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Part 2: Sinusoidal Signals

Outline
• Introduction to three representations:
◦ formulax(t) = A cos(2πf0t + φ)
◦ amplitude, frequency (or period), phase
◦ graph/plot

• Converting between these three representations
• Signal characteristics for sinusoids
• Operations on sinusoids: adding / multiplying
• Simplify sums of sinusoidsof same frequency
◦ trigonometry
◦ phasors

• Complex arithmetic
◦ cartesian / polar / complex exponential form
◦ Euler’s identities
◦ addition/subtraction
◦ multiplication / division
◦ polynomial roots

• Complex exponential signals
• Beat frequencies

Reading: Ch. 2 of textbook, Appendix A.
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Overview of sinusoids

Why?
• Occur in nature

◦ tuning fork
◦ flute
◦ spring-mass system
◦ solution to many differential equations

• Engineering systems
◦ power generation (rotating equipment)
◦ laser
◦ resonator circuit (capacitor and inductor)
◦ oscillator (modulators for comm)

• Linear time-invariant (LTI) systems, aka filters
◦ sinusoidal signal in→ LTI system → sinusoidal signal out

This property is unique to sinusoidal signals!
◦ motivates considering other signals as sums of sinusoids

Example. Audio recording of tuning fork from across a room in presence of multitude of reflections. Still sinusoidal!

Sinusoidal signals

For a while now we will focus oncontinuous-timesinusoidal signals, described by the following general formula:

x(t) = A cos(2πf0︸︷︷︸
ω0

t+ φ) (2-1)

This signal, which is a function of the continuous-time variablet, is described by three parameters.
• A is theamplitude (signal units,e.g., volts, Amperes, etc.).
• f0 is thefrequency (Hz=cycle/second, kilohertz: kHz=103Hz, megahertz: MHz=106Hz)
• φ is thephase(in radians)

Certain properties of the cosine function determine the sensible ranges for the three parameters.
• We always choose the amplitudeA ≥ 0 and usuallyA > 0.

Why? Because of this property:− cos(θ) = cos(θ + π) = cos(θ − π). So:

−A cos(2πf0t+ φ
′) = A cos(2πf0t+ φ

′ + π︸ ︷︷ ︸
newφ

)

So a negative sign can be absorbed into the phase term.
• For sinusoidal signals, we always choose the frequencyf0 ≥ 0.

Why? Because of the propertycos(−θ) = cos(θ). So:

cos(2π(−f0)t+ φ
′) = cos(−[2πf0t− φ

′]) = cos(2πf0t − φ
′︸ ︷︷ ︸

newφ

).

So a sinusoid with a negative frequency is indistinguishable from a sinusoid with a positive frequency but with the opposite
phase. So we always just use the positive frequency.
Later in the chapter we will consider complex exponential signals that can have positive or negative frequencies. But not for
sinusoidal signals!
• We usually focus on values of the phaseφ that are in the range(−π, π].

Why? Because of this particularly important property of the cosine function:cos(θ+n2π) = cos(θ) for n ∈ Z. In other words,
the cosine function is periodic with fundamental period2π. In other words, we can add or subtract multiples of2π from the
phase without changing the sinusoidal signal at all.
So we may as well add or subtract multiples of2π from the phase until the phase satisfies−π < φ ≤ π. This phase is called
theprincipal value.
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Example:
cos(2πt+ 31π/3) = cos(2πt+ 31π/3− 5 · 2π) = cos(2πt+ π/3).

• Why do we use only cosine rather than either cosine or sin?
Because of this property:sin(θ) = cos(θ − π/2).
So we can take any signal expressed in terms of thesin function and rewrite it in terms of thecos form given above as follows:

A sin(2πf0t+ φ
′) = A cos

(
2πf0t+ [φ

′ − π/2]︸ ︷︷ ︸
newφ

)
.

WhenA > 0 andf0 ≥ 0 and−π < φ ≤ π, we say that (2-1) is instandard form.

Of these three parameters, thefrequency is particularly important. The frequency determines the rate of oscillation of the sinusoid,
the number of cycles per second. A larger frequency value (we say: “a higher frequency”) corresponds to more oscillations per
unit time.

The following figures showx(t) = 4 cos(2πf0t) for various frequenciesf0.

