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8.1

Ch. 8: lIR Filters

¢ Difference equation

e System function

e Frequency response
e Impulse response
o Partial fraction expansion

e Poles/zeros
e Filter design

Reading
e Text Ch. 8
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8.1
Introduction

In the preceding notch filter example we have seen that a system with poles that are not at the origin can be very useful.

Just as in the example that we worked out, such systems always have the property that the output signal value at deydimds
both on certain input signal valuas well as some previous output signal values

These systems are callestursive.

The general form for a (finitely-computable, causal, LTI) system that depends on both current and past inputs and past outputs is
the followingdifference equation

y[n] = Z ayn — 1]+ Z brx[n — k.
1=1 k=0

Are systems having the above diffeq are causal, linear, and time invariant ?
Yes. Causality is easy to see; LTl is not hard to show.

Theb,'s are calledeed-forward coefficients.
Thea,’s are calledeedbackcoefficients.

To implement such a system, computing each output signal value re@uited/ + 1 multiplies. However, we usually say that
the system is ofVth order since the number of poles has great influence on the system properties.

When we design a filter, we get to piék, M, and thefilter coefficientsay, . ..,ay andbg, ..., bys.
Usually we design in the z-plane though and work backwards from the zeros and poles to find these filter coefficients.

The above form is thenost generatlype of system that we will consider in 206, and is the bread-and-butter of DSP work.
We consider only the usual case of real filters, so the filter coefficients; thandb,’s, are real numbers.
Are FIR filters a special case? Yes, just choos&/ = 0.

Example y[n] = y[n — 1] + z[n] + 3z[n — 1]. Here,N = 1andM = 1.
(Picture) of block diagrams Direct Form | and Direct Form II.

Two delays combine into one just delay using Direct Form II.

8.2
Impulse response: the hard way

The chapter is called “IIR” so apparently such systems ffar 1) have an infinitely long impulse response, but that fact may not
be immediately obvious.

Let us work out a concrete example now by “brute force.” This is not the best way th[fihébr an IIR system in general!
Example Consider thdirst-order system described by[n] = ay[n — 1] + 2z[n|, whereaq is a real number. Find thienpulse
responseh[n].

Before proceeding, we must make a very important assumption, éailliedirest conditions.

¢ We assume the inputis zero prior to some starting tige.e., z[n] = 0 for n < ng. These are callesuddenly appliedinputs.

¢ We assume the output signal is zero prior to the starting time of the signaj[n] = 0 for n < ny. We say that the system is
initially at rest .*

Note thaty[0] = ay[—1] + 2[0] in this example. If the input signal[n] is zero forn < 0 (the usual case considered), then we
assumey[—1] = 0 soy[0] = 2z[0] for this example.

We assumdnitial rest conditions hereafter, both for simplicity of analysis and because that is the usual mode of operation of DSP
systems. (All memory buffers are reset to zero when the system is powered up.)

1The word “rest” has its origins in mathematical models for mechanical systems: think of a ball at rest on a flat plane that is subsequently subgestith forc
as a swift kick. The term “at rest” is not so natural for digital systems, but we use it anyway for historical reasons.
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By definition, the impulse response is the system output when the input is the unit imptilse 6[n].
In other words, the impulse response function satisfies the following recursive relatiohjgtjip: ah[n — 1] 4+ 24[n| . Because it
is recursive, it imota “final answer” forh[n]. However, we can “execute” the recursion to find the impulse response.

Using the initial rest conditions, we have thét] = 0 for n < 0 since the unit impulse input is zero far< 0.

n || dn] | hln—1] || hln]=ah[n — 1] + 2i[n|
<0 0 0 0

0 1 0 2

1 0 2 2a

2 0 2a 2a”

3 0 2a® 2a®

By inspection we see that thmpulse responsés:

1, n>0

n >
hln] = { 2a%, n=>0 = 2a™uln] , whereu[n] £ { 0 otherwise

0, otherwise

We see that the impulse response decays to zef@| (i 1) but never reaches zero (fer 0) so this is indeed aHR filter .

Stability

What happens to h[n] if a > 1 in the preceding example?
The impulse response “blows up” as— oco.

A system is calledbounded-input bounded-output (BIB) stableif all bounded input signals (inputs whelrgn|| < ¢; for some
constant; < oo) produce output signals that are also boundgll]| < c» for somecs < oco.

Is the unit impulse a bounded signal? Yes, withc; = 1.
In our example system, j&| > 1 then the (bounded) unit impulse input produces an unbounded atitpsb that system would
not be BIBO stable.

