
Unix and You
Where I try not to turn this into an OS lecture

Unix and You 1 / 41

Overview
1. What is Unix?

2. How does Unix work?

3. Interacting with Unix via Shells (feat. Bash)

Unix and You 2 / 41

What is Unix?
Family of operating systems derived from the original AT&T Unix from the '70s

Fun fact: C was developed for use with the original Unix

Emphasis on small programs and scripts composed into bigger and bigger systems

Preference for plain-text files for configuration and data

Spawned many derivatives and clones: BSD, Solaris, AIX, macOS, Linux

Became so prevalent in industry and academia that it's been immortalized as a set of
standards: POSIX (IEEE 1003)

From here on out, whenever I say or write "Unix" and "*nix" I'm referring to (mostly)
POSIX-compliant systems

macOS is POSIX-certified, while Linux is not

Unix and You 3 / 41

What does POSIX mean for us?
We get a neat set of standards!

As long as you follow the standards (and avoid any implementation-specific behavior),
your scripts/code should work on other POSIX systems

Examples of POSIX standard things
C POSIX API: headers like unistd.h, fcntl.h, pthread.h, sys/types.h

Command line interface and utilities: cd, ls, mkdir, grep
Commands in the specification

Sort by "Status"; "Mandatory" ones are pretty useful ones to look at

File paths/names

Directory structure

Environment variables: USER, HOME, PATH

Unix and You 4 / 41

https://en.wikipedia.org/wiki/List_of_Unix_commands

Unix philosophy
Write programs that do one thing and do it well.

Write programs to work together.

Write programs to handle text streams, because that is a universal interface.

- Peter Salus, A Quarter-Century of Unix (1994)

Unix and You 5 / 41

How does Unix work?
We're starting from the ground up >:)

Unix and You 6 / 41

Components
Kernel

Software that serves as the intermediary between hardware resources and user
applications

Manages hardware resources and access to them

Handles things like multi-tasking, security enforcement, file systems, device drivers,
launching programs, and more

Present a stable application programming interface (API) for user programs to use in
the form of system calls

Unix and You 7 / 41

Components
Libraries

Reusable pre-written software you can call upon

Provide functionality that would be a pain to write every time (e.g. graphics)

Applications
Software that users run and interact with or assist in the background

Includes things like Bash, nano, VS Code, Gnome Desktop, ls etc.

Hand in hand, these form an overall operating
system

Unix and You 8 / 41

Unix design
Effectively boils down to processes interacting with files

Program: list of instructions to execute

Process: a running instance of a program

Files serve as a sort of universal interface
Processes pass data to each other via a read/write interface

Unix and You 9 / 41

Unix processes
Identified by a process ID (PID)

Associated with a user

Has a current working directory

Has an associated program image: the actual CPU instructions to run

Has memory containing the image and program data like variables

Environment variables
Provide information about the process's environment

PATH: directories to find executables in

PWD: current working directory

USER: user

HOME: user's home directory

...and more

Unix and You 10 / 41

Unix processes
File descriptor table

Handles to various resources that have a file interface (read/write/seek)

File descriptors are indexes into this table

0: Standard input (stdin, cin)

1: Standard output (stdout, cout)

2: Standard error (stderr, cerr)

POSIX functions for handling these: open(), close(), read() etc.

Don't confuse them with C stdio functions: fopen(), fclose(), fread() etc.
(these are often an abstraction for the POSIX functions)

Unix and You 11 / 41

Signals
A way to communicate with processes

man 7 signal

kill (ignore the name) can signal processes

^C (Ctrl-C) at a terminal sends SIGINT (interrupt)

^Z sends SIGTSTP (terminal stop)

Programs can implement handlers for custom behavior
SIGKILL and SIGSTOP can't be handled

Unix and You 12 / 41

signals - turnoff.us

Unix and You 13 / 41

http://turnoff.us/geek/signals/

the real reason not to use sigkill - turnoff.us

Unix and You 14 / 41

http://turnoff.us/geek/dont-sigkill/

Process creation
A process calls fork() to make a copy of itself

The process is called the "parent" and the copy is called the "child"

The child is a perfect copy of the parent, except for the fork() return value,
which is 0 for the child

This includes program variables, program arguments, environment variables*,
etc.

