
Week 8

Lecture 8: Text Editors 1 / 29

Announcements
Regex assignments due March 9

Git 2 assignments due March 16

Potpourri assignment due April 15

Lecture 8: Text Editors 2 / 29

Clarifications
Don't commit "junk"

System metadata files

Build outputs (object code, binaries built from source, .dSYM files on macOS)

Text editor swap files

Avoid blindly using git add .
Most appropriate time is adding a bunch of new files (like with a new repo)

Be mindful of what you're committing

A good .gitignore file helps with this

git add -u to add modified files is usually the most appropriate

Lecture 8: Text Editors 3 / 29

Lecture 8: (Text) Editors
vi != Vim

Lecture 8: Text Editors 4 / 29

Overview
What is a text editor

Examples of text editors

Looking at text editors
Featuring a large section on Vim because it's the one I know the best

Lecture 8: Text Editors 5 / 29

What is a text editor?
Tool that modifies plain-text data in files

The best ones conform to your needs and further enable your productivity

Q: Who has used features beyond moving around with arrow keys, using the mouse to
select/move the cursor, copy and paste in their preferred text editor/development
environment?

Lecture 8: Text Editors 6 / 29

The goal of today's lecture is to expose
you to text editors and how powerful
they can be

Ultimately editor choice is a highly personalized decision
No, we're not fanning the flames of the Editor Wars

One editor is not inherently better than another: it depends on whether or not it works
for you

I'll make an exception for Microso� Notepad: literally anything is better

A relatively vanilla Vim just so happens to be what works for how I work
Don't take this as a guideline for you to follow: I just happen to be highly
productive with it

You can use whatever text editor you want, with as many or few customizations
and plugins as you want

Lecture 8: Text Editors 7 / 29

Q: What are some text editors?

Lecture 8: Text Editors 8 / 29

Terminal text editors
Q: Why learn them in $CURRENT_YEAR?

Yes, nearly all of us will be working in a GUI environment

In some cases you may need to SSH into an environment that has no GUI; some base
level compentency in terminal text editors will come in handy

Why learn and configure a GUI editor AND a terminal editor when you can keep your
experience consistent with a terminal editor?

Lecture 8: Text Editors 9 / 29

ed (1969)
The OG
(Oh god why would you use this in $CURRENT_YEAR)

The original UNIX editor

Part of the POSIX spec!

Developed back when we had teleprinters, not even video terminals
The root of some design decisions and quirks of UNIX, such as short commands
and lack of output

Known as a "line editor" where you specified lines you wanted to edit

Provides very little feedback

"The most user-hostile editor ever created"

Lecture 8: Text Editors 10 / 29

ed summary
ed

Quit q
-------------------------- -------------------------------
Save w

w <file name>
-------------------------- -------------------------------
Append text a (text) .
-------------------------- -------------------------------
Print all ,p
Print line <n>p for line n
-------------------------- -------------------------------
Delete line <n>d for line n

Lecture 8: Text Editors 11 / 29

vi (1976)
We've got these fancy "screen" things now

Part of the POSIX spec!

Born out of another line editor ex (and ultimately ed); the "colon" commands are
actually ex commands

Modal text editor
"Command" mode for commands and navigation

"Insert" mode for writing text

"Command-line"/"ex" mode for ex commands

ESC brings you Command mode
: enters "Command-line"/"ex" mode and allows you to enter ex commands
(which allow you to save and quit)

Certain commands (e.g. i, a) bring you into Insert mode

Lecture 8: Text Editors 12 / 29

Vim (1991)
vi but better (but not in the POSIX spec ☹)

Plain ole vi kinda sucks for today's use

Many distros don't even provide OG vi, opting to alias it to a minimal version of Vim or
even just normal Vim

Vim's features is a superset of vi's

Lecture 8: Text Editors 13 / 29

Vim (1991)
Massively extends the functionality of vi

Syntax highlighting!

Line numbers!

Undo history larger than 1!

Plugins!

Multiple windows!

...and much more!