-
t0.1 0.2

6
x(t), f0 = 0 Hz

-4

4

-
t0.1 0.2

6
x(t), f0 = 10 Hz

-4

4

-
t0.1 0.2

6
x(t), f0 = 20 Hz

-4

4

Here are a few other comments about sinusoidal signals.
• ω0 = 2πf0 is theradian frequency in units of radians/second.

Conventional engineering units for frequency are Hz, not radians per second.
There is little reason to use the notationω0 over2πf0 except perhaps laziness...
• We say “sinusoid” even though we usually writecos.

The reasons for choosingcos rather thansin will be clear when we discuss complex signals later in this chapter.
• All continuous-time sinusoidal signals areperiodic, so f0 is in fact thefundamental frequency, but we usually just say

frequencywhen discussing sinusoids.
• The (fundamental)period of a sinusoid isT0 = 1/f0. Why? Because:

x(t+ T0) = A cos(2πf0(t+ T0) + φ) = A cos(2πf0t+ φ+ 2π f0T0︸︷︷︸
1

) = A cos(2πf0t+ φ) = x(t) .

So an alternate general form for a sinusoidal signal would be:

x(t) = A cos

(
2π
1

T0
t+ φ

)
.

As long as you put the argument in the form “2π · something· t + φ” then the “something” will be the frequency and its
reciprocal will be the period.
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The three representations

At this point we have three representations of a sinusoidal signal:
• formulax(t) = A cos(2πf0t+ φ)
• list of 3 parameters: amplitude, frequency (or period), phase
• graph/plot
• (Later we will have a very important fourth representation: itsspectrum.)

One must be able to convert between these representations.
Converting between the formula and the list of three parameters is obvious by inspection.

For manual graphing, (given the formula or the parameters) the following procedure can be helpful.
• First plot the sinusoidwithout the phase shiftφ, i.e., plot the signalc(t) = A cos(2πf0t).

This is easy since the period isT0 = 1/f0.
• Then notice thatx(t) = A cos(2πf0t+ φ), so we simply need tophase shiftthe signalc(t) by the amountφ, keeping in mind

that a2π phase shift would be a complete cycle of the sinusoid.

Example. Sketchx(t) = 2 cos
(
π
3 t−

2π
3

)
.

First drawc(t) = 2 cos
(
2π 16 t

)
, which has periodT0 = 6.

-
t-6 0 3 6 12

6c(t)

-2

2

Now we shift this signal by a phase of2π/3 which is 1/3th of a period, or 2 time units in this case.

-
t-4 2 5 8 14

6x(t)

-2

2

Formula from graph

To complete the story, we must also be able to examine a graph of a sinusoidal signal and determine its parameters. The amplitude
A and the periodT0 are easily determined by inspection.

To determine the phase, first find the time location of the peak that is nearest tot = 0, call it, saytp. Now a maximum of a cosine

occurs when its argument is 0,i.e., when2πf0tp + φ = 0. Thus the phase is:φ = −2πf0tp = −2π
tp

T0
. Since the location of the

peak nearest tot = 0 will be within ±T0/2 of t = 0, the phase computed according to the above formula will always be between
−π andπ, as desired.

Example. Consider the signalx(t) pictured above, but suppose we only had the graph and not the formula. From the graph we see
thatA = 2 andT0 = 6. The nearest peak is attp = 2, so the phase is

φ = −2π
tp

T0
= −2π

2

6
= −2π/3

so we havex(t) = 2 cos(2π 16 t− 2π/3) which indeed agrees with the original formula.
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Signal characteristics of sinusoids

In Part1 we defined about a dozen signal characteristics. Some of them are obvious for sinusoidal signals: the support is the
reals, the duration is infinite, the minimum is−A and the maximum isA, the energy is infinite (unlessA = 0), and the period is
T0 = 1/f0.

Here are some of the more interesting ones:
• M(x) = 0. Sinusoids are symmetric about the horizontal axis so the average value is zero.
• MS(x) = A2/2.

The derivation of this very important average power relationship is left as an exercise.
• From the two preceding characteristics, one can work out the RMS value, the variance, and the standard deviation.
• The signal value distribution of a sinusoidal signal was shown in a figure in Part1.
• The natural definition of the envelope would be simply a constant signal with valueA.

