
Basic - Python

EECS 201 Fall 2023

Submission Instructions
This assignment will be submitted as a repository on the EECS GitLab server. Create a private, blank, README-
less (uncheck that box!) Project on it with the name/path/URL eecs201-basic-python and add brng as a

Reporter. The submission branch will be rel . If this branch is not already the default initial branch, you initialize the
local repo with an additional argument: git init --initial-branch=rel if your version of Git is recent enough.
Otherwise you can create a branch with this name after your first commit.

Preface
For this assignment you’re going to need Python 3. The package name for it on Ubuntu is python3 (the “normal”

python package might be for Python 2.7, depending on your version of Ubuntu). Otherwise, there’s various ways
you can install it: look it up for your given platform if you aren’t using WSL+Ubuntu. Go ahead and install it on your
system if you wish to do this assignment locally.

In this assignment you’ll be provided yet another zipped archive containing some starter files.

https://www.eecs.umich.edu/courses/eecs201/fa2023/files/assignments/basic-python.tar.gz

Note that this assignment is to be submitted on a remote branch called rel . Initialize a Git repository inside of the
extracted basic-python directory; as noted above git init -b <branch name> or

git init --initial-branch <branch name> can initialize the repo with a different branch name (e.g. rel as

per the submission instructions). If your version of Git is too old for these options, you could create the rel branch
afterwards after your first commit, or you can set the local branch’s tracking information manually. Create a file called
report.txt in this directory.

Add all of the present files and commit them.

Create a private project named eecs201-basic-python on the EECS GitLab (gitlab.eecs.umich.edu) and

add the instructor brng as a Reporter. Set this UMich GitLab project as your remote: you’ll be pushing to it in
order to submit.

Ramping up
In this section you’ll be getting familiar with forming Python expressions. This section has no submission component
and is purely for exploring the syntax. If you are already familiar with Python, you may skip this section.

1. First we’re going to work in Python’s interactive shell. Run $ python3 (or $ python if your system’s default
Python is Python 3).

2. In the interactive shell, much like MATLAB if you have used that, the value of the result of an entered expression
will be printed out (remember from lecture that expressions can be statements!).

3. >>> will be used to indicate Python interactive shell prompts.

4. Run >>> 6 * 7 . This will multiply 6 with 7.

5. Run >>> "Hello " + "world!" . This will produce a new str that concatenates the two.

1

https://gitlab.eecs.umich.edu
gitlab.eecs.umich.edu

6. Run >>> len("Hello") . This is an example of the built-in function len() being used on a str , which is
a sequence.

7. Messing around with types is cool, but let’s now save the values we create.

8. Run >>> x = 6 * 7 . We are now binding variable/identifier x to an int object of value 42 (i.e. x equals
42).

9. We can print out an object as well (provided it has implemented a __str__ function, which the built-in types
have). Run >>> print(x) .

10. We can get information about the object x is bound to. Run >>> type(x) : this gets type of the object
bound to x .

11. Run >>> id(x) : this gets the ID of the object bound to x .

12. Let’s use x in an expression. Run >>> y = x - 42 . Print out y .

13. Run >>> z = "Hello world!"

14. Run >>> print(z) . Here’s our obligatory “Hello world!”

15. Let’s now play with another built-in type: the list. Run >>> l = [x, y, z] . This will construct a list using
the objects bound by x, y, and z. Note how we can stuff arbitrary objects into a list!

16. Run >>> print(l) . As mentioned before, the built-in types can be nicely printed.

17. A list can be indexed by an integer position: run >>> print(l[0])

18. Let’s check if the objects referred to by x and l[0] are the same: run >>> x is l[0] . This per-
forms an ID check between the two objects referred to by x and l[0] and returns a boolean (alternatively,
>>> id(x) == id(l[0]) works as well).

19. Try verifying that y and z are the same as l[1] and l[2] .

20. Let’s manipulate this list (lists are mutable after all). Run >>> l.append(3.14) . Try printing out l again.

With append() we have added a float to list l .

21. Lastly, let’s play with dictionaries. Initialize an empty dictionary with >>> dictionary = {} .

22. Let’s set the key-value pairs “foo”=0 and “bar”=1:
>>> dictionary[’foo’]=0

>>> dictionary[’bar’]=1

23. Let’s retrieve the values associated with the keys:
>>> print(dictionary[’foo’]

>>> print(dictionary[’bar’]

24. To quit the interactive shell, run >>> quit() or, like in most other shells, send an EOF (end-of-file) by hitting

Ctrl-D (^D)

If you had 0 experience with Python going in, hopefully this small intro put you more at ease: Python has a fairly
simple syntax, free from a lot of cruft. While it can serve as a scripting language, it definitely is a lot more familiar
and intuitive compared to something like Bash.

