Advanced 9
Debugging

EECS 201 Winter 2021

Submission Instructions

This assignment is an “online assignment” on Gradescope, where you will attach your files and answer some questions.

Preface

In this assignment you'll be provided yet another zipped archive containing some starter files.

https://wuw.eecs.umich.edu/courses/eecs201/files/assignments/adv9.tar.gz

1 Attaching to a running process (5)

Occasionally you may want to debug an already running process with GDB. Perhaps it's some sort of daemon process
that you want to catch in the act or maybe it's some interesting setup that you have concocted *cough cough*. Re-
gardless, GDB has the ability to attach to already running processes when provided with the process ID (“PID") of a
process you want to debug.

In adv9/gdb-attach there is a program called revd that will reverse strings provided to it and log them. It

is intended to run in the background, using a special type of file called a named pipe or FIFO (like a pipe used to
string commands together, but accessible as a file) as input. It uses the FIFO as a form of inter-process communication
(IPC): a process that wants to communicate will write to the FIFO file and [revd will read from it.

The Makefile has targets for building and running the application. |test-producer.sh is a sample script that
communicates with [revd , forever providing it with a random word every second (until you |=C ). Try running the
run target and then run test-producer.sh . In another terminal run |$ tail -f revd.log to continuously

print out updates to the log file. You should see that the revd process is chugging along (for extra fun, run some
more instances of test-producer.sh or write another program/script that produces more input for revd )

Now onto the debugging part: the goal of this exercise is to attach GDB to this running process. There's multi-
ple ways of going about this: I'll leave it up to you to take a gander at the GDB manual or manpage or other random
resources on the internet.

Notes:

e If you are using WSL, the Windows filesystem (i.e. stuff under /mnt/c) does not support FIFOs. This
can only be done on Unix filesystem side (i.e. everything not /mnt/c).

e Newer versions of the Linux kernel now by default have security measures in place that prevent the tracing of
processes, which GDB does to attach to a process. If you are unable to attach to the process and there is some
warning/message about ptrace not being permitted,

run |$ sudo sh -c "echo 0 > /proc/sys/kernel/yama/ptrace_scope" . This will invoke the [sh shell
under root and write a 0 into the /proc/sys/kernel/yama/ptrace_scope file which serves as the way to

configure the security level for tracing.

e make run will run revd .

make kill will kill [revd (since it has been backgrounded it's a tad more involved to stop it).

e pgrep, pidof , and [ps a can help you find the PID of revd .


https://gradescope.com

e If you're on the course server, [ps u might be of greater use.

0 What command-line commands did you run in the process of attaching GDB to the running |revd process? Be
specific!

O If you look at the revd.log file you'll notice that it isn't reversing the string properly. Fix this issue and submit
the fixed version. (By the way, string reversal is a pretty common algorithmic interview question)

2 How do you debug? (5)

Write a paragraph or two about what your process is when you go about debugging your programs. What do you look
for? Do you start off with print statements before heading to your debugger? Let me know about your process for it!

3 Pretty printing (5)

GDB is actually extensible via Python scripts! One neat feature is that Python can be used to implement pretty-
printers, which are a way to print out structs and classes in a more pretty way. Without a pretty-printer registered
for a struct/class, you'll get a printout of each individual field, no matter how “user readable” they are. C++ STL
is notoriously ugly when not pretty printed; the GNU C++ library implementation bundles pretty-printers for GDB to
take advantage of. For instance, if you printed a 'std::string in GDB without a pretty-printer, you'd see a mess of

member variables and internal structures that adds a lot of noise (which, to be fair, are useful if you're debugging the
std: :string class itself.) With the pretty-printer, you'd get the string that you want to see.

For this exercise, | want you to write a pretty-printer for a C/C++ struct/class. You probably have something
already, like a Euchre project, that has some classes that are noisy when printed. If you want, you can also use the
provided |Matrix class in ladv9/gdb-pretty to try to pretty print the actual matrix contents.

Helpful hints:

e |'ve provided a boiler-plate script in the 'adv9/gdb-pretty directory.

e Once in GDB, you can [source the Python script to get it to run the pretty-printer registration script. (This
method of registering a pretty-printer is a bit heavy handed due to its simplicity, but the way to automatically
load pretty-printers attached to a library of code a la the GNU C++ library is a fairly involved process)

Some relevant documentation:
e Pretty-printer introduction
e [std::string without a pretty-printer

e Short guide on writing a pretty-printer in Python.
This one does go into the more “proper’ way of registering the pretty-printer, but you can do it globally a la the
provided boiler-plate.

O Submit the pretty printer script(s) and whatever code you want to pretty print.
O Explain how to load your pretty-printer script in GDB.

O Submit a screenshot of GDB's terminal printout of the struct/class.


https://sourceware.org/gdb/current/onlinedocs/gdb/Pretty_002dPrinter-Introduction.html#Pretty_002dPrinter-Introduction
https://sourceware.org/gdb/current/onlinedocs/gdb/Pretty_002dPrinter-Example.html#Pretty_002dPrinter-Example
https://sourceware.org/gdb/current/onlinedocs/gdb/Writing-a-Pretty_002dPrinter.html#Writing-a-Pretty_002dPrinter

	Attaching to a running process (5)
	How do you debug? (5)
	Pretty printing (5)