Example. For AC power line, we know that the frequency is aboutf0 = 60Hz. What about the amplitudeA?
Is the conventional number “115V” the amplitude? No! Actually, 115V is the RMS voltage!
For a sinusoid, the RMS value is

√
MS(x) =

√
A2/2, so for AC power lines:115V = A/

√
2 soA = 115V

√
2 ≈ 162.6V .

Why is it expressed in RMS rather than in amplitude?
Because the power dissipated in a resistor with a sinusoidal voltage across it of RMS value equal to 115V is the same power that
would be dissipated by that resistor with a 115V constant (DC) voltage across it. So the “effective” power is the RMS power.

Effect of simple signal operations on sinusoids

Suppose we start with a sinusoidx(t) = A cos(2πf0t+ φ) and then apply a simple signal operation to it. What happens?

• Amplitude scaling:y(t) = cx(t)

y(t) =

{
cA cos(2πf0t+ φ), c ≥ 0
|c|A cos(2πf0t+ φ− π), c < 0.

So amplitude scaling, scales the amplitude, naturally enough. (There is some rhyme and reason to the terminology...)
(If c is negative, then both the amplitude and phase will change when we write the signal in standard form.)

• Time scaling:y(t) = x(at)
y(t) = A cos(2πf0(at) + φ) = A cos(2π af0︸︷︷︸

f ′0: new frequency

t+ φ)

So the effect of time scaling is to scale thefrequencyof the sinusoidal signal.
What happens if a is negative?

• Time shift:y(t) = x(t− t0)

y(t) = A cos(2πf0(t− t0) + φ) = A cos(2πf0t+ φ− 2πf0t0︸ ︷︷ ︸
φ′: new phase

)

So the effect of time shift is to cause a correspondingphase shiftof the sinusoidal signal.
Note that the units of the expression2πf0t0 is radians, as required.

• Squaring:y(t) = x2(t)

y(t) = A2 cos2(2πf0t+ φ) =
A2

2
+
A2

2
cos(2π(2f0)t+ 2φ)

sincecos2(θ) = 1
2 +

1
2 cos(2θ).

In each case, amplitude scaling, time scaling, and time shift, a sinusoidal signal remains a sinusoidal signal but one of its three
parameters is changed by the operation.
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Operations with two (or more) sinusoids

If we have two sinusoidal signals,x1(t) andx2(t), the two most interesting ways to “combine” them would be to add them or to
multiply them.

First, considermultiplication . (Why should we care? AM radio is one example.)

Supposex1(t) = A1 cos(2πf1t+ φ1) andx2(t) = A2 cos(2πf2t+ φ2). What happens when we multiply?

To analyze the product of these signals, recall the following identity:

cos(α) cos(β) =
1

2
cos(α− β) +

1

2
cos(α+ β). (2-2)

Thus

m(t) = x1(t)x2(t) = [A1 cos(2πf1t+ φ1)] [A2 cos(2πf2t+ φ2)]

=
A1A2

2
cos
(
2π(f1 − f2)t+ φ1 − φ2

)
+
A1A2

2
cos
(
2π(f1 + f2)t+ φ1 + φ2

)
.

So the result of multiplying two sinusoidal signals corresponds to asumof two sinusoidal signals.

For this and other reasons, we focus almost entirely on sums of sinusoidal signals for the rest of the course!

Before we consider sums, we again ask, why should we care?
One example would be audio recording of a tuning fork from across a room in the presence of a reflection:

y(t) = α0x(t− t0) + α1x(t− t1) .

(Picture)

The question to be answered is: will the recorded signal be a sinusoid, or will it be some other shape?
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Sums of sinusoidal signals of thesamefrequency

Case 1. Same frequency,same phase, different amplitudes.

A1 cos(2πf0t+ φ) +A2 cos(2πf0t+ φ) = (A1 +A2) cos(2πf0t+ φ).

This case only requires arithmetic.

Case 2. Same frequency,differentphases,sameamplitudes.
To solve this case, we need to use tricks from trigonometry, using the identity (2-2) above.

A cos(2πf0t+ φ1) +A cos(2πf0t+ φ2)

= 2A


12 cos

(
2πf0t+

φ1 + φ2
2︸ ︷︷ ︸

α

−
φ2 − φ1
2︸ ︷︷ ︸
β

)
+
1

2
cos
(
2πf0t+

φ1 + φ2
2︸ ︷︷ ︸

α

+
φ2 − φ1
2︸ ︷︷ ︸
β

)



= 2A cos

(
φ1 − φ2
2

)
︸ ︷︷ ︸
new amplitudeA′

cos
(
2πf0t+

φ1 + φ2
2︸ ︷︷ ︸

new phase

)
.