2

1 Jotting things down
Much like Bash, we can put statements in at the interactive shell or we can put down our statements in a script to be
run at our convenience.

1. Create a file named loops.py

2. If you want to, put: #!/usr/bin/env python3 . This shebang will use the env executable to find python3

and use that as the interpreter if you decide to execute the file directly after chmod ing it. I’m going to explicitly
run these scripts under python3 , so you don’t actually have to do this step.

3. In the script, import the sys module. This module provides info about the current interpreter, such as the
command-line arguments.

4. sys.argv is a list of command-line arguments provided to the script. Like many programming languages, the
list contains the script file’s name as the 0th argument.

5. Add a check to see that at least one additional command-line argument was added. Note that you can call len()
on a list to get its length. Note that the 0th argument counts towards this length: $ python3 loops.py or

$./loops.py will both have an argument list of ['./loops.py'] and a length of 1.

If there isn’t, exit with a status code of 1 via exit() or sys.exit() .

6. The 1st argument will serve as an integer: assign a variable to be that integer value. The built-in int()
function is able to perform conversions of various types to integer.

7. In the script, add a while -loop to print() out the integers from 1 to the script’s command-line argument.

8. Add a for -loop with range() to print() out the integers from 1 to the script’s command-line argument.

9. Try running $ python3 loops.py 10 . As a result of both loops, you should see 1 to 10 be printed out with
each number on its own line, then 1 to 10 printed out again.

2 “Fun” is in “function”
We’ll now play around with functions. Much like in Bash, functions can be declared and then called, albeit the calling
syntax is a lot more familiar. For you folk who are used to Python, feel free to take full advantage of some of the
more Pythonic expressions (like comprehensions) for these ;)

1. Create a file named functions.py . This file will contain some fucntions that can be called from elsewhere.

2. Create and implement a function called lower_list that takes in a string (str) a returns a list of the string’s
characters that are lowercase, in the order that they were in from the string (and with duplicates if the same
letter comes up multiple times). For example, lower_list("HelLo") returns [’e’, ’l’, ’o’] . Note that

there is a str function called islower() .

3. Create and implement a function called list_to_string_dict that takes in a list of tuples representing
key-value pairs where the 0th element is a key and the 1st element is a value (beyond being an immutable
sequence, tuples, like in some other languages, are often used to act as an object with unnamed variables). The
function returns a dict made up of the key-value pairs in the input list that have keys that are strings. For
example, list_to_string_dict([(’hello’, 1), (’world’, 42), (1234, 5)]) would return a dict

that is representable by {’hello’:1, ’world’:42} . You can handle this by getting the type() of that

object and checking if it is a str .

4. You can use the provided test-functions.py file to test out your functions (you’ll have to write the code to
do this; the file only contains some boilerplate). Note that with the depending on the way the file is imported,
you may have to navigate the namespace e.g. functions.lower_list . The way test-functions.py

imports it will allow you to just call lower_list and list_to_string_dict . You can also try them out in
the interpreter shell by importing it :)

3

5. Since this file is meant to contain functions that will be called elsewhere (e.g. be imported), it’s kind of poor
form to simply add statements that call the functions at the bottom of the file: when files are imported, each
line is run, and we wouldn’t want to call these functions when someone else wants to import this file.

6. Another option can be to create an if-block in functions.py that says if __name__ == '__main__': and
put your testing statements in there. How this works is when you run a script as the main program (e.g. via
the command line), a special variable called __name__ is assigned to the string '__main__' , allowing you to
differentiate between when this script is being run from the command line or is being imported. There’s some
neat use cases of this: for instance you could write a script that’s mostly meant to be run as a program, but
offers an API (application-programming-interface) for more advanced users to take advantage of, or you could
write a library intended to be imported but have the script run some test cases or a reference program when run.

4

3 Classes
Python also is object-oriented: so much so that everything is an object. We can define our own classes as well!