What if a = 1? Would the system be stable in that case?

To show that the answer is “no” all we need is to find one bounded input signal that produces an unbounded output signal.
For this example, the step function inptit] = u[n] suffices.

n || uln] | y[n —1] || yln] =yln — 1] + 2z[n]
<0 0 0 0

I 0 2

1 || 1 2 4

2 |1 4 6

3 |1 6 8

By inspection we see that thstep responsas:
y[n] = 2(n + )uln].

Is this bounded? No, so the system is unstablddf = 1 as well as ifia| > 1.

One can show that the system is stabljf< 1; we will return to that later when we discuss poles and zeros.

Numerically finding the impulse and step response

The above brute-force method only works for simple cases. For more complicated cases one can eithgransalnaction
expansion methoddescribed later, if an analytical solution is needed, or simply useLUMBs s filter function if a numerical
solution is adequate.

Usingfilter can be convenient for checking your analytical work.
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8.3
System function

Before we can find more general tools for finding the impulse response of IIR filters, we must examine the system function.
Taking thez-transform of both sides of the general difference equation yields

N M
Y(z) = Z az”Y (2) + Z bz * X (2)
=1 k=0

or equivalently
N M
Y(2) [1 - Zalz_l] = [Z bkz_k] X(z).
=1 k=0

Thus thesystem functionis

H(z) = Y (2) _ ZkMzo brz"k _ ﬁ ZkMzo bzM—k _ ﬁ boz™ + b1z 4 by '
X(z) 1- Zl]il az—t M N Zf\il N1 2M 2N —aZN-l —ag2N-2... —an_1z —an

This is a ratio of polynomials so it isrational system function.

Note that thenegative®f the feed-forward coefficients appear in the denominator polynomial!

o If by £ 0, then the numerator polynomial ith order and will have\/ roots calledzeros
If bo = 0 andb; # 0, then the numerator polynomial is of ordef — 1, so there will beM — 1 zeros.

e Because of the leading tera?, the denominator polynomial @waysNth order so it will haveV roots calledooles

e There can also be additional poles or zeros at the origin due te’fie’’ term. These roots do not affect the magnitude
response so are less important.

o If by #£ 0, then the number of poles and zeros need not be identical.

In the usual case whetg # 0, thefactored form of the system function is:

_ B _, AN

N (
=260 T )

L z—z1)(z—22) (2 — zpm)
VM (z—p1)(z—p2) - (=)

Again we represent the system function graphically bpdke-zero plot
Again, the relation betwednequency responseandsystem functionis:

H(w) = H(z) = H(e'?)

z=el @

Example Fory[n] = ay[n — 1] + 2z[n] we haveM = 0, by = 2, N = 1, a; = a, and the block diagram &icture) .

To find the system function, it is usually easier to return to first principles as follows:
y[n] = ayln — 1] +22[n] = Y(2) = az7'Y(2) +2X(2) = (1 —az Y (2) = 2X(2),

so the system function is (notice hdwbecomes the gain):

So the pole-zero diagram is as follows.
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The frequency response of this filter is

so the magnitude response is

H(D)| = - '
H(@)] VI —ac7®) (1 —ae’®) /14 a2 — 2acos(@)

It is difficult to visualize the frequency response from the formule#de), particularly for lIR filters.

However, we can easily enough make a rough sketch of the magnitude response using the relationship derived previously:

R ‘eJ@_Z1|.....‘eJ@’_ZM|
[H(@)] = [bol — :
|e _p1| ..... |e _pN|
For a precise plot, we turn foeqz
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As expected from our previous analyses, frequencies that correspond to positions along the unit circle that are closer to the pole
have a larger magnitude response.

Positioning the pole closer to the unit circle induces a more “peaked” magnitude response.

What happens to the magnitude response as we position the pole closer and closer to the center of the unit circle?
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Impulse response revisited

Given the system functiol (z) = —2— for this example, can we work backwards to find iimpulse responsé:[n]?

az—1

Recall the geometric series formula given in the lecture notes:

S

St 1.
anzl , if bl < 1.
n=0 -

Identify b = az~! in this example and we have

H(z) = 1_#&271 =2 [Z(azl)”] = Z 2a"z7".

Since in general

we see immediately that
2a", n>0 aon
hin] = { 0, otherwise 2a"uln].

This is valid only if [b| = ‘az’1| < 1,i.e, |z| > |a|. This is called theegion of convergenceof the z-transform, an important
topic discussed in detail in EECS 451 but not in 206.

