Unix and You

Where I try not to turn thisinto an OS lecture

Unix and You 1/41

QOverview

1. Whatis Unix?
2. How does Unix work?

3. Interacting with Unix via Shells (feat. Bash)

Unix and You 2/41

What is Unix?

Family of operating systems derived from the original AT&T Unix from the '70s

o Fun fact: Cwas developed for use with the original Unix
e Emphasis on small programs and scripts composed into bigger and bigger systems
e Preference for plain-text files for configuration and data
e Spawned many derivatives and clones: BSD, Solaris, AIX, macQOS, Linux

e Became so prevalentin industry and academia thatit's been immortalized as a set of
standards: POSIX (IEEE 1003)

1%

e From here on out, whenever | say or write "Unix" and
POSIX-compliant systems

o macOS is POSIX-certified, while Linux is not

nix" I'm referring to (mostly)

Unix and You 3/41

What does POSIX mean for us?

e \We get a neat set of standards!

e Aslongasyou follow the standards (and avoid any implementation-specific behavior),
your scripts/code should work on other POSIX systems

Fxamples of POSIX standard things

e CPOSIXAPI:headers likeunistd.h,fcntl.h,pthread.h,sys/types.h

Command line interface and utilities: c¢d, 1s, mkdir,grep
o Commands in the specification

o Sortby "Status"; "Mandatory" ones are pretty useful ones to look at

File paths/names

Directory structure

e Environmentvariables: USER, HOME, PATH

Unix and You 4/41

https://en.wikipedia.org/wiki/List_of_Unix_commands

Unix philosophy

e Write programs that do one thing and do it well.
e \Write programs to work together.

e Write programs to handle text streams, because that is a universal interface.

- Peter Salus, A Quarter-Century of Unix (1994)

Unix and You 5/41

How does Unix work?

We're starting from the ground up >:)

Unix and You 6/41

Components

Kernel

e Software that serves as the intermediary between hardware resources and user
applications

o Manages hardware resources and access to them

e Handles things like multi-tasking, security enforcement, file systems, device drivers,
launching programs, and more

e Presenta stable application programming interface (API) for user programs to use in
the form of system calls

Unix and You 7/41

Components
Libraries

e Reusable pre-written software you can call upon

e Provide functionality that would be a pain to write every time (e.g. graphics)

Applications

e Software that usersrun and interact with or assist in the background

e Includesthings like Bash, nano, VS Code, Gnome Desktop, Ls etc.

Hand in hand, these form an overall operating
system

Unix and You 8/41

e Effectively boils down to processes interacting with files
o Program: list of instructions to execute

o Process: a running instance of a program

» Files serve as a sort of universal interface
o Processes pass data to each other via a read/write interface

Unix and You 9/41

Unix processes

e |dentified by a process ID (PID)

e Associated with a user

e Hasa currentworking directory

e Hasan associated program image: the actual CPU instructions to run
e Hasmemory containing the image and program data like variables

e Environmentvariables
o Provide information about the process's environment

PATH: directories to find executables in

o

(@]

PWD: current working directory

o

USER: user

o

HOME: user's home directory

..and more

Unix and You 10 /41

o

Unix processes

e File descriptor table

(@]

Handles to various resources that have a file interface (read/write/seek)

o

File descriptors are indexes into this table

o

0: Standard input (stdin, cin)

o

1: Standard output (stdout, cout)

o

2:Standard error (stderr, cerr)

(@]

POSIX functions for handling these: open(),close(), read() etc.

o

Don't confuse them with C stdio functions: fopen(), fclose(), fread() etc.
(these are often an abstraction for the POSIX functions)

Unix and You 11/41

Signals
e Awayto communicate with processes
o man 7 signal
o kill (ignore the name) can signal processes
o AC(Ctrl-C) at a terminal sends SIGINT (interrupt)
o N/ sends SIGTSTP (terminal stop)

e Programs can implementhandlers for custom behavior
o SIGKILL and SIGSTOP can't be handled

Unix and You 12 /41

signals - turnoff.us

Danjef Steri {turnoff.us}

Unix and You 13 /41

http://turnoff.us/geek/signals/

the real reason not to use sigkill - turnoff.us

This 1s Bob. Like any process, Bob
Bob 1s a has his threads, with
Linux whom he shares conbtext,
process. memories and love.