The child can call exec() functions to load a new program
man 3 exec

This wipes the process's memory for the new program's data

Environment variables and file descriptor table is left the same

Effectively, "loads" a new program

Cool, I'll have it run execvp("ls", args) to list the current directory!

But what if we parameterized the executable to run?

We have the beginnings of a shell...

Unix and You 15 / 41

Unix files
In Unix, everything is a file

Data living on a disk? That's a file

Directories? Those are special kinds of files

Your instance of vim? That can be represented by a bunch of files!

Unix files represent a stream of bytes that you can read from or write to
Serves as a neat interface: writing to a terminal is no different than writing to a file

stdin and stdout are seen as files by your program

What if we tie the output of one process to the input of another?

As a side note: file name extensions have no intrinsic bearing on the data
A file can contain JPEG data but be named anything it wants

Most file formats have "magic numbers" in the first few bytes to help identify the
file format

File name extensions are mostly meant to help you organize and recognize files

Unix and You 16 / 41

Unix files
Files have various properties

You can check them with ls -l

stat can give more detailed information

r: read

w: write

x: execute

These three are often grouped together to form an octal digit (gasp! octal!)

User owner, group owner

chmod and chown can modify these

Unix and You 17 / 41

File mode bits
user group other
rwx rwx rwx
110 100 100
 6 4 4

chmod 644 some-file
chmod +x execute-for-all
chmod u+x execute-for-only-me
chmod 777 chaos
chmod 600 secure-me

Unix and You 18 / 41

Links
A special kind of file is a "symbolic" or "soft" link

This file simply contains a file path to another file, kind of like a shortcut

This can be useful if you want to have one file for public use to hide away
underlying details

e.g. python3 can be symbolically linked to a concrete file named python3.10

The utility ln is able to create symbolic links with the -s flag

There are "hard" links as well
A hard link is really a file path to some underlying data

A file starts off with one hard link: the name/path it was given

You can create additional hard links that refer to the same data

A hard link is directly linked to the underlying file data

A soft link says "go check this other file path for the data"
A soft link can be given a bogus (broken) path

Unix and You 19 / 41

(Generic) Unix directory structure
Some normal ones

/: root, the beginning of all things

/bin: binaries

/lib: libraries

/etc: configuration files

/var: "variable" files, logs and other files that change over time

/home: user home directories

Everything is a file
/dev: device files

/proc: files that represent runtime OS information

Unix and You 20 / 41

Putting them together
It's just processes interacting with other processes and files

Processes create more processes (yes there is a primordial process)

What if we hooked up processes end to end, stdin to stdout?
We can form a "pipeline" of data processing

What if we tied the output of a process to a data file instead of a terminal?

If only we had a program we could interact with that could do these things for us

This is the job of a shell

Unix and You 21 / 41

https://en.wikipedia.org/wiki/Init

What is a shell?
Simply a program like any other that receives input and produces output

This one just happens to interpret its input as "create more processes"

They're not magical: you can write one too!