1. Create a file named classes.py . This file will contain some classes that will be usable from elsewhere.

2. Define a Student class whose instances are composed of the member variables name (str) and grade (float).

The __init__() function should, after the object instance argument (e.g. self), have the arguments name
and grade in that order.

3. Add a method to Student called passing() that returns True if their grade is greater than or equal to

70.0 and False if their grade is less than 70.0 .

4. There are also methods that you can define for your class that’ll interface with some built-in functions like
str() . For str() to work on your class, you’ll have to implement the __str__() function (a so-called "dun-
der method"). Implement it so that when you call str() on a Student , it will return <Name> - <Grade>
e.g. Bob - 84 . Mind the space around the - ! There’s multiple ways to do this, such as appending strings
together or using the format() function. Try running print() on a Student now :)

On a sidenote, there’s also __repr__() for “formal” string representations of a class. This StackOverflow post has a nice summary.

5. You can use the provided test-classes.py file to test out your functions. You can also try them out in the

interpreter shell or via the if __name__ from before.

4 The filesystem
Things aren’t as interesting when we can’t interact with anything.

1. Create a file named files.py .

2. In this script open the file named data.txt for reading. Try using the with...as... mechanism. If you go
for the plain-old open()...close() paradigm, don’t forget to close the file at the end.

3. Read and print out each line in the file. The readline() and readlines() functions may be helpful. Also
note that you can iterate over a file with a for -loop.

4. Make sure that you don’t double-print newlines: the strip() function for str objects that gets rid of
whitespace at the beginning and end of a string may help out here.

5

https://stackoverflow.com/questions/1436703/difference-between-str-and-repr

5 Some extras
This section will be more for exploring things. No submission for these, but they’re some things to keep in mind.

Running other commands

There’s two relatively easy ways to run some other program or command from Python. From the os module
we have os.system() , which allows you to shell commands (i.e. the C system() function). For example:

os.system("ls -ltr somedir") . The downside is that there isn’t a way to capture the output with this.

The subprocess module, however, has a rich set of utilities for this purpose. The subprocess.run() function is
a high level function that allows you to run commands, capture their outputs, and check their statuses. For example:
subprocess.run([’ls’, ’-ltr’, ’somedir’], capture_output=True) will run the command specified by a

list of arguments as well as capturing the output for the returned object. The object it returns is a CompletedObject

which has a stdout attribute that is a bytes containing the output of the command. This bytes can then be
encoded (e.g. via UTF-8) to give you a str .
Putting it together:
subprocess.run([’ls’, ’-ltr’, ’somedir’], capture_output=True).stdout.encode(’utf-8’)

Alternatively, you can provide an encoding to subprocess.run . Try looking at the documentation for more details :)

With the power of being able to call other utilities on your system you might find Python a really neat way to
automate lots of stuff :)

Being Pythonic with comprehensions

A word that comes up often is “Pythonic”: this refers to the taking advantage of features and things built into Python
that help clean up and express ideas that would otherwise be messier in other languages due to some quirk of syntax.
For instance, you may be used to using an iterating index variable in C/C++ to index into an array, but the “Pythonic”
way would be to just directly iterate over it. Sure, you could do for i in range(len(somelist)): , but unless

you absolutely need an integer index for something, why not express it as for item in somelist: ?

One of the neat features of Python that we brought up in lecture are “comprehensions”. They allow you to eas-
ily build things like lists, sets, and dictionaries with iterable objects. For instance, if I wanted to get a list of the grades
squared from a list of Student s named students :
grades = [student.grade ** 2 for student in students]

or maybe you want the names of students who are passing:
passing_students = [student.name for student in students if student.passing()]

Dictionaries have a similar syntax. Perhaps you have a dictionary but want to keep only pairs whose keys are strings:
only_strings = {k:v for k,v in somedict.items() if type(k) is str}

Try tackling #2 using comprehensions!

6 Conclusion
1. Add and commit the files you created.

2. Fill out the report.txt file in the following steps:

3. On the first line provide an integer time in minutes of how long it took for you to complete this assignment. It
should just be an integer: no letters or words.

4. On the second line and beyond, write down what you learned while doing this assignment. If you already knew
how to do all of this, put down “N/A”.

5. Commit your report.txt file and push your commits to your remote.

6. Try running eecs201-test on this assignment on the course server! If you don’t remember, check out the
last part of Basic - Git.

6

	Jotting things down
	``Fun'' is in ``function''
	Classes
	The filesystem
	Some extras
	Conclusion