So if we have same phase but different amplitudes or same amplitude but different phases, as long as the frequency is the same we
end up with a new sinusoid of some different amplitude and phase (but same frequency).

Special cases
• φ1 = φ2 ⇒ A′ = 2A which is calledconstructive interference
• φ1 = φ2 ± π ⇒ A′ = 0 which is calleddestructive interference

Example.

What if the phasesand the amplitudes are different? Remarkably, we still end up with a new sinusoid of some different amplitude
and phase (but same frequency).

Case 3. Same frequency,differentphases,differentamplitudes.

Amazing fact:
A1 cos(2πf0t+ φ1) +A2 cos(2πf0t+ φ2) = A cos(2πf0t+ φ)

for some amplitudeA and some phaseφ.

In words: adding together two (or more!) in sinusoidal signalsof the same frequencyyields a sinusoidal signal of that frequency
with some amplitude and phase.

How do we find A and φ?

Hard way: trial and error trigonometry. It can be much messier than what we did in Case 2!
Systematic way: using complex phasors.

Example. Simplify the following sum of sinusoidal signals:

2 cos(2πf0t+ π/4) + 2
√
2 cos(2πf0t− π/2).

Solving this by trigonometry would be painful!
Solution using phasors:

2e π/4 + 2
√
2e− π/2 =

√
2 + 

√
2− 2

√
2 =

√
2− 

√
2 = 2e− π/4 = Ae φ

So we concludeA = 2 andφ = −π/4. Thus

2 cos(2πf0t+ π/4) + 2
√
2 cos(2πf0t− π/2) = 2 cos(2πf0t− π/4).

To solve this example problem we usecomplex numbers. This problem illustrates one of several uses we will have for complex
numbers in this course, so at this point we temporarily digress from signals to review complex numbers. After the review we will
return to the study of sums of sinusoidal signals of the same frequency.

(The next chapter discusses sums of sinusoidal signals with different frequencies.)
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Complex numbers

The first question one might ask is “why were complex numbers invented?”
One answer would be: to resolve a problem in algebra: finding the roots of a polynomial. If we limited ourselves to real numbers,
then different polynomials of the same order would have different numbers of roots. By allowing consideration of complex
numbers, all polynomials of degreeM haveM roots, some of which may be complex. This fact is so important that it is called the
fundamental theorem of algebra.

Example. Consider the innocent looking polynomial:z2 + 1. What are its roots? To find the roots, we equate the polynomial to
zero and solve:z2+1 = 0, soz2 = −1. No real number satisfies this equality, but if we define the followingimaginary number:

 =
√
−1,

then there are two roots:z = ± , which is consistent with the fact that this is a second-degree polynomial.

One might say thatwas “invented” so that the fundamental theorem of algebra works:M th degree polynomial hasM roots.

(We use rather thani for complex numbers sincei traditionally denotes electrical current in EE texts.)

Arithmetic

Cartesian form:
z = x+  y = Re{z}+  Im{z} .

The set of allcomplex numbersis denotedC , and is often visualized using thecomplex plane.

-
Re

6Im

x

y
z

Fundamental operations (forz1 = x1 +  y1 andz2 = x2 +  y2):
• Equality:

z1 = z2 iff x1 = x2 andy1 = y2

• Addition (Picture)
z1 + z2 = (x1 +  y1) + (x2 +  y2) = (x1 + x2) +  (y1 + y2)

• Scaling by a real numberc.
cz = c (x+  y) = cx+  cy (Picture)

• Multiplication

z1 · z2 = (x1 +  y1) · (x2 +  y2) = x1x2 +  x1y2 +  y1x2 − y1y2︸ ︷︷ ︸
since2 = −1

= (x1x2 − y1y2) +  (x1y2 + x2y1)

• The usual properties of arithmetic apply: commutative, associative, distributive.

Complexconjugate(Picture)
z? = x−  y

Thereal part andimaginary part :

Re{z} =
z + z?

2
, Im{z} =

z − z?

