
Class 4

Class 4: Shells 1 / 24

Shells
feat. Bash

:(){ :|:& };:
Do NOT run this

Class 4: Shells 2 / 24

Overview
1. Announcements

2. Review + Exercises

3. Q&A

4. Basic assignment

Class 4: Shells 3 / 24

Announcements
Unix assignments: February 8

Shell assignments: February 15

You can still submit GitLab/Autograded assignments
I might give extra credit for on-time submissions...

Unix survey closing today

Class 4: Shells 4 / 24

Review

Class 4: Shells 5 / 24

Review
Command grouping

(commands)

{ commands; }

Class 4: Shells 6 / 24

Expansion
Parameter expansion ("variable" expansion)

$varname

${varname}

${varname:-[value]}: use default value

Bash substring expansions
${varname:offset}

${varname:offset:length}

Class 4: Shells 7 / 24

Expansion
Filename expansion ("glob"/"wildcards")

Expand out to filepaths that match the pattern

*, ?, and []

Command substitution (via subshell)
$(command): substitute the output of a command in the brackets

Class 4: Shells 8 / 24

Expansion
Arithmetic expansion

$((expr)) will expand to an evaluated arithmetic expression expr
Integer only

Process substitution (Bash)
<(command) will substitute the command output as a filepath, with the output of
command being readable

>(command) will substitute the command input as a filepath, with the input of
command being writeable

$ diff <(echo hello) <(echo olleh | rev)
diff takes in two file names, but we're replacing them with "anonymous" files
containing the command outputs

Class 4: Shells 9 / 24

Excercises
1. Assign a variable greeting to a string that is concatenation of the string "user:" and

the USER variable

2. Write a mv command that moves all files in the current directory that end in .txt into
a directory called text

3. Use a command substitution ($(commands here)) to get the output of whoami
and save it into a variable me

Class 4: Shells 10 / 24

Quoting
Single quotes (') preserves all of the characters between them

Double quotes (") preserve all characters except: $, \, and backtick

Class 4: Shells 11 / 24

Compound commands and control flow
if-elif-else
'#' comments out the rest of the line
elif and else are optional parts
if test-commands; then
 commands
elif more-test-commands; then
 more-commands
else
 alt-commands
fi

test-commands is executed and its exit status is used as the condition
0 = success = "true", everything else is "false"

Class 4: Shells 12 / 24

Commands for conditionals
test expr: test command

[expr] (remember your spaces! [is technically a utility name)

test $a -eq $b

[$a -eq $b]

These set the exit status (?) to 0 (true) or 1 (false)

[$a -eq $b] && [$a -lt 100]

test $a -eq $b && test $a -lt 100

Class 4: Shells 13 / 24

Commands for conditionals (Bash)
[[expr]]: Bash conditional

Richer set of operators: ==, !=, <, >, among others

Note: The symbol operators above operate on strings

((expr)): Bash arithmetic conditional
Evaluates as an arithmetic expression

(($a < $b)): this would evaluate to "false" if a=100, b=2

Class 4: Shells 14 / 24

while
while test-commands; do
 commands
done

Similarly to if, the exit status of test-commands is used as the conditional

Repeats commands until the condition fails

until
until test-commands; do
 commands
done

Repeats commands until the condition succeeds

Class 4: Shells 15 / 24

for
for var in list; do
 commands
done

Each iteration var will be set to each member of the list

list is simply a list of whitespace-delimited strings

list will have any necessary expansions performed

Note: if there is no in list, it will implicitly iterate over the argument list (i.e. $@)

Example lists:
1 2 3 4 5

$(ls)

$(seq 1 5)

Class 4: Shells 16 / 24

case
case value in
 pattern1) commands1 ;;
 pattern2) commands2 ;;
 multpat1 | multpat2) commands3 ;;
 *) commands
esac

value is matched against patterns

When a pattern is matched its command(-list) is run

A wildcard pattern is often used to represent a "default" case

Class 4: Shells 17 / 24

Excercises
1. Write an if statement that prints "success!" if the last command ran successfully

Remember the ? variable?

echo can print text for you

true and false can give you a success and failure

2. Write a for loop that creates 5 files, named file1 to file5
seq 1 5 can produce a list of integers from 1 to 5

touch can create empty files for you

Class 4: Shells 18 / 24

Functions
func-name () compound-command # parens are mandatory
or
function func-name () compound-command # [Bash]; parens are optional

A compound command is a command group ((), {}) or a control flow element (if-
elif-else, for)

Called by invoking them like any other utility, including passing arguments
Arguments can be accessed via $n, where n is the argument number

$@: list of arguments

$#: number of arguments

Class 4: Shells 19 / 24

Examples

hello-world ()
{
 if echo "Hello world!"; then
 echo "This should print"
 fi
}
calling
hello-world

Bash
function touch-dir for x in $(ls); do touch $x; done
calling
touch-dir

Class 4: Shells 20 / 24

echo-args ()
{
 for x in $@; do
 echo $x
 done
}
calling
echo-args a b c d e f g

Bash
function divide
{
 if (($2 == 0)); then
 echo "Error: divide by zero" 1>&2
 # the redirection copies stderr to stdout so when echo
 # outputs it's really going to the caller's stderr
 else
 echo $(($1 / $2))
 fi
}
calling
divide 10 2
divide 10 0

Class 4: Shells 21 / 24

Configuring the shell
Shells will automatically source certain files to perform configuration

/etc/profile: system-wide configuration

~/.bashrc: Bash's user shell configuration file

~/.zshrc: Zsh's user shell configuration file

You can make your own additions to your ~/.bashrc or ~/.zshrc etc.

Maybe you want to add a directory to PATH?
export PATH="newdir:$PATH"

Maybe I want to alias a word to a command that navigates to my Windows side?
alias cdw='cd /mnt/c/Users/brandon/'

Maybe I want to change up my prompt?...
PS1 variable

Class 4: Shells 22 / 24

Q&A

Class 4: Shells 23 / 24

Basic assignment

Class 4: Shells 24 / 24