Unix and You 22 / 41

History of Unix shells
The history of Unix shells is a bit messy

Bunch of various shells around in the beginning that built off each other
There was no real "standard" set of syntax yet: these served as the foundations

Confusingly, they all used the name sh, so we call them by their creators

e.g. Thompson shell, Mashey shell, Bourne shell

The Bourne shell (sh) ended up becoming a defacto gold standard

POSIX standard shell (sh) takes a lot from the Bourne shell

Unix and You 23 / 41

There's lots of shells around
Nowadays, when we say sh or shell syntax we generally refer to the POSIX standard or
something minimalist along the lines of the Bourne shell

The sh shell on your system probably isn't the actual Bourne shell: it's probably
symbolically linked with another shell that is backwards compatible

Check it out: ls -l /bin/sh

A common one on Linux is dash (Debian Almquist shell)

Unix and You 24 / 41

There's lots of shells around
There are many shells around that build off of the Bourne shell (and POSIX shell) and
add more features

Not each shell supports each other shells' special non-standard features

If you write a script meant for sh, don't throw in a non-standard feature: check
the shebang!

Bash (bash) is the "Bourne again shell": adds a bunch of features

Z shell (zsh) is another popular feature that adds some features that originated in
other shells (like Bash)

Picking a shell to use is a personal choice: play around with them!

Unix and You 25 / 41

Basic shell command structure
<command> <argument 1> <argument 2> <argument 3>
 ^ ^ ^
 | | |-- programs are provided these to
 | | interpret (remember argc and argv[]?)
 | |
 | |-- words separated by whitespace
 |
 |-- certain things are actual programs, certain things
 are handled by the shell ("built-ins")

Unix and You 26 / 41

General shell operation
1. Receive a command from a file or terminal input

ls -l $HOME > some_file

2. Splits it into tokens separated by white-space
Takes into account "quoting" rules

ls, -l, $HOME, >, some_file

3. Expands/substitutes special tokens
ls, -l, /home/brandon, >, some_file

4. Perform file redirections (and making sure they don't end up as command args)
ls, -l, /home/brandon; (set standard output to some_file)

5. Execute command (remember our friend exec()?)
argc = 3

argv = ["ls", "-l", "/home/brandon"]

Standard output redirected to some_file

First "normal" token is the command/utility to run

Unix and You 27 / 41

Stringing together commands
cmd1 && cmd2

Run cmd2 if cmd1 succeeded

Like a short-circuiting AND in other languages

cmd1 || cmd2
Run cmd2 if cmd1 failed

Like a short-circuiting OR in other languages

cmd1 ; cmd2
Run cmd2 after cmd1

cmd1 | cmd2
Connect standard output of cmd1 to input of cmd2

cmd1's fd 1 -> cmd2's fd 0

$ echo "hello" | rev

Unix and You 28 / 41

File redirection
<: set file as standard input (fd 0)

$ cmd1 < read.txt

>: set file as standard output, overwrite (fd 1)
$ cmd1 > somefile.txt

Creates file if it doesn't exist already

>>: set file as standard output, append (fd 1)
$ cmd1 >> somelog.txt

Creates file if it doesn't exist already

Unix and You 29 / 41

File redirection
General form (brackets mean optional)

[n]<: set file as an input for fd n (fd 0 if unspecified)
"input" means that the process can read() from this fd

[n]>: set file as an output for fd n (fd 1 if unspecified)
"output" means that the process can write() to this fd

2>: capture stderr to a file

[n]>>: set file as an output for fd n, append mode (fd 1 if unspecified)

Unix and You 30 / 41

Exercises
1. Write a command that saves the output of ls to a file listing

2. The command rev reverses a line of text and sort takes lines of input and outputs
them in a sorted manner

Write a command that takes the output of ls, reverses the name of each file, sorts
these reversed names and saves it to a file called gnitsil

3. Write a command that runs git status and saves the standard output to
out.txt and standard error to err.txt

4. The command date outputs a timestamp
Write a command that appends the current timestamp to a file called
timestamps.log

Unix and You 31 / 41

Shell and environment variables
Shell variables are stored inside the shell process

They're handled by the shell program itself, stored as program data in the
process's memory

Launched commands don't inherit them (what does exec() do?)

