Specs for 201

Class
Created @Oct 26, 2020 12:30 PM
Materials

Reviewed [

Type

Project Roadmap

Welcome to the first ever EECS 201 Project! This is one of the four options that
we'll have available to choose from, and it deals with concepts important to a lot
of your upper levels and potentially your future career: the web!

What we're going to ask you to do is to make a personal website and blog, where
you automate most, if not all of it!

To complete the project, here's the general roadmap of what you need to do:
1. Read the Project Introduction

e This project will take some time, as we do not want to assume you have
web experience and want you to learn more tools.

o Be sure to read the entire project completely before starting - certain
requirements might require you to do things in a certain order, or they
might require you to organize your project in a certain way.

o Feel free to talk to us! We're here to see you succeed, and OH has been
relatively quiet these past few weeks...

2. Implement each section entitled "sub-assignment".

o Each of these sections will give you resources, along with a general idea
as to what you need to implement for the project.

e You're allowed to use as many libraries as you want or like, unless we
state that you NEED to use X library or Y library. This is mainly as, for

Specs for 201



some projects, we want you to learn something new, and we know that
certain libraries start out a lot easier but end up being less versatile than
others.

3. After implementing each sub-section, join us in OH for a chat!
e This is mainly so we know who is working on these and how far they are.

» Additionally, this lets us make sure that everyone is accountable for what
they said they'd do, ensuring we can give a grade that is fair and
reasonable to anyone who embarks on these tasks.

o Completing any sub-section of this project will be worth 10 points, so
completing all of them WILL get you all the points you need for your
assignment. However, each section builds on the previous sections, so to
get the full points we suggest starting from the top and moving down.

Sub-Assignment 1: Making a website

Before we start talking about automating a website, we'll need a website to work
on!

What you're going to start off with here is a website functionally similar to the
following:

All posts
Summaries on Course Material, Simplifications of Older Materials, and More!

@ https://arav-agarwal2.github.io/

If you want to learn web development as you go, we recommend the following
websites and courses to look at.

Full stack open 2020

Parts 0-8 of the course material is written by Matti Luukkainen.
The content of part 9 is written by developers from Terveystalo.
Part 10 is written by Kalle llves. Numerous people have improved

https://fullstackopen.com/en/

Expand your expertise
j#fullstackchallenge

Specs for 201


https://arav-agarwal2.github.io/
https://fullstackopen.com/en/

freeCodeCamp.org

Learn to code at home. Build projects. Earn certifications. Since
2014, more than 40,000 freeCodeCamp.org graduates have freeCodeCamp (A)
gotten jobs at tech companies including Google, Apple, Amazon,

https://www.freecodecamp.org/

Here's all that we're looking for to complete this portion:

1. Having two routes on the website: URLs should not contain .html at the end

o /blog , Which will lead into a blog page with a few subpages as blog-
posts.

« /home , Which will lead into a home page detailing something about
yourself, or whatever you'd like to place here.

2. Have the website hosted on either Heroku or Github Pages, two free hosting
opportunities for students.

Avoid pure HTML. The website should look nice, even if there is not much onit! The
point here is to build a website that you could show off to a recruiter and feel proud
of, so if that takes some time, it's bound to look really cool!

Sub-assignment 2: Automation, Part 1

Now that we have some basic website set up, it's time to work on the more
interesting part: Automation!

What we want for you to do is to automate this website a little bit. Instead of
having to write HTML or JS files all day and night, wouldn't it be awesome if,
when you commit a markdown file to a specific folder in your repository, you also
convert it to an HTML file and add it to your website?

With what you've learned in this class, you can do precisely that!

Here's what we're looking for, and what you'd show to us to prove you've
completed this portion of the assignment:

e You should have both a "source" directory and a "build" directory in your
project. Your "build" directory, and all of the HTML files in it, shouldn't be

Specs for 201


https://www.freecodecamp.org/

added to the Git Repository you're developing in.

e When you commit a markdown file to your "source" directory, you should not
only be able to both automatically generate the HTML page that will display
your markdown, but also be able to automatically generate the HTML file that
indexes all of your Markdown blog posts, allowing you to simply add a
Markdown file, commit it to your repo, and get it to show up on your website!

