
Libraries
"How do I X?"

"Just use Boost"

Libraries 1 / 12



Overview
What are libraries?

Using existing libraries

Creating your own

Libraries 2 / 12



What are libraries?
Libraries are collections of code and data that can be used by other programs.

Cool stuff written by other people so you don't have to
GUI (libxcb, libX11, libgtk-3, libQtCore)

Graphics (libvulkan, libGL)

File formats (libpng, libjpeg, libmpeg2)

...and more

For this lecture we'll be focusing more on the context of compiled executables
targeting the host architecture and OS (i.e. not targeting a VM like Java or C#),
specifically for C and C++

That being said, the idea of a library is fairly universal

C and C++ libraries happen to serve the backbone of a complete OS

Libraries 3 / 12



Types of libraries
Source libraries

Source code for a library is provided

Pretty much exactly like a normal project

Static libraries
Provided as an archive of pre-compiled object code

Files are named lib<library name>.a e.g. libcoolthing.a

.a stands for "archive"

tossed into the executable
and won't change wherever the executable goes

Incurs a size cost since the library is a part of the executable

Libraries 4 / 12



Types of libraries
Dynamic/shared libraries

A collection of object code meant to be shared by multiple programs
One file /lib/libm.so shared among many programs that use it

Files are named lib<library name>.so e.g. libncurses.so

.so stands for "shared object" (another name you see is "dynamic shared
objects")

.dylib and .dll are macOS and Windows counterparts

Executable is linked against this library and the library is marked as a dependency in
the executable

You can check this out using readelf -d or ldd on an executable

ELF is the file format used for object code and binary executables on Linux
systems (as well as many other systems)

Libraries 5 / 12



Types of libraries
Dynamic/shared libraries

"Dynamic" because these links and dependencies are resolved at program load time
Avoids the static linking size cost at the cost of being dependent on the system for
the library

You sometimes see them packaged along with applications (ever see .dll files
come with some program?), or they're listed as dependencies for your package
manager to resolve

Libraries 6 / 12



Using existing libraries
Source libraries

Trivial: it's just more source code and add it as such

May have to include the headers in the include path (-I)
You might've run into this for Advanced - Make...

These are so uninteresting that I'm not going to mention them anymore

Libraries 7 / 12



Using existing libraries
Static and Dynamic Libraries

Using either is very similar

The -l<library name> linker flag allows you to specify a library
Searches through /lib, /usr/lib, in directories listed by
/etc/ld.so.conf, and directories in LD_LIBRARY_PATH

You can specify additional directories with -L

-lm for libm.a and libm.so

-lpng for libpng.a and libpng.so

Examples
gcc -o myapp $(SRCS) -lm

gcc -o myapp $(SRCS) -Lsomedir -lstaticlib

(under the hood, gcc is passing these linker flags to ld; put these at the end of
the compilation command)

Libraries 8 / 12



Static and Dynamic Libraries
But what if they conflict?

Note how -l doesn't care about static vs dynamic

.so has a higher precedence over .a

e.g. -l:libm.a

This is more of a nuclear option

Beware that this will make it only link statically: what if you don't have a static version
of the C library?

Libraries 9 / 12



Creating your own libraries
Static libraries

Compile the objects
gcc -c -o somecode.o somecode.c

-c: compile but don't link, produces an object code file

Archive the objects
ar rcs libmylib.a somecode.o morecode.o yaycode.o

ar is an archival tool

r: command, insert files with replacement (in case the archive already exists)

c: option, "create the archive"

s: option, "write an object file index into the archive"

Libraries 10 / 12



Creating your own libraries
Dynamic libraries

Compile the objects
gcc -c -fPIC -o somecode.o somecode.c

-fPIC: compile as position independent code

(there's also -fpic... if you want to go down the rabbit-hole)

The implications and reasoning behind PIC are best left for EECS 370 and EECS
482

Link your the objects
gcc -shared -o libmylib.so somecode.o morecode.o
yaycode.o

-shared: "produce a shared object"

Libraries 11 / 12



Creating your own libraries
Dynamic libraries

It gets deeper... http://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
Versioning (soname fun)

Maintaining binary compatibility

Even deeper... https://www.akkadia.org/drepper/dsohowto.pdf
Really great read

Recommended by my interviewer during the interview for an internship

Libraries 12 / 12

http://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
https://www.akkadia.org/drepper/dsohowto.pdf

