
Class 10:
Testing

Class 10: Testing 1 / 21

Announcements

Class 10: Testing 2 / 21

Overview
What is and why testing?

Kinds of testing

Unit testing

Test-driven development

Class 10: Testing 3 / 21

Foreword
We won't go into the finer details about software testing

It's very deep and evolving topic

If you want to know more, try taking EECS 481: Software Engineering

Class 10: Testing 4 / 21

What is and why testing?
Wikipedia: "Software testing is an investigation conducted to provide stakeholders with
information about the quality of the software product or service under test"

Broad definition: includes checking for correctness, quality of service, etc.

We'll focus on the correctness checking

Checking to see if the right outputs are produced for the given inputs

Testing does not necessarily guarantee or prove correctness

Testing helps give confidence that the implementation follows specifications and helps
uncover bugs/defects

Failing tests tells us something's broken

Passing tests tells us our code should work as far as tests go

It's still up to us to design good tests

Class 10: Testing 5 / 21

Some kinds of testing
Hierarchy

Unit testing: testing a unit: individual component of code e.g. function, class, etc.

Integration testing: testing the interactions between components/subsystems
The line between integration and unit testing gets hazy when a class depends on
another class...

System testing: testing your final application

Other terms
Regression testing: testing to see if anything old breaks from new changes

White-box testing: testing that is aware of internals of the component being tested

Black-box testing: testing that is blind to the internals of the component being tested

Class 10: Testing 6 / 21

Unit testing
Testing of individual units: individual component of code such as a function or class

Write test cases that follow along with the specification

By keeping the scope small, we can more easily locate bugs when a test fails

Test cases provide inputs and check outputs for the particular unit

Test cases should be independent of each other: they should not keep state between
tests

Test cases tend to have a typical structure:
Setup: sets up the "unit under test" (UUT) and its inputs

Execution: runs the UUT

Validation: checks to see if the outputs/behavior of the UUT is correct

Cleanup: restore the test system to a clean state

Class 10: Testing 7 / 21

Unit testing
import unittest
class Foo:
 def __init__(self, name):
 self.name = name

 def bar(self, num):
 return self.name + str(num)

Class 10: Testing 8 / 21

Unit testing
import unittest
class Foo:
 def __init__(self, name):
 self.name = name

 def bar(self, num):
 return self.name + str(num)

class TestFoo(unittest.TestCase):
 def test_bar(self):
 uut = Foo('test')
 out = uut.bar(42)
 self.assertEqual('test 42', out)

if __name__ == '__main__':
 unittest.main()

Does Foo.bar() work?

Class 10: Testing 9 / 21

Unit testing frameworks
Most languages have some sort of framework to test in

Provides an environment to generate a special executable to run tests

Many are based off of the xUnit paradigm influenced by Kent Beck's SUnit
"S" for "Smalltalk"

Examples
Java: JUnit

Python: unittest

C/C++: Google Test

Class 10: Testing 10 / 21

Test-driven development
Development process where you turn specifications for new features into tests before
you code

1. Add tests for new feature

2. Run tests, new tests should fail

3. Write the minimum code to pass the new tests

4. Run tests, they should pass

5. Refactor the code while passing tests

6. Repeat for new features

Put simply: add tests, write code to pass tests, make your code nicer, repeat

Class 10: Testing 11 / 21

Test-driven development
This process allows you to have some confidence that your code works

By minimizing your implementation you allow fewer avenues for things to go
wrong

More tests != better testing

This process can tunnel-vision on small, simple tests; can fail to see bigger picture

More tests = more maintenance

Tests can take time to write: development may seem slower
Countered by time saved when debugging

Class 10: Testing 12 / 21

Live TDD + unit testing demo feat. Python
unittest

Feel free to follow along!

Class 10: Testing 13 / 21

Reverse polish notation calculator
Infix notation: (5 - 3) * (1 + 2)

Binary operators in between operands

Polish notation (PN): * - 5 3 + 1 2
Also known as "prefix notation"

Binary operators before ("pre") operands

Abstract syntax trees ;)

Reverse polish notation (RPN): 5 3 - 1 2 + *
Also known as "postfix notation"

Binary operators after ("post") operands

Class 10: Testing 14 / 21

Reverse polish notation calculator
RPN lends itself to being implemented as a "stack machine"

Numbers get pushed onto the stack

Operators pop numbers off the stack and push the result

Example: 5 3 - 1 2 + *
push 5

push 3

-: pop 3, pop 5, perform 5-3=2, push 2

push 1

push 2

+: pop 2, pop 1, perform 1+2=3, push 3

*: pop 3, pop 2, perform 2*3=6, push 6

Class 10: Testing 15 / 21

Before we start
Starter files

https://www.eecs.umich.edu/courses/eecs201/fa2023/
 |-- files/examples/tdd/rpn.py
 |-- files/examples/tdd/test_rpn.py

Python 3 unittest documentation

Let's create a Makefile to run the tests

test:
 python3 -m unittest test_rpn

Class 10: Testing 16 / 21

https://docs.python.org/3/library/unittest.html

Spec
Let's start simple then add more features to illustrate TDD

Implement a read-evaluate-print-loop (REPL) to get input from user (Done)

Implement a Calculator class that encapsulates the stack
Numbers are all floating point

size() function to return size of the stack

result() function to return top of stack

input() function to pass in commands, returns top of stack

Class 10: Testing 17 / 21

Spec
Features

1. Handles numbers by pushing them on the stack

2. Handles addition

3. Handles unsupported operator

4. Handles not enough operands case

5. Handles subtraction

6. Handles multiplication

7. Handles division

Class 10: Testing 18 / 21

Refactoring
Maybe we can go back and clean things up a bit

Are we repeating ourselves? How can we make this nicer?

Class 10: Testing 19 / 21

Conclusion
Testing isn't a panacea: tests are only as intelligent as their designers

Unit tests can tell you something is wrong and what unit is failing

TDD is a solid methodology, just beware of shortcomings

Additional resources
EECS 481 slides about testing

One of the sources I drew upon: goes deeper than I did here

If that sort of stuff interests you, I encourage that you take the class

Kent Beck's original work on Smalltalk testing

Test Driven Development: By Example, Kent Beck
Free O'Reilly access provided by UMich (kudos to former IA Arav)

Class 10: Testing 20 / 21

https://web.eecs.umich.edu/~weimerw/481/lectures/se-04-qatesting.pdf
https://web.archive.org/web/20150315073817/http://www.xprogramming.com/testfram.htm
https://learning.oreilly.com/library/view/test-driven-development/0321146530/
https://apps.lib.umich.edu/database/link/10263

Questions?

Class 10: Testing 21 / 21