» Have some decent error handling. If a markdown file is invalid, then you
should find some way to let you know that, and probably prevent the commit
from happening in the first place.

To help you get started, here is a list of resources that could be useful to
accomplish this task. We'd like to say that, like the previous task, there are many,
many ways to do this - so if you think you know an easy way to do so, do it, and

show us!
N’
About pandoc <<
If you need to convert files from one markup format into another, \/\T)‘
pandoc is your swiss-army knife. oD
=2
https://pandoc.org/ C=>
e
Static Site Generator O ot
Learn what a static site generator is and why you might choose %
a static site generator, such as Gatsby, over other publishing Thgmlzc:;rn‘x\’,ag to
tools. A static site generator is a software application that ul e yve
@ https://www.gatsbyjs.com/docs/glossary/static-site-generat ~ # . %

or/

myles/awesome-static-generators

A curated list of static web site generators. Contribute to
myles/awesome-static-generators development by creating an
account on GitHub.

() nttps://github.com/myles/awesome-static-generators

Again - while the sites above might lead to tools that can do a lot more than what
we're asking for, we would like to stress that all that we're asking for can be done

Specs for 201


https://pandoc.org/
https://www.gatsbyjs.com/docs/glossary/static-site-generator/
https://github.com/myles/awesome-static-generators

with Pandoc and some command-line ful!

Sub-assignment 3: Automation, Part 2
Alright! Woo!
You've done a lot to get here - but now let's kick it up one more notch.

Let's say your blog is getting more and more popular now, and you want to add
some testing to your code. After all, making sure that your website works when
we're automating it is a vital part of web-development, and doing it effectively is
much more tricky than it can seem.

In particular, however, we want you to use Selenium to test your websites. While
there are many, many other website-testing frameworks, Selenium is unique in
that it directly simulates a browser, and also allows you to see your tests happen
in real-time.

As this task will require you to learn a new library and, potentially, start learning a
new language, we just want your Selenium test script to do the following:

1. Navigate to your blog-page

2. Click on all of the links, and report the title of each blog post to the
command line.

3. If any of the links fail, return 1 and let us know that a certain link does not
lead to any page yet, or it leads to a 404 page.

Additionally, we want this script to be part of your build process in the previous
sub-assignment, so when you try to build your website, you end up not just
building it, but testing that everything works out and exists.

To help you out, here's the documentation for Selenium with Python, the most
common version of the testing framework:

Selenium with Python - Selenium Python Bindings 2 documentation

Note This is not an official documentation. If you would like to contribute to this documentation, you can
fork this project in GitHub and send pull requests. You can also send your feedback to my email:
baiju.m.mail AT gmail DOT com. So far 50+ community members have contributed to this project (See the

https://selenium-python.readthedocs.io/

Specs for 201


https://selenium-python.readthedocs.io/

Sub-assignment 4: Automation, Part 4!

By now, you have a ridiculously slick little website - one that creates new pages,
tests them, and prints all of those results to you on your command line!

This is all super useful, but there's still one set of things we can do to make our
website the most over-engineered personal website ever - Lighthouse testing.

Lighthouse is a tool created by Google that vets your website to make sure that
it follows certain web "best practices", such as Search Engine Optimization,
Accessibility, and so on.

All we ask is for you to automatically collect data from Lighthouse whenever you
push to your GitLab/GitHub repo, and have it displayed as a part of the
GitHub/GitLAB CI, or Continuous Integration, pipeline whenever you commit to
your website's repository.

To help with this, here's the tutorial from the Lighthouse GitHub page:

GoogleChrome/lighthouse-ci

This document provides a step-by-step walkthrough on how to
setup Lighthouse Cl on your repository. After this guide, your
build system will be running Lighthouse on your project's URLs

) nttps://github.com/GoogleChrome/lighthouse-ci/blob/master/
docs/getting-started.md

Specs for 201


https://github.com/GoogleChrome/lighthouse-ci/blob/master/docs/getting-started.md

