
GITing Started
git init; git status; git log; git add; git commit;

GITing started 1 / 30



Overview
1. What is version control?

2. Basic Git flow

3. Git branches

4. A taste of Git remotes

GITing started 2 / 30



Version control
Keep track of changes of files over time, allowing you to roll back to previous versions

Software to handle this are known as "version control systems" (VCS)

GITing started 3 / 30



Two paradigms
Centralized (CVCS)

Central server keeps track of all the changes and history

Each developer has local copies of files they need, but need to check in with the server
to do any versioning

Server down? Good luck.

Examples: CVS, SVN, Perforce

Decentralized (DVCS)
Each developer has a local copy of the entire codebase and its history

Developers can perform versioning locally without needing to contact a server

Server optional

Examples: Git, Mercurial

GITing started 4 / 30



Why version control?
Checkpointing your work

Have you ever made main.c.backup1, main.c.backup2,...?

Keeping multiple parallel versions of your work
Have you implemented something one way, made another implementation but
wanted to keep both around?

Have you ever emailed code or sent code in some messaging app?

Have you tried to coordinate people working on the same file?

GITing started 5 / 30



Enter...

GITing started 6 / 30



Enter...Git!
Distributed version control system (DVCS)

Designed by Linus Torvalds to manage the Linux kernel

No server needed, super easy to get started with
git init

git add

git commit

That's it, lecture's over!

GITing started 7 / 30



Git Overview
Repository: a directory of stuff that Git is versioning

.git is the directory that holds all this metadata

Commit: a checkpoint for the files in the repository
Given a hash for identification

(Unlike other VCS, has actual snapshots of files rather than diffs)

History is a linked list of commits pointing to their parent
Directed acyclic graph (DAG) may be a more accurate term

From Pro Git

GITing started 8 / 30

https://git-scm.com/book/en/v2


Basic commands
git init

git status

git log

git add

git reset

git checkout

git commit

GITing started 9 / 30



Some neat resources
man git

man git-<command> or git help <command>

Official Git documentation

Official Git tutorial
man gittutorial

Official Git minimal set of useful commands
man giteveryday

Pro Git book
Free and comprehensive

Besides being on the web, has .pdf, .epub, and .mobi formats!

A really great read

GITing started 10 / 30

https://git-scm.com/docs
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/giteveryday
https://git-scm.com/book/en/v2


Initializing a Git repository
git init

That's pretty much it

Initializes a Git repository inside the current directory
Creates the .git directory that contains all this Git data

There will be an initial "branch" that you will be on with a default name
Currently it is master, subject to change

There is no special meaning ascribed to this by Git, it's just a default

(In newer versions of Git) You can specify the -b and --initial-branch
arguments to change what the initial branch is

FYI, initializing Git repos inside of Git repos might not work the way you expect them to
These sub-repos, or "sub-modules" follow their own versioning

The "parent" repo just keeps track of what version the sub-module is at, doesn't
keep track of the files inside of it

GITing started 11 / 30



Files have multiple states
Unmodified: Nothing has happened to this file; no changes as of the current commit

Modified: This file differs from the version as of the current commit. Can be git added
to be Staged

Staged: This file differs, and is set to be in the next commit

Untracked: This file does not exist as of the current commit
It's pretty similar to Modified; it "differs" by existing when it shouldn't

You can hide these from git status by adding a .gitignore file

From Pro Git

GITing started 12 / 30

https://git-scm.com/book/en/v2


Ties into the "areas"
Working Directory: the directory as your filesystem sees it, a mess of files which may or
may not be changed, or may be even untracked

Staging Area/Index: list of files whose snapshots will be part of the next commit
You'll see it referred to as either: I'm going to say "Index" for brevity and to
distinguish it from the file state of Staged

Repository: What commits Git now has saved

Files and their snapshots will work their way through these three areas

From Pro Git

GITing started 13 / 30

https://git-scm.com/book/en/v2


Scenario 1: Untracked file
1. An untracked file chills in the Working Directory

2. You decide to start versioning it, so you git add it, making it Staged and putting it into
the Index

3. You commit the file in the Index, landing it in Repository

Scenario 2: Modified file
1. The file is now Unchanged as of the current commit, and is still chilling in the Working

Directory

2. You make some changes, so now the file is Modified
Oops, maybe I don't like what I did and want to change it back to the old
commited version, let's git checkout it

3. You git add it, making it Staged and putting it into the Index
Oops, maybe I added an extra file I didn't want to stage, let's git reset it back
to Modified

4. You commit the file's snapshot, getting that snapshot into the Repository

GITing started 14 / 30



Putting it together, locally (1)
Initialization

1. Initialize the repository
git init

2. Add the initial files you want to track to the Index
git add

3. Commit those initial files to the Repository
git commit

GITing started 15 / 30



Putting it together, locally (2)
Loop

1. Modify some files
Don't like a modification and want to make the file Unmodified again?
git checkout <filename>

git restore is a new command that performs this behavior

2. Add Modified/Untracked files to the Index
git add

Accidentally added a file? git reset <filename> to take it out of the Index

3. Commit those files to the Repository
git commit

Didn't like your commit message or forgot to include some files? Add them to the
Index, and git commit --amend