2

Themagnitude:
|z| =

√
x2 + y2

Thesquared magnitude:
|z|2 = zz? = x2 + y2
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Division (complex conjugate of denominator simplifies this to a multiplication problem)

z1

z2
=
z1z

?
2

z2z
?
2

=
z1z

?
2

|z2|2
=
x1 +  y1
x2 +  y2

·
x2 −  y2
x2 −  y2

=
(x1x2 + y1y2) +  (x2y1 − x1y2)

x22 + y
2
2

=

(
x1x2 + y1y2
x22 + y

2
2

)
+ 

(
x2y1 − x1y2
x22 + y

2
2

)
.

Example. Findz1/z2 whenz1 = −8−  8
√
3 andz2 = 4−  4

√
3.

z1

z2
=
−8−  8

√
3

4−  4
√
3
=
(−8−  8

√
3)(4 +  4

√
3)

42 + (4
√
3)2

=
(−32 + 32 · 3) +  (−32− 32)

√
3)

64
= 1− 

√
3.

Polar form

The multiplication and division operations look pretty messy. Is there an easier way? Yes! Usepolar form :

z = x+  y = r\θ, r = |z| =
√
x2 + y2 ≥ 0, θ = arctan(y/x).

Obviouslyr is themagnitude. And we callθ theangle.

-
Re

6Im

x = r cos θ

y = r sin θ

θ

r

The expressionarctan(y/x)must be interpreted carefully! A better expression would bearctan(y, x) since the result depends not
just on the ratio, but also on thesignsof the real and imaginary parts ofz. In fact, MATLAB has a commandatan2 that has two
arguments precisely for this reason.

When we write “arctan” we mean “arctan but possibly withπ added or subtracted” so that the result is a value in the range
−π ≤ θ ≤ π, depending on the signs ofx andy. The following diagram illustrates.

-
Re

6Im

θ = arctan(y/x)

0 ≤ θ ≤ π/2

θ = arctan(y/x)

−π/2 ≤ θ ≤ 0

θ = arctan(y/x) + π

π/2 ≤ θ ≤ π

θ = arctan(y/x)− π

−π ≤ θ ≤ −π/2 :

θ =




arctan(y/x), x > 0
arctan(y/x) + π, x < 0, y > 0
arctan(y/x)− π, x < 0, y < 0
π/2, x = 0, y > 0
−π/2, x = 0, y < 0
0 (irrelevant), x = 0, y = 0

Be careful when using your calculator’s arctan function!

Example. Convertz = −2−  2 to polar form.

r = |z| =
√
(−2)2 + (−2)2 = 2

√
2 andθ = arctan(−2/−2) = π/4− π = −3π/4, becausearctan(1) = π/4.

Soz = 2
√
2e− 3π/4. (Picture) .

Operations in polar form (wherez1 = r1\θ1 andz2 = r2\θ2).
• Multiplication z1z2 = (r1r2)\(θ1 + θ2)
• Division z1/z2 = (r1/r2)\(θ1 − θ2)
• Reciprocal1/z = 1

r
\−θ
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Exponential form

Even more convenient: useexponential form: z = re θ.
So now we need to interpret the exponential function for complex arguments!
Important properties of the exponential function that we should maintain:
• e0 = 1
• ea+b = eaeb

• (ez)n = enz for n ∈ Z
• ez = 1 + z + z2/2! + z3/3! + · · ·

The following law gives the unique definition that satisfies these properties:

Euler’s law:e θ = cos θ +  sin θ.

Example. e π = cosπ +  sinπ = −1. This equality is very important! Also:e− π = −1.

More generally:eα+ θ = eαe θ = eα(cos θ +  sin θ) for α, θ ∈ R

Relationships between the three forms:

z = x+  y = r\θ = (r cos θ) +  (r sin θ) = r (cos θ +  sin θ) = re θ

The following figure summarizes the “most important angles” around the unit circle and their sin and cos values.