And like all processes,
inevitably sometime he
will be killed.

When we gracefully kil
a process with a soft
SIGTERM, . .

> = o
...we give him i @@: ...and say goodbye
the chance to to each
<

talk with his < other.

kids about It. >

So, the kids That's a

finish their process

tasks. .. V1fe!
Q 143

On the other
hand, when
we brutally
kil oa
process with
a SIGKILL,
we prevent
them from
Finishing their
Job and say

...and this s
so sap!

goodbye. ..
o
So please, DON'T use
SIGKILL. Give the kids pad n
14 the chance to leave the e

Dad, where kerne! (n peace. 9(’
are we =4
g01ng? -

Be nice.

aniel Stori {turnoff.us}

Unix and You

http://turnoff.us/geek/dont-sigkill/

Process creation

e Aprocesscalls fork() to make a copy of itself
o The processis called the "parent" and the copy is called the "child"

o The child is a perfect copy of the parent, except for the fork () return value,
which is 0 for the child

o Thisincludes program variables, program arguments, environment variables®,
etc.

e The child can call exec () functions to load a new program
o man 3 exec

o This wipes the process's memory for the new program's data

o Environmentvariables and file descriptor table is left the same

o Effectively, "loads" a new program

o Cool,I'll haveitrunexecvp("1ls", args) tolistthe currentdirectory!
o Butwhatif we parameterized the executable to run?

o We have the beginnings of a shell...

Unix and You 15/41

Unix files

e In Unix, everythingis a file
o Data living on a disk? That's a file

o Directories? Those are special kinds of files
o Your instance of vim? That can be represented by a bunch of files!

e Unix files represent a stream of bytes that you can read from or write to
o Serves as a neatinterface: writing to a terminal is no different than writing to a file

o stdinand stdout are seen asfiles by your program
o What if we tie the output of one process to the input of another?

e Asaside note: file name extensions have no intrinsic bearing on the data
o Afile can contain JPEG data but be named anything it wants

o Most file formats have "magic numbers" in the first few bytes to help identify the
file format

o File name extensions are mostly meant to help you organize and recognize files

Unix and You 16 /41

Unix files

e Files have various properties
o You can check them with Is -1

o stat can give more detailed information
o r:read
o W:write

O X:execute

o

These three are often grouped together to form an octal digit (gasp! octal!)

o Userowner, group owner

o

chmod and chown can modify these

Unix and You 17 /41

File mode bits

user group other

rwx rwx rwXx
110 100 100
6 4 4

chmod 644 some-file

chmod +x execute-for-all
chmod u+x execute-for-only-me
chmod 777 chaos

chmod 600 secure-me

Unix and You 18 /41

Links

e Aspecial kind of fileis a "symbolic" or "soft" link
o This file simply contains a file path to another file, kind of like a shortcut

o This can be useful if you want to have one file for public use to hide away
underlying details

o e.g. python3 can be symbolically linked to a concrete file named python3.10
o The utility Lnis able to create symbolic links with the - s flag

e Thereare "hard" links as well
o Ahard link is really a file path to some underlying data

o Afile starts off with one hard link: the name/path it was given
o You can create additional hard links that refer to the same data
e Ahard link is directly linked to the underlying file data

e Asoftlink says "go check this other file path for the data"
o Asoft link can be given a bogus (broken) path

Unix and You 19/41

(Generic) Unix directory structure
Some normal ones

e /:root, the beginning of all things

/bin:binaries

/ 11b: libraries

/etc: configuration files

/var: "variable" files, logs and other files that change over time

e /home: user home directories

Fverything is a file

e /dev: device files

e /proc:fiesthatrepresent runtime OS information

Unix and You 20/41

Putting them together

e |t'sjust processesinteracting with other processes and files

® Processes create more processes (yes there is a primordial process)

What if we hooked up processes end to end, stdinto stdout?
o We can form a "pipeline" of data processing

What if we tied the output of a process to a data file instead of a terminal?

If only we had a program we could interact with that could do these things for us

This is the job of a shell

Unix and You 21/41

https://en.wikipedia.org/wiki/Init

Whatis a shell?

e Simply a program like any other that receives input and produces output
e Thisonejust happens to interpretits input as "create more processes"

e They're not magical: you can write one too!