New modes:
"Visual" mode for selecting text

"Command" mode renamed to "Normal" mode

Lecture 8: Text Editors 14 / 29

vi/Vim abridged cheatsheet
<ESC>: Enter Command/Normal mode

The following are for when you're in Command/Normal mode

A neat thing is that you can put a number before a command to repeat it
10j to move down 10 lines

You can record macros with q <letter to save to> <commands> q
You can invoke them with @<letter you saved to>

The "register" I refer to is sort of like a copy-paste clipboard

^ (caret) is shorthand for the Control key serving as a modifier

Lecture 8: Text Editors 15 / 29

Navigation (1)
h, j, k, l: move cursor le�, down, up, right

vi: Arrow keys might be supported, and might work in Insert mode

Vim: Arrow keys work as expected (nowadays)

w: "word", go to beginning of next word

b: "back", go to beginning of current word (or beginning of previous word)

e: "end", go to end of current word (or end of next word)

0: go to beginning of line

$: go to end of line

Lecture 8: Text Editors 16 / 29

Navigation (2)
^u: go up half a page

^d: go up down a page

gg: go to top of document

G: go to bottom of document

<n>G: go to line n

/: search for a pattern
n: next match

N: previous match

Lecture 8: Text Editors 17 / 29

Editing (1)
i: "insert", goes into Insert mode before character under cursor

I: goes into Insert mode at the beginning of the line

a: "append", goes into Insert mode a�er character under cursor
A: goes into Insert mode at the end of th line

x: deletes character under cursor, putting character into "register"
X: deletes character before character under cursor, putting character into
"register"

r: "replace", replaces character under cursor with next entered character

R: enter a "replacement" mode

Lecture 8: Text Editors 18 / 29

Editing (2)
d<w,e>: "delete word", deletes word; w puts cursor on next word, e puts cursor at the
end of the word

cw: "change word", deletes word and enters Insert mode

dd: "delete", deletes line under cursor (putting line in "register")

yy: "yank", copies line to "register"

p: "paste", copies "register" contents a�er character under cursor

P: "paste", copies "register" contents before character under cursor

u: "undo" (in vi, there's only a history of 1 so undo-ing again reverts the undo)

^r: "redo" (Vim)

v: enter Visual mode (Vim)

Lecture 8: Text Editors 19 / 29

Visual mode (Vim)
While in Visual mode you can select text, o�ering some more options

x, d: deletes selection, putting it into the "register"

y: yanks selection, putting it into the "register"

Lecture 8: Text Editors 20 / 29

Command-Line/ex mode
:e: "edit", open file for editing

:w: "write", save

:w <file name>: "write", save to particular file

:q: quit

:q!: quit without saving

:wq: save and quit

:x: quit, write if modified

:s/<pattern>/<replace>/: search for pattern and replace (sed style!)
:snomagic/<pattern>/<replace>/: non-magical pattern substitution

...and there's many many more

Lecture 8: Text Editors 21 / 29

emacs (1976, 1984)
What's a mode?

Powerful and fancy modeless editor

Highly extensible

Has an image manipulation library as a dependency (wut)
Can display embedded images

Exit with C-x C-c where C- is Control

Heavy use of modifier keys such as Control and "Meta" (Alt)

Lecture 8: Text Editors 22 / 29

nano (2000)
Fairly straightforward, acts like a "typical" basic text editor

On screen legend shows you common editing shortcuts

^G for more shortcuts

Exit with ^X

Lecture 8: Text Editors 23 / 29

But wait, what about GUIs?
Once we get here, there's a lot more functionality

Lecture 8: Text Editors 24 / 29

gedit (1999) and Kate (2001)
gedit: GNOME's basic editor
Kate: KDE's basic editor

"Basic" text editors associated with desktop environments
Still pretty well featured text editors

Analogous to Microso� Notepad but way better

Lecture 8: Text Editors 25 / 29

Sublime Text (2008)
This was the hotness when I was an undergrad

$$$

Huge plugin ecosystem

Lecture 8: Text Editors 26 / 29

Visual Studio Code (2015)
The new hotness
You're probably already using this

Almost steps into IDE territory while remaining lightweight

Lecture 8: Text Editors 27 / 29

Parting thoughts
Try out another editor and see if you like it

You may find something that you really like

Try to learn more about the features of your preferred editor

Lecture 8: Text Editors 28 / 29

Questions?

Lecture 8: Text Editors 29 / 29