Visualizinge θ using the unit circle

-
Re

6Im

-1 −
√
3
2
−
√
2
2 − 12 0 1

2

√
2
2

√
3
2 1

-1

−
√
3
2

−
√
2
2

− 12

1
2

√
2
2

√
3
2

1

θ
θ = 0

θ = π/2

θ = π/6

θ = π/4

θ = π/3

θ = 5π/6

θ = 3π/4

θ = 2π/3

(complex plane)

√
2/2 ≈ 0.707

√
3/2 ≈ 0.866 e θ = cos θ +  sin θ

sin θ = Im
{
e θ
}

cos θ = Re
{
e θ
}

e jπ/2 = j

Inverse Euler identities

cos θ =
e θ + e− θ

2
, sin θ =

e θ − e− θ

2
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Operations in complex exponential form (wherez1 = r1e θ1 andz2 = r2e θ2):
• Multiplication z1z2 = (r1r2)e (θ1+θ2) (Picture?)
• Division

z1

z2
=
r1e
 θ1

r2e θ2
=
r1

r2
e (θ1−θ2)

• Reciprocal1/z = 1
r
e− θ

• Power (to an integern ∈ Z): zn = rne nθ

• Conjugatez? = re− θ

• Magnitude|z| = |re θ| = |r||e θ| = r| cos θ +  sin θ| = r(cos2 θ + sin2 θ) = r
In particular|e θ| = 1 for anyθ ∈ R.

Example. Simplify 2
√
3e π/6 + 2e− π/3.

Since we need addition, we must convert to rectangular coordinates:

2
√
3e π/6 + 2e− π/3 = 2

√
3[cos(π/6) +  sin(π/6)] + 2[cos(π/3) +  sin(−π/3)]

= 2
√
3[
√
3/2 +  1/2] + 2[1/2 + 

−
√
3

2
] = [3 + 

√
3] + [1− 

√
3] = 4.

This is exactly the type of manipulations we need for adding sinusoids of the same frequency.

Example. Findz1/z2 whenz1 = 16e− 2π/3 andz2 = 4−  4
√
3.

• Cartesian solution desired
z1 = 16e

− 2π/3 = 16(−1/2− 
√
3/2) = −8−  8

√
3

z1

z2
=
−8−  8

√
3

4−  4
√
3
=
(−8−  8

√
3)(4 +  4

√
3)

42 + (4
√
3)2

=
(−32 + 32 · 3) +  (−32− 32)

√
3)

64
= 1− 

√
3

• Polar solution desired
z2 = 4−  4

√
3 =
√
42 + 42 · 3 e− π/3 = 8e− π/3

z1

z2
=
16e− 2π/3

8e− π/3
= 2e− π/3

Sanity check:2e− π/3 = 2[cos(−π/3) +  sin(−π/3)] = 2[1/2− 
√
3/2] = 1− 

√
3, so the two answers indeed agree.

Complex roots

The roots of the polynomialz2 + 1 = 0 arez = ± = ±
√
−1. This is a second-degree polynomial so it has two roots.

One might say that was “invented” so that thefundamental theorem of algebraworks: annth degree polynomial hasn roots.

What are the roots of the polynomialz3 + 8 = 0? It is a third-degree polynomial so it has three roots.
An equivalent question would be: determine(−8)1/3.

Do we need to invent a3
√
−1 to solve this problem? Fortunately, no!

Strategy: solvez3 = −8 by using polar form,z = re θ.
Sor3e 3θ = −8 = 8e π.
Equating themagnitudes, we see thatr3 = 8 and sincer is real, we haver = 2. That’s the easy part.
Fact: ife φ = e γ , thenφ = γ + k2π for some integerk.
Equating thephases, we see3θ = π + k2π soθ = π

3 + k
2π
3 . Picture

Choosing three consecutive integersk = −1, 0, 1, we haveθ ∈ {±π/3, π}
So the roots arez = 2e π = −2 andz = 2 exp(± π/3) = 1± 

√
3.

Caution: MATLAB ’s (-8)ˆ(1/3) only gives one of the three possible values!

Caution: (e θ)n = e nθ whenn ∈ Z (integers). But (e θ)1/n = e (θ/n+k2π/n) for k ∈ Z andn ∈ N.

More practice

Use thezdrill mfile in DSP First toolbox for practice!
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Sums of sinusoidal signalsof same frequency (This is a primary motivation for complex numbers!)

Example. Find theamplitude A and thephaseφ of the following sum-of-sinusoids signal:

y(t) = 2 cos(5t+ π/4) + 2
√
2 sin(5t)

?
= A cos(5t+ φ).

Note that thefrequency remains unchanged!

