Basic - Intro
Welcome, Setup, and Some Light Reading

EECS 201 Fall 2023

Submission Instructions

Answer the bolded text that begins with a “Q". This assignment is an “online assignment” on Gradescope, where you
fill out your answers directly.

Preface

Homework in this class can sometimes be a little underspecified. You are expected to Google, to try things, and to
fail from time to time. Making mistakes is highly encouraged, it's how you learn. We have many office hours if you
find yourself getting stuck, but we will always start with the questions, “What have you tried so far?’ and “Why do
you think that didn't work?”

A note on notation

Sometimes I'll use code formatting e.g. this be some code : this is to highlight some things that might be entered
in a script or code.

I'll also use a shell prompt variant e.g. '$ execute argl arg2, which is to inidicate a full command that you

should enter in at the shell and run. Don't include the '$: it's there to indicate the shell's prompt.

Lastly, | may notate some parameters like so: <required thing> and [optional thing] , and you'd replace them
with necessary text minus the brackets. For example, | may say https://gitlab.umich.edu/<your unigname>

and for me I'd put https://gitlab.umich.edu/brng .

As another example | could say |$ somecommand <input file> [output file] where you don't necessarily need to
provide an output file path (with the command perhaps using a default path), and you could put '$ somecommand somefile

or $ somecommand somefile someoutputfile .

https://gradescope.com

1 Getting access to a *nix command line

While I've set up a server for the course to serve as a reference environment, it's still advantageous to have some sort
of *nix environment local on your machine with which you can use.
The following steps will depend on what operating system you are on and what sort of solution you want to take.

macOS

Congratulations! macQOS is a Unix-derivative, so you're already set!

Windows 10 and 11

Fortunately in this day and age, Windows is no longer a sore spot in a landscaped filled with Unix-likes now that it
has the ability to run Linux inside of itself via Windows Subsystem for Linux (WSL).

You may hear WSL and WSL2 being tossed around: the first iteration, WSL (I'll refer to it as WSL1 from now on),
is more of “pretend” Linux that's oriented around being able to run Linux executables via a compatibility layer.
WSL2 is a much more complete solution that actually runs a fully functioning Linux system under Windows. In a lot
of cases it's much faster and unsurprisingly has few-to-no compatibility issues with Linux. Fortunately, WSL2 is now
installed by default whenever you install WSL! If you happen to be on WSL1, | suggest upgrading to WSL2 unless
there's some reason you actually need to be on WSL1. There's instructions on how to do so in the Microsoft docs.
There you can also find additional information such as switching between WSL1 and WSL2, reasons why you'd actually
prefer WSL1, and more.

| also encourage you to install Windows Terminal. It's a much better alternative to whatever the Ubuntu WSL
app packages in, and Windows Terminal integrates with WSL very well.

Be aware that you'll have two filesystems going: one that's owned by WSL and the rest of the Windows filesys-
tem (C: and friends). From the WSL side of things, you can access Windows files under | /mnt/c and the like. To

access WSL files in Windows Explorer, in WSL invoke 'explorer.exe for that directory e.g. '$ explorer.exe .

to open an Explorer window for the current directory, or you can use |\\wsl$ for the path.

Windows < 10

If you are using an older version of Windows, your options are sadly a bit more limited and less well integrated.

Cygwin is a project that provides a runtime environment that emulates a Unix-like environment and can handle
a lot of cases in this class. This is one of the things that | used before WSL was a (well functioning) thing.

You can also install a virtual machine, which will allow you to set up a virtual computer that you can install
Ubuntu on. See the end of this document for the old VM instructions that I've kept for posterity. | also used this in
the dark times before WSL was in a more usable state.

Other

Chances are this means you're running Linux, FreeBSD, or GNU Hurd, in which case you're already running a Unix-like.
Huzzah!

For the adventurous: dual booting

To do this you'll have to set aside space on your hard drive to install another operating system, allowing you to boot
from your original or another operating system. If you want to go down this route, I'll let you figure it out: it's a
journey where you can learn quite a bit!