Of course we already knew this particular impulse response from the brute-force method used earlier, but using the z-transformr
will be more general.

However, the specifiseries expansiorapproach used above is convenient only in special cases. We still need to find a more
general approach.

Nevertheless, we have established a particularly important z-transform pair that should be memorized:

1

a”u[n] = m,

2| > |al
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Example The preceding filter was a fairly poor lowpass filter.

Where would we move the zero to improve this lowpass filter? To z = —1.

Now let us analyze everything about this filter. As always, the starting point is the system function.

z—|—1_ 14271
z—a l—az~

H(z) = T

SinceH (z) = Y(z) /X (z), cross multiplying yields
Y(2) —az7'Y(2) = X(2) + 271X (2) = y[n] = ay[n — 1] + z[n] + z[n — 1].

SoN = 1andM = 1. This illustrates the easiest way to find ti€erence equationgiven the system function.

We now find the impulse response in two different ways.

Method 1. .
1+ 2~ 1 L1 .
H(z) = 1 — az-1 = 1 —as-1 + 2z P = hln] = a"uln] + a" tu[n — 1],
shift property
using linearity.
Method 2.
1+27t  l1—-azl+azt+27! 41 o1
H(z)zl—az—lz = =1+ (a+1)z méh[n]zé[n]—i—(a—i—l)a uln —1].

This answer is a bit easier to visualize, but the two answers are mathematically equal.

To show that they are equal, recall thét] = u[n] — u[n — 1J.
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Inverse z-transform by partial fraction expansion

In the preceding first-order examples, we found the impulse resgdnsérom the system functiod (z) by simply using the
following approach to the inversetransform:

e “table lookup” of the pain"u[n] <=
e linearity,

e shift property.

l—az—1"

For higher order systems (more than 1 pole), we need a more general approach, since most higher order cases are notintables. T
partial fraction expansion method is the systematic approach, and is illustrated in the following example.

Example Consider the system with the following pole-zero plot. Im(z)
- z

/\ -
% 3l
gain=1

z Ay A
H(z) = (z+2/3)(z — 3/4) - z+2/3 * z—?’)/4

where the coefficients are given by :

2 ~2/3 8
A= GER2HE)| = T ey —2/3-3/4 17
p 3/4 9

Ay = (2 — 3/4)H(2)

s 2 +2/3|,_,, 3/4+2/3 1T

Thus the system function has the followiegpanded fornt

o BT O 8T 9T
Cz+4+2/3 2-3/4 14+2/3271 1-3/4z71

(Itis a good idea to cross multiply to check the algebra.)
Again using table lookup, linearity, and the shift property, we find that the impulse response by taking thezirvanséorm:

hln] = %(—2/3)”‘1u[n -1+ %(3/4)”—1u[n —1].

To find the diffeq, note that

z 271

22— (1/12)z—1/2  1- (1/12)z 1 —1/2z 2

H(z) =

So the diffeq is

y[n] = 1—12y[n - 1]+ %y[n — 2]+ z[n —1].

SoN =2andM = 1. Sinceby # 0, the number of zeros differs from the number of poles.
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Alternative derivation of impulse response in termgof.

-1
Bz =3 2/3zj)(1 " 3/42-1) 1+ 20/13z1 Tz 30/24z1
uhere - 27! -3/2 -3/2 12
C1= (1+2/3:70H() a3 1-3/42 1|, 1-3/4(-3/2) 1+9/8 17
271 4/3 4/3 12

Co=(1-3/42"YH(2)

s L42/3270|, ), 1+2/3(4/3) 1+8/9 17

So the expanded system function is:

271 o —12/17 12/17
(14+2/3271)(1 —3/42=1)  1+2/3271  1-3/4z"1"

H(z) =

Thus the impulse response is

o] = —12(~2/3)"uln] + 12(3/4)"uln].

The two expressions fdt[n] look slightly different, but in fact are identical! In particular, note thii] = 0.
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Application: Channel Equalization
The following example illustrates many concepts: cascaded systems, PFE with complex poles, channel equalization.

Example Assume that the signal received by a mobile phone base station is the sum of the transmitted signal plus an attenuatec
and delayed version of the transmitted signal due to reflection off of a building:

yr[n] = z[n] + ix[n —2].

We would like to process the received sigpaln| to recover the original signal[n], using a “channel equalizing” filter with
impulse responsk.[n].

z[n] — | channelh.[n] = §[n] + 16[n — 2] L equalizerhe[n] | — £[n] ~ z[n].