Most important formula:cos(θ) = Re
{
e θ
}
. SoA cos(2πf0t+φ) = Re

{
Ae (2πf0t+φ)

}
. Also recall thatsin θ = cos

(
θ − π2

)
.

y(t) = 2 cos(5t+ π/4) + 2
√
2 cos(5t− π/2)

= Re
{
2e (5t+π/4) + 2

√
2e (5t−π/2)

}

= Re




 2e π/4︸ ︷︷ ︸

phasor1

+2
√
2e− π/2︸ ︷︷ ︸

phasor2


 e 5t


 note how the frequency terme 5t factors out!

= Re
{[
2(
√
2/2 + 

√
2/2) + 2

√
2(− )

]
e 5t
}

= Re
{[√
2− 

√
2
]
e 5t
}

= Re


2e

− π/4︸ ︷︷ ︸
phasor

e 5t


 = Re

{
2e (5t−π/4)

}
= 2 cos(5t− π/4)

The complex values first appear in polar form, yet we must add them so cartesian form is more convenient. Then the final form
requires polar form again.

This example was “cooked” for chalkboard use without a calculator.
In practice, these problems are solved easily using any scientific calculator that handles complex numbers in polar form.
You need such a calculator for the exams!

General rule for summing sinusoidal signals of the same frequency:

y(t) =
∑
k

Ak cos(2πf0t+ φk) = A cos(2πf0t+ φ), where Ae φ =
∑
k

Ake
 φk .

Note that all that really enters into the calculation is the sum of the terms of the formAke
 φk . These terms are calledphasors,

particularly in the context of electrical circuits. This representation simplifies calculations with resistors, capacitors, and inductors
(RLC circuits) since one can solve many problems (for sinusoidal signals) using the phasors and the (complex) impedance of each
circuit element.

Summary: the key step in this approach was writing

x(t) = A cos(2πf0t+ φ) = Re
{
Ae (2πf0t+φ)

}
.

A (complex) signal of the form̄x(t) = Ae (2πf0t+φ) is called acomplex exponential signal.
Another name for it is arotating phasor.

What about a signal of the form x(t) = exp(−2t)? This is an ordinaryexponential signal; it is not “complex.”

Representingsinusoidal signalsas the real part ofcomplex exponential signalsallows us toadd such signals “easily” using
complex arithmetic rather thantrigonometry .
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Relationship between sinusoidal signals and complex exponential signals
• Viewpoint 1:

x(t) = A cos(2πf0t+ φ) = Re
{
Ae (2πf0t+φ)

}
= Re

{(
Ae φ

)
e 2πf0t

}
, where

(
Ae φ

)
is thephasor .

• Viewpoint 2:

x(t) = A cos(2πf0t+ φ) =
A

2
e (2πf0t+φ) +

A

2
e− (2πf0t+φ)

=
1

2

(
Ae φ

)
e 2πf0t +

1

2

(
Ae− φ

)
e− 2πf0t.

Note that the phasor and its complex conjugate appear!
So a sinusoidal signal is the sum of tworotating phasors.
Why? Because ofinverse Euler identity: cos θ = 1

2e
 θ + 12e

− θ.

Note that there is anegative frequencyfor the second complex exponential.
This corresponds to arotating phasor that hasclockwiserotation in the complex plane.
We need the combination of the two rotating phasors having opposite directions of rotation so that when added together, the
imaginary parts cancel out and we are left with the real part which is the cosine part.
We never need a negative frequency for sinusoidal signals, only for complex exponential signals.

Plotting complex exponential signals

There are three ways to plot a complex exponential signal.

x̄(t) = Ae (2πf0t+φ) = A cos(2πf0t+ φ) + A sin(2πf0t+ φ) = Re{x̄(t)}+  Im{x̄(t)} .

1. Separate plots of real and imaginary parts
(Picture) of two sinusoids

2. Plot in complex plane (rotating phasor)
◦ magnitude|x̄(t)| = A
◦ angle\x̄(t) = 2πf0t+ φ

(Picture) of counter-clockwise rotation (for positivef0)

3. 3D plot: real and imaginary vs time(Picture) of helix
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Complex signals

We began the course defining simple signal characteristics and simple signal operations. Those definitions were forreal signals,
although many apply tocomplex signalstoo.

A complex signal has areal part and animaginary part as follows:

z(t) = x(t) +  y(t) .

Most signal characteristics are easy generalizations of those defined for real signals and are described at end of Part 1 lecture notes.

Example. Mean of complex signal.