Unix and You 22 /41

History of Unix shells

e The history of Unix shells is a bit messy

e Bunch of various shells around in the beginning that built off each other
o There was no real "standard" set of syntax yet: these served as the foundations

o Confusingly, they all used the name sh, so we call them by their creators
o e.g. Thompson shell, Mashey shell, Bourne shell
e The Bourne shell (sh) ended up becoming a defacto gold standard

e POSIX standard shell (sh) takes a lot from the Bourne shell

Unix and You 23 /41

There's lots of shells around

e Nowadays, when we say sh or shell syntax we generally refer to the POSIX standard or
something minimalist along the lines of the Bourne shell

e The sh shell on your system probably isn't the actual Bourne shell: it's probably
symbolically linked with another shell that is backwards compatible

o Checkitout:1s -1 /bin/sh

o Acommon one on Linuxis dash (Debian Almquist shell)

Unix and You 24 /41

There's lots of shells around

e There are many shells around that build off of the Bourne shell (and POSIX shell) and
add more features

o Not each shell supports each other shells' special non-standard features

o |fyou write a script meant for sh, don't throw in a non-standard feature: check
the shebang!

e Bash (bash) is the "Bourne again shell": adds a bunch of features

e /shell (zsh)isanother popular feature that adds some features that originated in
other shells (like Bash)

e Picking a shell to use is a personal choice: play around with them!

Unix and You 25/41

Basic shell command structure

<command> <argument 1> <argument 2> <argument 3>
N N

N

| | -- programs are provided these to

| interpret (remember argc and argv[]?)
|

|

|

|

| -- words separated by whitespace

|

| -- certain things are actual programs, certain things
are handled by the shell ("built-ins")

Unix and You 26 /41

General shell operation

1. Receive a command from a file or terminal input
o ls -1 $HOME > some_file

2. Splits it into tokens separated by white-space
o Takesinto account "guoting”rules

o 1s, -1, $HOME, > some_file

3. Expands/substitutes special tokens
o 1s, -1,/home/brandon, >, some_file

4. Perform file redirections (and making sure they don't end up as command args)
o 1s,-1,/home/brandon; (set standard output to some_file)

5. Execute command (remember our friend exec () ?)
© argc=3

o argv=["1s","-1","/home/brandon"]
o Standard outputredirected to some_f1ile

o First "normal" token is the command/utility to run

Unix and You 27 /41

Stringing together commands

e cmdl && cmd2
o Runcmd2 if cmdil succeeded

o Like a short-circuiting AND in other languages

e cmdl || cmd2
o Runcmd2 if cmd1 failed

o Like a short-circuiting OR in other languages

e cmdl ; cmd2
o Run cmd2 after cmd1

e cmdl | cmd2
o Connectstandard output of cmd1 to input of cmd2

o cmdl'sfd1l->cmd2'sfd0

o $ echo "hello" | rev

Unix and You 28 /41

File redirection

e <:setfile asstandard input (fd 0)
o $ cmdl < read.txt

e >:setfile asstandard output, overwrite (fd 1)
o $ cmdl > somefile.txt

o Createsfile if it doesn't exist already

e >>:setfile as standard output, append (fd 1)
o $ cmdl >> somelog.txt

o Createsfile if it doesn't exist already

Unix and You 29 /41

File redirection
General form (brackets mean optional)

e [n]<:setfileasaninputforfd n(fd 0 if unspecified)
o "input" meansthatthe process can read() from this fd

e [n]>:setfile asan outputforfd n(fd 1 if unspecified)
o "output" meansthatthe processcanwrite () to thisfd

o 2>:capture stderrtoafie

e [n]>>:setfile asan outputforfd n,append mode (fd 1 if unspecified)

Unix and You 30/41

Exercises

1. Write a command that saves the output of Ls to a file Listing

2.The command rev reverses a line of text and sort takes lines of input and outputs
them in a sorted manner

o Write a command that takes the output of s, reverses the name of each file, sorts
these reversed names and saves itto a file called gnitsil

3. Write a command thatrunsgit status and savesthe standard outputto
out.txt andstandarderrortoerr.txt

4. The command date outputs a timestamp

o Write a command that appends the current timestamp to a file called
timestamps. log

Unix and You 31/41

Shell and environment variables

e Shellvariables are stored inside the shell process

o They're handled by the shell program itself, stored as program data in the
process's memory

o Launched commands don'tinheritthem (what does exec () do?)