Virtual machines

Arguably, installing a virtual machine will more or less involve the same steps as installing an operating system for dual
booting: dual booting just makes things more physical. Instead of installing the OS on a physical computer, you're
installing it on a virtual computer that is emulates a full computer system and run on top of your existing OS. You can
check out the end of this document for the old VM installation steps used in this class, which I've saved for posterity.

https://docs.microsoft.com/en-us/windows/wsl/install

If all else fails: SSH clients

If you're unable to get access to a Unix-environment locally, you can use an SSH client like PuTTY or MobaXTerm and
just use the course server. This comes at a cost of needing to be connected to the internet and reduce the opportunity
to integrate Unix tools into your local workflows.

2

Playing around

Now that you have a Unix-like environment to work in, | encourage you to play around a bit in the terminal. (Feel
free to skip this if you're confident in your abilities).

1.

Try navigating around directories with cd e.g. $ cd Documents, $ cd ... Note that if you run cd with

no argument, most shells will take you to your home directory.

Try listing the non-hidden contents (files/directories starting with a
1s eg. $ 1s, $ 1s Documents, $ 1s ..

Try listing all contents of a directory with 1s e.g. '$ 1s -a

. Try creating a directory with mkdir e.g. $ mkdir testdir

Try creating an empty file using touch e.g. $ touch somefile
Try deleting the file with [Tm e.g. '$ rm somefile

Try deleting an empty directory with rmdir e.g. $ rmdir testdir

2 are hidden by default) of a directory with

3 UMVPN

As a result of the cyberattack and ensuing network outage just prior to the Fall 2023 semester, some network policies
have changed. Most significant to this class is blocking SSH connections from outside the university network. This
has affected SSH access to the EECS GitLab server (used in this class to submit coding assignments) and access to
the course server (used in this class for you to run the autograder). When you are connected to a Wi-Fi network on
campus, everything is fine, but if you live off campus or decide to work on stuff off campus, you will be unable
use SSH with these resources. To get around this, you can install a VPN (virtual private network) to let you get
connected to the campus network and thus get connected with the EECS GitLab and course server. You can find
instructions to do this here.

For the Linux users out there who don't want to just install random software untracked by a package manager,
you can utilize NetworkManager and OpenConnect (this is my setup) if it is provided by your package manager,
and create a Cisco AnyConnect/OpenConnect VPN connection. UMVPN utilizes umvpn.umnet.umich.edu as the

gateway, and you can supply something like AnyConnect Linux_64 4.10.07061 as the user agent (source: Open-

Connect on the Arch Linux wiki. If you want another VPN setup on Linux you're on your own, though | expect that
if you're running Linux and this particular about how to get your VPN set up, you've already got the skills to figure
that out ;)

https://its.umich.edu/enterprise/wifi-networks/vpn/getting-started
https://wiki.archlinux.org/title/OpenConnect#Single_Sign-On_(SSO)_with_WebAuth_and_Anyconnect
https://wiki.archlinux.org/title/OpenConnect#Single_Sign-On_(SSO)_with_WebAuth_and_Anyconnect

4 Course server

I've set up a course server for this class to provide an Ubuntu 22.04 reference environment. This environment is the
exact environment in which your coding/scripting assignments are graded. In this environment I'll also be providing
scripts that will allow you to test out your submission to see it if it will work and allow you to ask the auto-grader
to grade your assignment (with unlimited reruns, though with a minimum time between runs). This server is only
available for students currently enrolled in the class or who have otherwise made arrangements with the course staff.
Instructions for accessing this server will come out soon. However, this server requires you to set up an SSH key to
access it.

4.1 SSH and setting up an SSH key

SSH, or Secure Shell, is a protocol allowing for secure connections to another system. This allows for you to log into
another computer in a secure fashion to use its shell or to use some other service.

In a lot of systems, you won't be allowed to simply type in your username and password. In lieu of this, many
systems take advantage of SSH keys. SSH keys are used to authenticate you when you access a particular service.
They're created as a pair, a private and a public key, for each system that you're connecting from (e.g. | have multiple
computers, so |I've generated keypairs for each of them). The private key is one that you keep on your local machine
and hide from others: it's what's verifying that you are you. You share the public key with services that you want
to access, for instance GitHub or my server, and they keep that public key on hand for your account. When you try
to access the service, they send a message encrypted with your public key to your computer, your computer uses the
private key to decrypt the message, and if the decrypted message matches up you're authenticated. If someone else
gets a hold of your private key, they can use it to authenticate themselves with whatever you've given your public key.
You can share one public key with multiple services: for instance, | shared my laptop’s public key with GitHub, the
EECS GitLab, my lab’s server, and more so | can access each of them from my laptop.

