
Regular Expressions

Regular Expressions 1 / 15

Regular expressions (regexes)
A pattern that matches a set of strings

Provide a (relatively) standardized way to perform matches on text

Important to know as many tools and utilities make use of them
grep, sed, find to name a scant few

Lots of different flavors, but they all encapsulate similar ideas

You provide a pattern that is matched on the text

The pattern can be a simple unassuming string or contain special characters that
perform more powerful matching

For this lecture, we'll be looking at POSIX BRE (basic regex) and ERE (extended regex)
grep is a utility that searches for patterns in a file or input via regexes

By default grep will filter out strings that don't contain a match

Defaults to BRE; -E flag (or egrep) for ERE

ls /dev | grep tty: list /dev directory, keeping lines that contain "tty"

Regular Expressions 2 / 15

Resources
Online regex tester: https://regex101.com/ (one among many)

Can provide a breakdown of the regex

Beware of the flavors it supports

grep can serve as an offline tester as well

GNU grep's manual on regular expressions

Highly detailed website: https://www.regular-expressions.info/

Regular Expressions 3 / 15

https://regex101.com/
https://www.gnu.org/software/grep/manual/grep.html#Regular-Expressions
https://www.regular-expressions.info/

Regex basics
Patterns are composed of smaller regexes that are concatenated

The atomic regexes are those that match single characters

The alphanumeric characters (A-Z, a-z, 0-9) and space act like normal characters

Some other symbols act like normal characters as well
hello is a simple pattern that matches "hello"

h, e, l, l, and o are each atomic regexes

These are concatenated to form the overall regex hello

Regular Expressions 4 / 15

Regex basics
There are also special functions denoted by special characters

. for any single character

| for an OR

\ for special expressions/escapes

Quantifiers: how many to match

Brackets: a set of characters to match

Anchors: for positional matching

Backreferences: for matching a previous match

^tty[0-9]+$ is a less simple pattern that matches lines that exactly compose
of only "tty" and some numeric digits after it

Regular Expressions 5 / 15

Misc special characters
. matches any single character

... matches three consecutive characters

| for an OR between regexes
hello|world matches a string that is "hello" or "world"

\ for special expressions/escapes
\b matches the empty string at the edge of a "word"

There's more: check the GNU grep manual for the rest

(,) enclose a whole expression as a subexpression
(Hello|Goodbye) (Sowgandhi|John Paul) matches:

"Hello Sowgandhi"

"Hello John Paul"

"Goodbye Sowgandhi"

"Goodbye John Paul"

Regular Expressions 6 / 15

Quantifiers
Specify how many of a preceding regex to match

?: ≤1 time

*: ≥0 times

+: ≥1 times

{n}: n times

{n,}: ≥n times

{,m}: ≤m times

{n,m}: x times where n ≤ x ≤ m

Examples

a{4}: matches "aaaa"

ba+: matches "ba", "baa", "baaa"...

(hello){3}: matches "hellohellohello"

Regular Expressions 7 / 15

Exercise 1
If you want to test these with grep, try using grep -E

Default grep uses BRE, which requires you to \ escape a lot of things (more on
this at the end)

Write regexes that matches against:
1. "hello" or "world"

2. 20 of any character

3. 3 of any character, "cat", then at least 5 of any character

Regular Expressions 8 / 15

Brackets
[,] enclose a set to match for one character

[abc] matches 'a', 'b', or 'c'

Special things you can put inside them:

-: range
[A-Za-z0-9]: capital and lowercase numbers and digits

^: not in set
[^ab]: everything not 'a' or 'b'

Named classes
[:alnum:]: alphanumeric characters

[:alpha:]: alphabetic characters

[:blank:]: space and tab characters

...and others (see the GNU grep manual)

Brackets are part of the class name: e.g. [[:alnum:]] to match alphanumerics

Regular Expressions 9 / 15

Exercise 2
Write regexes that matches against:

1. 3 English vowels (a, e, i , o, u) in a row

2. 5 non-numbers in a row

3. "Odd" and a single digit odd number

4. "Even" and an even number

Regular Expressions 10 / 15

Anchors
Perform positional matching

^: match empty string at the beginning of a line
i.e. following regex must be at the beginning

^hello: "hello" must be at the beginning

$: match empty string at the end of a line
i.e. preceding regex must be at the end

world$: "world" must be at the end

^hello world$: entire line must be "hello world"
Suppose I have a string "hello world!"

hello would be able to match against the "hello" in "hello world!"

^hello$ would be unable to match because "hello" is not at the end of the
string

There are other non-anchor positional matches
\w, \b and others: look up the other \ regexes

Regular Expressions 11 / 15

Exercise 3
Write regexes that matches against:

1. File names that end in ".txt"

2. File names that start with "file" with an odd number after and end in ".txt"

Regular Expressions 12 / 15

Backreferences
Match previous parenthesized () subexpression

\n: match n th parenthesized subexpression
(123)testing\1 matches "123testing123"

Q: <([[:alpha:]][[:alnum:]]*[^>])>.*</\1>

Match (simple) HTML/XML tags

Regular Expressions 13 / 15

Caveats
GNU grep defaults to BRE flavor

Use -E flag or use egrep for ERE flavor

In ERE mode, use [{] to capture literal '{' for portability

Other flavors may require escaping certain characters

BRE vs ERE
In BRE ?, +, {, |, (, and) must be escaped with \

Regular Expressions 14 / 15

Any other questions?

Regular Expressions 15 / 15