M(z) =
1

t2 − t1

∫ t2
t1

z(t) dt =
1

t2 − t1

∫ t2
t1

[x(t) +  y(t)] dt

=
1

t2 − t1

∫ t2
t1

x(t) dt+ 
1

t2 − t1

∫ t2
t1

y(t) dt = M(x) + M(y) .

An important difference is that for complex signal properties, anywhere we had thesquared valuex2(t) before, we replace it with
themagnitude squared|z(t) |2 = z(t) z∗(t) = x2(t) + y2(t) .

Example. Theenergyof a complex signalz(t) is E(z) =
∫ t2
t1

|z(t) |2 dt.

Another related difference is that we define correlation for complex signals as follows:

C(z1, z2) =

∫ t2
t1

z1(t) z
∗
2(t) dt.

One reason for this choice is that it satisfiesE(z) = C(z, z).

Example. Find the correlation betweenz1(t) = e− (2π7t+π/3) andz2(t) = e (2π21t−π/4) over the interval[0, 1/7].

C(z1, z2) =

∫ 1/7
0

z1(t) z
∗
2(t) dt =

∫ 1/7
0

e− (2π7t+π/3)e− (2π21t−π/4) dt

= e− π/12
∫ 1/7
0

e− 2π28t dt = e− π/12
∫ 1/7
0

[cos(2π28t) +  sin(2π28t)] dt = 0,

since the integral is over 4 periods of the sinusoids.

(More generally, suchharmonically-related complex exponential signals are uncorrelated.)

Thesignal operationslike time scaling, time shift, etc. all apply to both the real part and the imaginary part.

Similar considerations fordiscrete-timesignals.

Example. Find the energy of the signalz(t) =

{
e 5te−2t, t > 0
0, otherwise.

E(z) =

∫ ∞
0

|z(t) |2 dt =

∫ ∞
0

∣∣e 5t∣∣2 ∣∣e−2t∣∣2 dt =
∫ ∞
0

e−4t dt =
1

4
.

Note that the frequency (5 rad/s) had no effect on the energy!
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Beat frequencies(Ch. 3.2)

Are complex exponential signals useful for summing sinusoidal signals with different frequencies? Sometimes!

Ch. 3 onspectra is all about sinusoids of different frequencies!

Example. Sum of two “nearly same” frequencies. (Same amplitude for simplicity, not necessity.)

x(t) = A cos(2πf1t) +A cos(2πf2t)

where|f2 − f1| is “small.”

Define the center frequencȳf = f1+f2
2 and∆ = f2 − f̄ = f̄ − f1 for f2 > f1.

(Picture) .

This type ofx(t) has a notable auditory property. Can we describe it mathematically?

x(t) = Re
{
Ae 2πf1t +Ae 2πf2t

}
= ARe

{
e 2π(f̄−∆)t + e 2π(f̄+∆)t

}
= ARe

{
e 2πf̄t

(
e− 2π∆t + e 2π∆t

)}
= ARe

{
e 2πf̄t2 cos(2π∆t)

}
= 2A cos(2π∆t)Re

{
e 2πf̄t

}
= 2A cos(2π∆t) cos(2πf̄t).

No need to remember and use and trigonometry identities. Using complex exponential signals provides a systematic approach.

Alternatively, remembering thatcos(α) cos(β) = 1
2 cos(α + β) +

1
2 cos(α− β) we have

x(t) = 2A

[
1

2
cos
(
2π(f̄ +∆)t

)
+
1

2
cos
(
2π(f̄ −∆)t

)]

= 2A


1
2
cos


2πf̄t︸︷︷︸

α

+2π∆t︸ ︷︷ ︸
β


+ 1

2
cos
(
2πf̄t− 2π∆t

)
= 2A cos(2π∆t) cos

(
2πf̄t

)
.

If ∆� f̄ , then we have the product of a slowly changing sinusoidal signal times a higher frequency sinusoidal signal.

(Picture) of signals and their product.

Demo of closely spaced case and harmonically-related case.

Also try summing square wave and triangular wave.
Why similar? Sum of sinusoids!

Sinusoids? Enough already!

Yes, the real world has many signals that are far more interesting than sinusoidal signals.

Joseph Fourier showed in 1807 that most any signal can be expressed as the sum of (a lot of) sinusoidal signals (not of the same
frequency though!), simply by carefully choosing the frequencies, amplitudes, and phases.

“Joe” did it almost 200 years ago without calculators or MATLAB ...