Setting up a keypair is actually really easy:

1. The utility to generate a keypair is 'ssh-keygen . There's additional options that you'll need

(a) -t <key type> : this specifies the type of key. The recommended type nowadays is ed25519, which

is smaller, faster, and more secure than the old RSA keys. If your system does not support creating
these keys, an RSA key will work fine as well.

e.g. -t ed25519

(b) Optional: |-C <comment> : this specifies a comment. You might've seen a lot of examples on the internet
putting an email-address-like thing. More accurately, it's more of a <username>@<hostname> thing,
where a hostname is like the name for your computer. The comment is just that: put whatever you wish
here to help identify this key. For me, it helps me keep track of which public key belonging to which of my
several computers.

2. e.g. |$ ssh-keygen -t ed25519 -C brandon@mydesktop (be sure to fill in whatever information that per-
tains to you in the comment!)

3. There will be multiple prompts asking you to put in information: just leave them be and use the defaults by
hitting enter/return unless you know what you're doing. Leave the directory you're going to save the key
in the default unless you know exactly what the reprecussions of changing it are! If you want to have
a passphrase for accessing your SSH key feel free to do so, just be aware it can cut down on some automation
opportunities.

4. If you peek in your home directory under .ssh you should see your newly created keypair!

4.2 Getting access to the server

Click on this link to get to the course server account form. Put in your unigname and submit it, and the course server
will email you further instructions to create/manage your user account on the course server.

Once you complete setting up your course server user account you can use |ssh to connect to and log into the course
server for a shell session on it: for me I'd run

$ ssh brng@peritia.eecs.umich.edu .

You'll want to run something along the lines of <unigname>@peritia.eecs.umich.edu, where <unigname> is

your unigname and peritia.eecs.umich.edu is the domain name of the server.

https://peritia.eecs.umich.edu/account/

Q: Log into the course server. Run $ uname -r and copy and paste the output.

5 Reading

Here's an interesting blog post about the computing landscape and how we've grown up in it. After reading, write a
response for the given question.

Biculturalism by Joel Spolsky

http://www.joelonsoftware.com/articles/Biculturalism.html

Q: Has your computing experience thus far aligned more with “Windows culture” or “Unix culture”? What
makes you feel that way?

http://www.joelonsoftware.com/articles/Biculturalism.html

Posterity (100% optional): Set up an Ubuntu virtual machine feat.
Virtualbox

(This is from a previous iteration of the class)

Not every *nix system is built the same way, so not everything will be 100% compatible. Ubuntu 20.04 will serve as
the golden standard of behavior for the assignments in this class. While most things should work the same way on
macOS and Ubuntu, sometimes when POSIX (the standard for *nix systems) does not specify a particular behavior
for particular tools, the behavior of the tools may differ.

One of the reasons is for this is that macOS uses the BSD versions of classic *nix tools while Linux usually uses the GNU versions. BSD
and GNU may have their own extended behavior in their implementations of classic *nix tools.

What a virtual machine does is provide you an emulation of a computer system. In the context for this class, the
virtual machine is an emulation of a traditional desktop/laptop computer. This allows us to install “guest” operating
systems on them, mess with them, and wreck them without affecting the original “host” operating system. By having
a virtual machine in this class, you can freely explore the *nix environment with no danger to your “host” system.

1. Download a copy of the Desktop version of Ubuntu 20.04. This will come in the form of an .iso disk image
file. Traditionally, you'd install an operating system with a CD or DVD; these files represent the data on those.

2. Download and install the latest version of VirtualBox. If you prefer another virtualization software (e.g. VMWare
Player) feel free to use it but don't expect official support on it from the instructional staff. If you are on Windows
and using WSL2 or some other Hyper-V application (e.g. Docker), the latest version of VirtualBox should work
alongside it now (just tested it personally). However, if you do run into issues, first, try going into your VM's
System settings > Acceleration > Paravirtualization Interface, and set it to Hyper-V. If it still doesn’t work, try
taking a look into disabling Hyper-V when using VirtualBox. Here's a workaround to turn off/on Hyper-V on
StackOverflow, using Command Prompt in Administrator mode. Make sure to restart your computer for this to
take effect.

