
Introduction and a dash of *nix

Intro and getting started 1 / 15

Overview
1. Command line: what and why?

2. Unix intro

3. Unix command line

Intro and getting started 2 / 15

Getting started

Intro and getting started 3 / 15

What is *nix?
"*nix" refers to a group of operating systems either derived from or inspired by the
original AT&T Unix from Bell Labs

GNU/Linux is a "Unix-like"

macOS is an actual Unix derivative

*nix systems follow similar principles and provide similar (software) interfaces

Unix and its derivatives have entrenched themselves in academia and industry
The many tools developed to run on *nix systems are mature and are here to stay

General *nix literacy will help you since you have a pretty good likelihood to be
developing on a *nix system

This does not mean that *nix systems are inherently better than other operating
systems like Windows

Windows also has its own set of tools

Some *nix tools have been ported to Windows

Windows now has WSL(2) that serves as a Linux living inside Windows

Intro and getting started 4 / 15

What is a command line?
The "command line" is a type of interface where you provide a line of text that the
interpreting software can interpret into commands to perform

This interpreting software is known as a "shell"

There are also "graphical shells" i.e. the GUIs of Windows and macOS

These take an input like a mouse click on a shortcut and interprets it as a
command to launch the appropriate application

Intro and getting started 5 / 15

Why the command line?
Before we had graphical displays we printers and teletypes (TTYs)

printf() literally meant to print

We then moved onto video terminals
These were a combination display and keyboard, except they could only display
text and symbols

Nowadays we don't have actual video terminal devices, but we have "virtual
terminals" and "terminal emulators" to act like them (e.g. macOS Terminal, iTerm
2, Command Prompt)

Unix and the many tools for it were developed during these times

Text serves as a long lasting, reliable interface that is very easy to automate
Count the number of GUI changes to Windows, macOS, Android, and iOS over the
years

How would you automate a GUI?

It probably would be more work than writing some commands to be run

Intro and getting started 6 / 15

Command line basics
We will focus on the *nix command line shell in this class

(From now on, when I say "shell" by itself I mean command line shell)

Shells follows very similar basic syntax no matter what shell (bash, zsh, csh, etc.) you
use

Shells provide you an interface to interact with the system via its directories (folders)
and files

You can navigate through directories

You can modify files

You can launch applications

Most shells feature some sort of tab completion, where hitting the Tab key will make
the shell try to finish a partially typed word

Intro and getting started 7 / 15

Command structure
$ <command> <argument 1> <argument 2> <argument 3>
^ ^ ^ ^
| | | |-- programs are provided these to
| | | interpret (remember argc and argv[]?)
| | |
| | |-- words separated by whitespace
| |
| |-- certain things are actual programs, certain things
| are handled by the shell ("built-ins")
|
|-- this is called a "prompt" and can take many forms

Intro and getting started 8 / 15

*nix and the filesystem
As a spoiler for a future lecture, *nix exposes everything as a file

Navigating through directories (folders) and interacting with files is a fundamental task

We address and locate files via "paths"

Each running program (including the shell) has a "current working directory"

/ enters/separates directories

. refers to the current directory

.. refers to the "parent" directory (the directory that contains the current directory)

Intro and getting started 9 / 15

*nix and the filesystem
Types of paths:

Absolute: starts with /
We call / the "root directory"; the starting point of the filesystem

/home/brandon/Music/deemo-saika-rabpit.flac

Relative: starts from current or parent directory
./dir1/dir2

../../some-dir

Implicitly starts from the current directory if the path doesn't start with /, ., or ..:
dir1/dir2

Intro and getting started 10 / 15

Important commands
man: "manual pages": gives info on programs

pwd: "print working directory": tells you your current directory

ls: "list": lists the contents of a directory

cd: "change directory": changes your current directory

mv: "move": moves files to another directory (actual moving) or another filename
(renaming)

cp: "copy": copies files

touch: creates an empty file if one doesn't exist (otherwise updates its timestamp)

rm: "remove": deletes files

grep: searches files for data matches

cat: "concatenate": technically concatenates files, often used to print out a file's
contents

Wikipedia has a nice list commands that *nix systems typically come with

Intro and getting started 11 / 15

https://en.wikipedia.org/wiki/List_of_Unix_commands

Some common conventions
Lots of commands/programs act on files

A common pattern is command path-to-file e.g. text editors
nano some-file.txt

vim some-code.cpp

--help as an argument is a common way to get info on how to use command
cat --help

Intro and getting started 12 / 15

Playing with output
You can pipe output from command to another command with a pipe (|)

echo "hello world" | rev

You can save output from a command to a file with a "redirection" (>)
echo "hello world" > some-file

You can retrieve input from a file for a command with another "redirection" (<)
rev < some-other-file

More to come in a future lecture ...

Intro and getting started 13 / 15

Intro to automation
You can save a list of commands into a file

This is known as a "script"

You can now run this script whenever you want by invoking the filename as an
argument for your shell of choice

$ bash myscriptfile

This runs a new shell instance that runs each of those commands as if you had entered
in the commands yourself

If the file is marked as executable, you can also directly invoke it as a program
$./myscriptfile

Note you have to specify it as an explicit path (i.e. has a / present)

We'll discuss the specifics of this in a future lecture

Intro and getting started 14 / 15

Intro and getting started 15 / 15