e Setthem with varname=varva lue
o Meaningful whitespace!

o varname = varvalue isinterpreted as"run varname with arguments = and
varvalue"

e You can set environmentvariables with export
o export varname=varvalue

o export existing_variable
o Setsavariable to be exported to new processes

e You can also set environmentvariables just for one command
o $ hello=world some-command-here

Unix and You 32 /41

Using variables

e You can use a variable with $varname or ${varname}
o e.g.echo $PATH,echo $HOME

e Whatthe shell does is "expand" this to its value
o Look back at the step-by-step of what a shell does

o Beforeechoisrun,echo $HOME becomesecho /home/brandon
o Simple text substitution
o Play with concatenation: somevar=$HOME/hello

e Thisisn't the only "expansion”
o Thisis a very important topic for next week

Unix and You 33/41

Finding programs to execute

e |fthecommandhasa/init, it's treated as a filepath and the file will be executed
o $ somedir/somescript

o $./somescript
o Only works if the file has its execute bit set

e |fthe command doesn'thave a /, PATH will be searched for a corresponding binary
o $ vim->searches PATH and findsitat /usr/bin/vim

o Thisis why you have to specify ./ to run something in your current directory

Shell built-ins

e Some commands are "built-in"/implemented by the shell
o These will take precedent over ones in the PATH

e Some other commands don't make sense outside of a shell
o Think aboutwhy cd is a built-in and not a separate utility

o (hint: fork() and exec())

Unix and You 34 /41

What even is an executable, anyway?

There are two classes of executable program

e Binaries

o These are files that contain instructions that the computer understands natively at
a hardware level (machine code)

o You get these when you tell GCC or Clang to compile your C or C++ program
o Various kinds of formats: ELF, Mach-O, PE, etc.

o The first few bytes of these files usually have some special byte sequence to
identify the file type

e Interpreted programs/scripts

o These are plain-text files that contain human readable text that map to some
programming language

o These files are run through another program called an "interpreter" to do tasks
specified in the program

o Python scripts are typically run through a Python interpreter

o Shell scripts are run through a shell

Unix and You 35/41

What even is an executable, anyway?

e Thefirstline of a script should contain a shebang
o This tells the OS what program to use as an interpreter

o Startswith #! with the path to the interpreting program right after
o #!/bin/sh:"Run this script with sh"
o #!/bin/bash: "Run this script with Bash"

o #!/usr/bin/env python3:"Run thisscript with whatever env finds as
python3"

o |fthereis no shebang specified, the OS usually assumes sh

Unix and You 36 /41

Shell scripts

e [t'sannoying to have to type things/go to the history to repeatedly run some
commands

e Scripts are just plain-text files with commands in them

e There's no special syntax for scripts: if you enter the commands in them line by line at
the terminal it would work

e Generally good practice to specify a shebang
o |t'susually a good idea to go with sh for universal compatibility

o bash can also be a good choice due to ubiquity; just be aware it's not a standard
o Don't mix up special Bash features in a script marked for sh!
e Arguments are presented as special variables

e $n:Argument n,where nisthe number (e.g. $1 is the 1st argument)
o Note: $0 will refer to the script's name, as per *nix program argument convention

e $@: List of all arguments

$#: Number of arguments

Unix and You 37/41

Running scripts
e There'sanuance between$./my-scriptand$ bash my-script

e $./my-script tellsthe OS to execute themy-script file
o The OS will try to identify the file and will look for a shebang for the interpreter

o The OS will run the interpreter, feedingitmy-script

e $ bash my-script tellsthe OS to execute bash withmy-script asan
argument

o |t'sup to Bash to figure out what to do withmy-script

o |In this case, Bash just reads the file and executes each line in it

Unix and You 38 /41

Exercise

e \Write a shell script that appends an ISO 8601 format timestamp, then appends the first
argumentto a file named log

o date -Isec can getthistimestamp foryou
o Make sure to give it a shebang
o Make sure to chmod it so it's executable

o Runitwith anargumente.g. $./myscript this-is-an-argument

Unix and You 39/41

This was only a taste

e So far we only discussed shells and how they function in the context of the *nix systems

e Next week we'll talk about control flow, more advanced redirection, fancy shell
features and more about the nitty gritty of shell syntax itself

Unix and You 40 /41

Any other questions?

Unix and You 41/41