Set them with varname=varvalue
Meaningful whitespace!

varname = varvalue is interpreted as "run varname with arguments = and
varvalue"

You can set environment variables with export
export varname=varvalue

export existing_variable

Sets a variable to be exported to new processes

You can also set environment variables just for one command
$ hello=world some-command-here

Unix and You 32 / 41

Using variables
You can use a variable with $varname or ${varname}

e.g. echo $PATH, echo $HOME

What the shell does is "expand" this to its value
Look back at the step-by-step of what a shell does

Before echo is run, echo $HOME becomes echo /home/brandon

Simple text substitution

Play with concatenation: somevar=$HOME/hello

This isn't the only "expansion"
This is a very important topic for next week

Unix and You 33 / 41

Finding programs to execute
If the command has a / in it, it's treated as a filepath and the file will be executed

$ somedir/somescript

$./somescript

Only works if the file has its execute bit set

If the command doesn't have a /, PATH will be searched for a corresponding binary
$ vim -> searches PATH and finds it at /usr/bin/vim

This is why you have to specify ./ to run something in your current directory

Shell built-ins
Some commands are "built-in"/implemented by the shell

These will take precedent over ones in the PATH

Some other commands don't make sense outside of a shell
Think about why cd is a built-in and not a separate utility

(hint: fork() and exec())

Unix and You 34 / 41

What even is an executable, anyway?
There are two classes of executable program

Binaries
These are files that contain instructions that the computer understands natively at
a hardware level (machine code)

You get these when you tell GCC or Clang to compile your C or C++ program

Various kinds of formats: ELF, Mach-O, PE, etc.

The first few bytes of these files usually have some special byte sequence to
identify the file type

Interpreted programs/scripts
These are plain-text files that contain human readable text that map to some
programming language

These files are run through another program called an "interpreter" to do tasks
specified in the program

Python scripts are typically run through a Python interpreter

Shell scripts are run through a shell

Unix and You 35 / 41

What even is an executable, anyway?
The first line of a script should contain a shebang

This tells the OS what program to use as an interpreter

Starts with #! with the path to the interpreting program right after

#!/bin/sh: "Run this script with sh"

#!/bin/bash: "Run this script with Bash"

#!/usr/bin/env python3: "Run this script with whatever env finds as
python3"

If there is no shebang specified, the OS usually assumes sh

Unix and You 36 / 41

Shell scripts
It's annoying to have to type things/go to the history to repeatedly run some
commands

Scripts are just plain-text files with commands in them

There's no special syntax for scripts: if you enter the commands in them line by line at
the terminal it would work

Generally good practice to specify a shebang
It's usually a good idea to go with sh for universal compatibility

bash can also be a good choice due to ubiquity; just be aware it's not a standard

Don't mix up special Bash features in a script marked for sh!

Arguments are presented as special variables

$n: Argument n, where n is the number (e.g. $1 is the 1st argument)
Note: $0 will refer to the script's name, as per *nix program argument convention

$@: List of all arguments

$#: Number of arguments

Unix and You 37 / 41

Running scripts
There's a nuance between $./my-script and $ bash my-script

$./my-script tells the OS to execute the my-script file
The OS will try to identify the file and will look for a shebang for the interpreter

The OS will run the interpreter, feeding it my-script

$ bash my-script tells the OS to execute bash with my-script as an
argument

It's up to Bash to figure out what to do with my-script

In this case, Bash just reads the file and executes each line in it

Unix and You 38 / 41

Exercise
Write a shell script that appends an ISO 8601 format timestamp, then appends the first
argument to a file named log

date -Isec can get this timestamp for you

Make sure to give it a shebang

Make sure to chmod it so it's executable

Run it with an argument e.g. $./myscript this-is-an-argument

Unix and You 39 / 41

This was only a taste
So far we only discussed shells and how they function in the context of the *nix systems

Next week we'll talk about control flow, more advanced redirection, fancy shell
features and more about the nitty gritty of shell syntax itself

Unix and You 40 / 41

Any other questions?

Unix and You 41 / 41