3. Set up a new virtual machine.

(a) Note that the drop-down menus for operating systems don't install the operating system; they just set
up the virtual machine with some default settings and give it a cool icon. Select the “Ubuntu (64-bit)”
drop-down item.

(b) For the most part the defaults are fine. Note that the Ubuntu download page also provides some nice
recommended system specs.

(c) Ubuntu 20.04 requires at the minimum 2 GiB (2048 MiB) of RAM, so set the memory size to at least 2
GiB. If you can spare the RAM on your computer, I'd go with 4 GiB.

(d) I recommend setting at least 2 CPUs to make things a bit more zippy.
(e) Note that RAM and CPU count can be configured after setup.

(f) The default hard drive size of 10 GiB can work, but is a tad small, leaving only about 3 GiB left on a
Minimal Installation. Try maybe 20 GiB or even 50 GiB. By default, disk images are dynamically allocated,
which means the disk image will grow on demand when more space is needed until it hits the limit you
have set.

(g) After setting up go to your VM's Display settings and max out “Video Memory”. This will allow for fancier
graphics like larger display resolutions to work.

4. Install Ubuntu on your new virtual machine.

(a) Remember what | said about .iso files? Our VM has a virtual CD/DVD drive. Go to your VM's Storage
settings and click on the Empty CD under “Controller: IDE". On the right hand side, under “Attributes”
click on the CD. This will allow you to navigate and find that Ubuntu .iso file.

(b) Start up your VM!

(c) | recommend doing a “Minimal Installation” since you probably won't be consuming media on this virtual
machine. Feel free to do a normal one if you do want to see what the full “Desktop Linux" experience is
like.

(d) I recommend “Downloading updates while installing”.

5. Once Ubuntu is running, install the Guest Additions: check VirtualBox's Devices menu — Insert Guest Additions
CD Image, then either let the disk auto-run or run the disk manually when it's recognized by Ubuntu. You might
get a message about gcc, make and perl not being installed. This means you need to install those utilities. Bring
up a Terminal window (right click on the desktop, look for the application, explore! There's also a keyboard

https://ubuntu.com/download/desktop
https://www.virtualbox.org
https://stackoverflow.com/questions/30496116/how-to-disable-hyper-v-in-command-line

shortcut ;)) and run '$ sudo apt install gcc make perl . This will invoke the package manager, APT, to

retrieve those software packages. You can then go open the disk and click the “Run Software" button to run the
installer again.

Guest additions are a utility that allow for the guest to communicate with Virtualbox and the host system.
This leads to neat features like shared folders/directories, shared cliipboards, and more!

Once you install them, you should see something magical happen :) If nothing happens, try resizing the window
and try maximizing the window, or try full-screening. If something still doesn’t happen, turn off the machine and
starting it again. If still you don’t notice anything, turn off the machine and change the “Graphics Controller”
option to something else in your VM's Display settings and try again

. Play around with your new machine! Try installing stuff with APT, like Git: $ sudo apt install git . Try
writing and running a Hello World program. What about other tools you've used before? If you have any, can
you get an old course project running?

. It may be helpful to setup some shared folders so you can share data between the host (your computer) and
guest (your VM) operating systems. If you go to your VM's settings, there should be a “Shared Folders”
section. Here you can pick out what folder on your host system to share. For a simple setup, you can
select your folder, set “Auto-mount” on, and set “Make Permanent” (don't worry, you can turn this off or
remove the folder sharing). In your VM, if you left the mount point blank, you can find your shared folder in
/media/sf_<your folder name> . Try cd 'ing or 1s 'ing it. You'll find that you don’t have permissions!
With '$ 1s -1 we can check more info about that directory. The problem is that the user owner of the directory
is 'root and the group owner is vboxsf (“VirtualBox Shared Folders”). This is a simple enough fix: you'll
have to add your user to the vboxsf user group. I'll leave this as an exercise for you to figure out :) The

changes are not immediate. You'll have to restart your VM. Once you're back in, try playing around with your
shared folders :) If you're interested, you can find more info about VirtualBox shared folders here.

10

https://www.virtualbox.org/manual/ch04.html#sharedfolders

	Getting access to a *nix command line
	Playing around
	UMVPN
	Course server
	SSH and setting up an SSH key
	Getting access to the server

	Reading

