Basic - Editors

EECS 201 Winter 2023

Submission Instructions

Answer the bolded text that begins with a “Q". This assignment is an “online assignment” on Gradescope, where you
fill out your answers directly.

Optional Readings

Previous iterations of this class included some optional readings with this week. You may find the ideas and topics
they bring up interesting.

Makers vs Managers

http://www.paulgraham.com/makersschedule.html
Maker's Schedule, Manager's Schedule, by Paul Graham, co-founder of Y Combinator.

Software Engineering in the Real World

http://www. joelonsoftware.com/articles/fog0000000069.html
Things You Should Never Do, Part I, by Joel Spolsky

It's harder to read code than to write it.

When was the last time you saw a hunt-and-peck pianist? -Jeff Atwood, co-founder of Stack Overflow and Discourse.
Some extras on the value of being a good typist and ditching the mouse for the keyboard.

https://gradescope.com
http://www.paulgraham.com/makersschedule.html
http://www.joelonsoftware.com/articles/fog0000000069.html
http://blog.codinghorror.com/we-are-typists-first-programmers-second/
http://blog.codinghorror.com/going-commando-put-down-the-mouse/

1 Trying out fancy features

For this question, we'll be looking at the two big terminal editors: Vim and Emacs and exploring their capabilities.
You may choose either of them to work with for this question. You many only use Vim or Emacs in this part of
the assignments.

The intent of this question is to expose you to the more advanced features that other editors like Microsoft Notepad
or GNU Nano may not have as well as building competency in terminal text editors. | encourage you play around with
the editors and look into the neat features that they have. Also, | suggest you to try and get acquainted with the
keyboard controls and navigation: you may find that navigation can be pretty fast if you take advantage of what's there.

If you’re using Emacs, run it in non-GUl mode i.e. [emacs -nw for this question.

To start, grab a copy of this file that's full of (bad) code with the application of your choice:

https://www.eecs.umich.edu/courses/eecs201/wn2023/files/assignments/oof .cpp

1. Sometimes you will come across some ugly code. Your editor can help make it better. Open oof.cpp . Among
other issues, the really bad tabbing makes this hard to read.
Q: Describe how to automatically fix the indentation for the whole file.
Now imagine that you want to change the indentation of some lines of text. What if you want to increase
indention on a block of code? What if you want to decrease the indentation?
Q: Describe how to arbitrarily change the indentation level of a block of code. How would you arbitrarily
increase or decrease the indentation?

2. Editing one file is nice, but often it's really useful to compare files side-by-side (source and headers, spec and
implementation).
Q: Describe the command sequence to create a window split (within your text editor) side-by-side
with your current window, switch to it, and then open a file in that window.

Try playing around with these two views, copy/paste code between them, bind them so they scroll together,
resize them, add more splits.

3. Editors also have pretty nice integration with compilation tools. With [oof.cpp open, try typing :make oof
in Vim or 'M-x compile<enter>make oof in Emacs. Make sure it's make oof , not make oof.cpp . This
will attempt to make an executable called ‘oof implicitly by compiling ‘oof.cpp . !

First cool thing that happened: Yes, you can run make without any Makefile anywhere. We'll cover how that happened during
build-system week.
Building 'oof.cpp will fail with several errors.

Q: Describe how to navigate between compilation errors automatically. Hint: Vim has the "quickfix"
feature and Emacs has "Compilation Mode"

4. While C-style languages support ' /* block comments */ , others such as Python have no block comments
and require you to put a # at the beginning of every line.

Q: Describe how to efficiently comment out a large block of Python code. No, docstrings (""") are
NOT comments.

1Descriptions of Emacs commands are usually written as C-c or 'M-x , which mean “Ctrl+C" or “Meta+x" respectively. Meta is often

mapped to the escape and/or alt key, M-x means press Escape and then x or hold alt and press x.

5. Many times you have a repetitive task that you need to do say 10 or 20 times. It's too short to justify writing a
script or anything fancy, but it's annoying to type the same thing over and over again. As example, reformatting
the staff list to a nice JSON object:

staff = [
Boole,George {"first": "George", "last": "Boole"},
Lovelace,Ada {"first": "Ada", "last": "Lovelace"},
von Neumann, John {"first": "John", "last": "von Neumann"},
Hopper,Grace {"first": "Grace", "last": "Hopper"},
Turing,Alan {"first": "Alan", "last": "Turing"},
Shannon,Claude {"first": "Claude", "last": "Shannon"},
Dijkstra,Edsger {"first": "Edsger", "last": "Dijkstra"},
Hamilton,Margaret {"first": "Margaret", "last": "Hamilton"},
Knuth,Donald {"first": "Donald", "last": "Knuth"},

]

Editors support the record and replay of macros. With macros, you can start recording, puzzle out how to turn
one line into the other, and then simply replay it for the rest. As a general rule, do not bother trying to be
optimal or efficient, just find anything that works. Try starting with the column on the left and devising a macro
to turn it into the column on the right.

Q: Describe how to record and replay a macro. (you do not need to include the contents of your macro; make
your best attempt at trying to make a macro that works, but don't worry if you are unable to get it to work perfectly)

6. Editors understand balanced ()'s and {}'s.
Q: Describe how to jump from one token to its match, such as from the opening { on line 58 of
oof.cpp to its partner } on line 68.

7. Sometimes it's useful to run quick little commands. For example, your code needs to read from a file, but you
can't remember if it's called sample_data.txt or sampleData.txt .

Q: Describe how to run ‘Is’ directly from within your editor.

Personalising your Editor (Ungraded but recommended)

Similar to how | ~/.bashrc configures bash, a |~/.vimrc or ~/.emacs file? can configure how your editor be-
haves. Add something useful not listed above to your editor’s configuration file.

Q: Roughly how long did you spend on this assignment?

2These files do not exist by default, you have to create them.

	Trying out fancy features

