
Basic - Regex

EECS 201 Fall 2023

Submission Instructions
This assignment will be submitted as a repository on the EECS GitLab server. Create a private, blank, README-less
(uncheck that box!) Project on it with the name/path/URL eecs201-basic-regex and add brng as a Reporter.

The submission branch will be main . If this branch is not already the default initial branch, you initialize the local
repo with an additional argument: git init --initial-branch=main if your version of Git is recent enough.
Otherwise you can create a branch with this name after your first commit. The repository should have the following
directory structure, starting from the repository’s root:

/
|-- report.txt
|-- grep/
| |-- cap-vow.sh
| |-- ing.sh
| |-- n-letter.sh
| |-- same-lower-vowel.sh
|
|-- sed/

|-- c89ify.sh

Preface
In this assignment you’ll be provided yet another zipped archive containing some starter empty files and scripts. Use
your preferred tool to retrieve this file and extract it (see Basic - Git 1 if you need a review).

https://www.eecs.umich.edu/courses/eecs201/fa2023/files/assignments/basic-regex.tar.gz

Initialize a Git repository in the extracted basic-regex directory as per the submission instructions.

1 Regex fun
As mentioned in lecture, grep is a utility that finds patterns in files. These patterns are by default POSIX basic

regular expressions; egrep or grep with the -E flag will interpret patterns as POSIX extended regular expressions.
For this question we’ll be looking at an American English dictionary.
This file is located under /usr/share/dict/american-english . If you don’t have it, on Ubuntu (and WSL

Ubuntu) you can get it via the wamerican package and on Arch you can get it via the words package. If you are
on macOS, you probably already have a dictionary file /usr/share/dict/words which you can use for the following
examples and as input for this part of the assginment. /usr/share/dict/words is a standard file that contains a
list of dictionary words; it’s probably symlinked to an appropriate dictionary file.
If you want to, you could also grab the copy on the course server.

$ scp youruniqname@peritia.eecs.umich.edu:/usr/share/dict/american-english .

scp is a utility that can copy files between one computer and another (when the remote computer is addressable
by the local computer). In particular, this one will copy the file on the server to the current directory. You’ll have to
change the invocation of the scripts to refer to this particular file path. Do note that these scripts can work with any
file that has a word on each line in it: you can take advantage of this to do your own simple testing, just replace the
dictionary path argument with the path to your dictionary file.

1. Feel free to use /usr/share/dict/american-english or /usr/share/dict/words .

2. cd into the grep directory.

1

https://gitlab.eecs.umich.edu

3. Run $ grep "world" /usr/share/dict/american-english . This finds and prints out words in the dictio-
nary that contain “world” anywhere in the word.
(If your dictionary file is somewhere else, use that file path instead e.g.
$ grep "world" american-english if it’s in your current directory.)

4. Run $ grep "^[A-Z]" /usr/share/dict/american-english . This finds and prints out words in the dic-
tionary that start with a capital letter.
(If your dictionary file is somewhere else, use that file path instead e.g.
$ grep "^[A-Z]" american-english if it’s in your current directory.)

Now onto the question proper:

1. Implement the functionality described in each of the Bash scripts. You may only use one grep command in
each script. Each script takes in the path to some dictionary file as an argument. This can be the American
English dictionary or your own test dictionary (a file with a word on each line). Feel free to use ERE via the -E
flag for grep .

2. Remember that the path to the dictionary is an argument for the script, and that you should pass that argument
to grep ! Do not hardcode what dictionary grep uses! This is determined at runtime by the person (or
autograder) running the script!

3. Stage and commit your changes.

2 Searching and replacing text with sed

sed is a utility that is able to perform pattern searches and replacements. By default sed will use POSIX BRE
unless a parameter is specified to use ERE.

1. cd into the sed directory.

2. Run $ sed -e 's/hello/world/' <<<'hello user hello` . What sed did is replace the first instance of
“hello” with “world” of each line of input. s is the command to “substitute” texts, with the following charactering
serving as a delimiter (sed -e 's@hello@world@' would also work, with it using ’@’ as a delimiter instead
of ’/’). The s command is of the format s/pattern/replacement/flags .

3. Run $ sed -e 's/hello/world/g' <<<'hello user hello` . Note that both “hello”s were replaced. The

g at the end of the sed s command is a flag that says to replace all matches, not only the first.

4. Run $ grep -E '(hello) (.*) \1' <<<'hello user hello' .

Try it again with a here string of 'hello user goodbye' . Note how we can re-use part of a pattern using
parentheses and a backreference.

5. Run $ sed -E -e 's/(hello) (.*) \1/world \2 world/g' <<<'hello user hello' Note the -E flag:

this puts sed into ERE mode. Note the use of backreferences in both the pattern and replacement fields.

Now onto the question proper. Take a look at saxpy.c . Note how it uses // for comments.

1. Run $ gcc -pedantic -Werror -std=c99 saxpy.c . This will compile the C program following the C99
standard. It should compile successfully. Feel free to run the a.out binary that is produced.

2. Now run $ gcc -pedantic -Werror -std=c89 saxpy.c . This will compile the C program following the

C89 (“ANSI C”) standard. It should fail to compile. That is because C++ actually introduced the use of //
for single single line comments, support for which the C99 standard added to the C language.

3. In the provided c89ify.sh file, implement the script as described by its usage printout. What this script is

supposed to do is take in a list of C files as arguments and then for each C file, replace the // comment
comments with /* comment */ style comments and put a “fixed” version of the file into a new file that tacks
on .c89 before the .c extension. For example, ./c89ify.sh saxpy.c daxpy.c will produce fixed versions

in saxpy.c89.c and daxpy.c89.c and leaving saxpy.c and daxpy.c as they originally were.

2

4. Some notes

(a) Remember you can test out sed at the command line to quickly iterate on your s command: by default
sed is non-destructive and simply outputs the transformed text (and if you need to save it to a file,
remember that output redirection is a thing!).

(b) sed is able to read from a file as an argument or as redirected input e.g. sed ’s//’ file or
sed ’s//’ < file .

(c) Try using a backreference!

(d) Keep in mind sed ’s s command will replace what got matched as a whole: try matching against the
whole comment, slashes and all, then replacing it with the correct kind of comment.

5. To test if the replacement worked, try compiling the files with the -std=c89 flag. (By the way, deleting the
comments aren’t a solution; we can check to see if the actual comment messages are still there :p)

6. Stage and commit the finished c89ify.sh script.

3 Conclusion
1. Add and commit any changes you intend to submit.

2. Create a file called report.txt .

3. On the first line provide an integer time in minutes of how long it took for you to complete this assignment.

4. On the second line and beyond, write down what you learned while doing this assignment. If you already knew
how to do all of this, put down “N/A”.

5. Add and commit this report.txt file.

3

	Regex fun
	Searching and replacing text with push0 g 0 Gpopsedlightgraypush0 g 0 Gpoptowidthheightdepth
	Conclusion