4. Goto 1, rinse and repeat

GITing started 16 / 30



Commits
git commit -m <message> is a quick and dirty way to make a commit

You see it a lot in tutorials because it's a one-liner, not because it's "good"

Not super ideal when it's a project that you're going to collaborate with others on

git commit will open the configured editor and allow you to more easily fully fill out
a commit message

GITing started 17 / 30



Commit message style
Title

Limit to 50 characters

Capitalize the first letter

Imperative ("Fix xyz", "Remove abc")

Summarize the commit

Body
Limit to 72 characters per line

Explain what changed and why, not how
Your code (ideally) is the "how"

Depending on your team/workplace: references to bug/issue number e.g. "Issue
#22772", "Bug #1337"

GITing started 18 / 30



Commit message style
No, I'm not making this up, it's straight from the horse's mouth

Ultimately these are just guidelines, not rules
Do what your team does, but try to keep good habits when you start something
yourself

GITing started 19 / 30

https://www.git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#_commit_guidelines


Branching
Making a linked list of commits is cool, but what can we do with it? Can we go back? Can
we split off?

HEAD is a pointer pointing to the current commit that's being looked at

A branch in Git is a pointer to a commit
Super lightweight compared to other VCS, go wild

HEAD will follow along with the branch you are on

From Pro Git

GITing started 20 / 30

https://git-scm.com/book/en/v2


Branching
Lots of applications:

Make a "backup" of branch: easy to refer to a particular commit

Manage a feature ("topic"/"feature" branches)

Have a separate line of development (e.g. taking two different approaches)

Represent release schedules (e.g. a development branch and a release branch)

GITing started 21 / 30



Branching
The default branch is master

Typically used for production/release

git branch lists your local branches

git branch <branch-name> creates a new branch
<branch-name> will point to wherever HEAD is pointing to

git checkout <branch-name> checks out the branch, making your HEAD point
to where <branch-name> is pointing to

git switch also switches to a branch; added in Git 2.23.0

git checkout -b <branch-name> creates and checks out the branch

git merge <branch-name> will try to move the current branch to where
<branch-name> is; this is called fast-forwarding

If the branches diverged (<branch-name> and the current branch both got
new commits before merging), a special "merge commit" will be produced linking
the two branches (we'll look at this later)

GITing started 22 / 30



Remotes
So far everything we've been looking at has been local

What if you want to share it?

A remote is a repository is hosted by some server on the Internet or internal network

git clone <URL> [directory] will copy the repository from the server to
your local machine

origin is the default name of the remote whose URL you cloned from

git remote -v will list your remotes

Confusingly, "remote" can refer to a particular server as well as the local repository's
name for it

In one local repo, remote origin can point to
git@gitlab.umich.edu:eecs201/content/website.git

In another repo, origin can point to
git@gitlab.umich.edu:brng/eecs201-basic-git.git

These remote names are on a per-local repo basis

GITing started 23 / 30



Remotes
The remote has its own branches

Your local Repository's branches might be "tracking" this a corresponding remote
branch (more on this in the future)

e.g. local dev tracks origin/dev

git fetch will get the latest commits from the remote into the Repository
These commits are more for the Repository to go "Oh hey, the remote branch has
new commits on it!"

Effectively, the Repository has a local cached version of origin/dev

git pull will do a git fetch and additionally git merge, potentially modifying
your Working Directory

Under the hood, it's mergeing the locally cached version of remote branch into
the local branch

e.g. it's mergeing origin/dev into dev

As you work on your locally, you can make commits to your local Repository

git push will send commits to the remote

GITing started 24 / 30



Remote hosting services
(a.k.a. Git != GitHub)

GitHub

BitBucket

GitLab
GitLab is also a Git host server software that you can use to host your own repos

gitlab.umich.edu is the GitLab server that the University of Michigan runs

gitlab.eecs.umich.edu is the GitLab server that the EECS runs

GITing started 25 / 30

https://github.com/
https://bitbucket.org/
https://gitlab.com/
https://gitlab.umich.edu/
https://gitlab.eecs.umich.edu/


Communicating with remotes
HTTP will use a username and password to authenticate

URL format: https://somedomain.tld/path/to/repo.git

Gets annoying having to type login info all the time

SSH requires key setup
URL format: git@somedomain.tld:path/to/repo.git

No need to enter username and password though!

These are the two most common for day to day use

GITing started 26 / 30



Questions?

GITing started 27 / 30



Addenda

GITing started 28 / 30



Core commands
git init

git status

git log

git add

git reset

git commit

git branch

git checkout
(git switch)

(git restore)

git merge

GITing started 29 / 30



Remote and Collaboration commands
git clone

git fetch

git pull

git push

git remote

Additional Commands
git help

git stash

git show

git diff

git rebase

git blame

GITing started 30 / 30


