

Can have additional rules that run/test/debug the application and clean the directory
of build output

Build Systems and Make 16 / 33

Make concepts
Make gives us more abstractions to make our lives easier
It's a pretty deep tool; we're going to look at the basics

Targets and rules

"Phony" targets

Powerful variable assignments

Functions and other expansions

Automatic variables

Pattern matching

Build Systems and Make 17 / 33

Targets and rules
target: prerequisites
 recipe # <- actual tab character, not spaces!

Prerequisite targets will be built before the target's recipe will be able to be run

The recipe consists of shell commands

make <target> will build a specific target

The target is assumed to be some actual file that gets produced

Make is able tell if the built target file is newer than prerequisite files to avoid
unnecessarily performing the recipe

Done by determining if the target is "newer" than the prerequisites by modification
timestamp

touch can update this timestamp

If there are no prerequisites and the target file is present, the recipe won't be run again

Build Systems and Make 18 / 33

Exercise 1:
Download and extract this archive

https://www.eecs.umich.edu/courses/eecs201/fa2022/files/examples

You can use wget or curl -O

Unarchive with tar xzf make.tar.gz

cd into the make directory

Write a Makefile that:

Produces an output executable file called app
gcc -o <output file name> <source files>

Have proper prerequisites
gcc shouldn't run again if you've already built app

Try touching a source file and see what happens when you make

Build Systems and Make 19 / 33

"Phony" targets
What if you have a target that you want to be a word/concept?

e.g. clean, all, test

If a file called clean or all is present, the target won't ever be run

The .PHONY target can specify phony targets that don't have actual files

.PHONY: all clean test

Common phony targets
all: build everything

clean: delete generated files

test: run tests

Build Systems and Make 20 / 33

Variable assignments
You can define variables in Makefiles as well (you can put spaces around the '='!)

Often times are things like compilation flags, compiler selection, directories, files etc.

To use Makefile variables and "expand" them, you use $(varname) or ${varname}
Parentheses are more common

Build Systems and Make 21 / 33

Two flavors of variables
Define how they get assigned and how they get expanded

varA = $(varB) recursively expands the right hand side whenever the variable
gets expanded

If varB gets reassigned after this, an expanded varA will expand the current
value of varB

"varA's value is whatever varB's is"

varA := $(varB) performs a simple expansion, taking on the value of the right
hand side at assignment time

If varB gets reassigned after this, an expanded varA will expand to the value of
varB when varA got assigned

"varA's value is "some-value""

varA ?= bar will assign variable varA if it hasn't been assigned before

Build Systems and Make 22 / 33

Exercise 2:
Modify the Makefile from the previous Exercise 1

Use a variable called CC for the C compiler (e.g. gcc)

Use a variable to have a list of the source code files

Use a variable for the output executable

Build Systems and Make 23 / 33

Automatic variables
In a rule, Make has some automatically assigned variables

$@: target's file name

$<: First prerequisite

$?: All prerequisites newer than the target

$^: All prerequisites

...and more

Build Systems and Make 24 / 33

Exercise 3:
We'll be adding the object code step

Modify the Makefile from the previous exercises

Use a variable for object code files
Each file will have the same name but the .o extension

Add rules to compile each object code file with prerequisite
Use the -c flag to tell the compiler to produce object code

Modify the output executable to "compile" (link) the object code
Be sure to make sure the prerequisites reflect this

Take advantage of automatic variables

Build Systems and Make 25 / 33

Functions and other expansions
There are some functions that can be expanded to help with text manipulation

$(wildcard <pattern>) can expand to a file list for files that match the pattern
$(wildcard *.c)

$(shell <commands>) can run a shell command and expand to the command's
output

$(shell find . -name "*.c")

$(<var>:<pattern>=<replacement>), known as a substitution reference, can
perform replacements

$(SOURCES:%.c=%.o)

There's a lot more cool ones as well, check out the manual :)

Build Systems and Make 26 / 33

Using what we've learned so far...

CC := gcc
BIN := myapp
SRCS := $(shell find src -name *.c)
$(BIN): $(SRCS)
 $(CC) -o $@ $^

Build Systems and Make 27 / 33

Pattern matching
Pattern rules

%.o : %.c
 $(CC) -c -o $@ $<

Uses % to match file names

This example compiles .c files into .o files

Note that this is a general rule that applies to all .o files
This is known as an implicit rule

Static pattern rules

OBJS := $(SRCS:src/%.c=obj/%.o) # substitution reference
$(OBJS): obj/%.o : src/%.c # static pattern rule
 $(CC) -c -o $@ $<

Can narrow down a pattern rule to a particular list of targets

Build Systems and Make 28 / 33

Exercise 4:
Automatically find the source code files in the directory

Automatically determine the object code files based off of the source code files

Replace the object code rules with a (static) pattern rule

Build Systems and Make 29 / 33

Make
This is a brief overview of some of the features of Make

This is by no means a comprehensive look at Make: refer to the manual for more
features and details

Make isn't just for compiling code: you can use it to build anything that has a sense of
dependencies

Build Systems and Make 30 / 33

Other build systems
Make is a fairly general build system, but other build systems have more abstractions
and may be tailored towards a particular language

General: Ninja, CMake (actually more of a Makefile generator)

Java: Ant, Maven, Gradle

Ruby: Rake

Continuous integration: Jenkins, Travis CI

Build Systems and Make 31 / 33

Demo

Build Systems and Make 32 / 33

Questions?

Build Systems and Make 33 / 33