Design the equalizing filter and determine its impulse respbpsa.

As usual, look in the domain: we wan#,.(z) H.(z) = 1, so

Im(z)
1 1 2 2 ﬁ) Re()
H =1 —72 = H, = = = = .
(%) + -z e(2) H(z) 1+ izfz 2241/4 (z—7/2)(z+1/2) )
1
1 Ch Cy
He = =
(2) 1-2z"1+%271) 1-2271 + 142271
7 1 1 1
Ci = (1—-=z"")H.(z = =— ==
( 2 ) ¢ z=3/2 1+ %271 2=y /2 1+1 2
7 1 1 1
Cy = (14+=2")H.(2) =" = =z
(L+52 He e=mg/2 =427t __ o, 1412
1/2 1/2
Now we can find the impulse response:
_Ll L g
heln] = 5(=3)"uln] + 5 () uln]

Note that there is onmodeassociated with each pole. FIR chaneel IIR equalizer!
However, this form is unacceptable; we must manipulate it to put it in a form that is real:

hefn] = % (%e_”m)nu[n] +% (%eﬂﬂ)nu[n] - %(1/2% (75" 4 & ) uln)

= %(1/2)” {2 cos(gn)} u[n] = (1/2)" cos(gn)u[n] .

In general, a pair of complex-conjugate poles locateg:#t“° yields amodein the impulse response of the fontfi cos(won).

To implement this equalization filter, we need its diffeq:

LX) L %)+ LX) = Vi) = dfn) = —Lap— 2 + gl

H.(z) =
(Z) 1+ %Z—z Y,«(z) 4 4

This filter would be very difficult to design with only time-domain tools!
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Input signals to output signals examples

Givenz([n] and a filter, how do we find the outpyfin]?
The best approach usually depends on the form of the input signal!
The type of input signal will influence which type of system description will be most useful, (&), or H(2)).

We give several examples using the following 1st-order system:

) Im(z)
1, HE) =1z 327! Re()
z[n] = | h[n] = (5) u[n] | = y[n] = hin] x z[n] = 1 = :
H(w) = T Too
2

Convolution is rarely the best way!

Exampld.. z[n] is impulses. Usé[n].
oln] = 30T0] + 76T — 4] T y[n] = Bhln] + Thin — 4] = 3(3)"uln] + 7(5)"*uln 4.

Exampl. z[n] has a rationat-transform. Use (z).

1 1 1
C; = (1-=2"YH(2) = =
2 2=1/2 1—az 2=1/2 1—-2a
1 —2a
= — -1 = =
Cy = (l—az ")H(z2) =1 %z—l T 2a
z=a
S0 1 1 2
_ “\n —sa g,
yin] = T (5)"uln] + T—g-a"uln] .

natural response forced response

Exampl@. Eternal sinusoid. UsH (o).
z[n] = cos(mn) 7 yln] = [H(m)|cos(mn + LH(x)), H(n) = H(-1) =2/3. = y[n| = gcos(ﬂ'n).

Examplé. Suddenly applied sinusoid.
e Use?(w) if only the steady-state response is needed.
e Use X (z) andH(z) otherwise.

1 n 2 n
5(5) uln]  + g(—l) uln]

—_— | —
transient response steady-state response

z[n] = cos(mn)ul[n] = (—1)"uln| N yln] =

where we used Example2 with= —1.

For a sinusoid of frequenayy, in general we have two terms, oneeat*” = (e’“°)™ and one at its conjugate. So Example2
covers suddenly applied complex exponential signals too, and hence, using linearity, sinusoids.

In general:

z[n] = Acos(won + @)u[n] — — yY[n] = Yiransient[n] + [H(wo)| A cos(won + LH (wo))-



© J. Fessler, June 9, 2003, 16:35 (student version) 8.12

So the “sine in / sine out” property holds asymptoticallynas> oo (i.e., in steady state) for lIR systems, assuming all of the poles
are within the unit circle so the transient response decays towards zero.

Example’. Step response. Us#(z) sinceu[n] <= ——.
2fn] = uln] % yln] = —(1/2)"uln] + 2uln],
usinga = 1 in Exampl@. Note that{(0) = H(1) = 2.
Again we see a transient + steady-state response.
For steady-state response only, G5@).
Examplé. Periodic input signal. Use DFT anfd(w).
z[n] = 1,0,1,0,...(Picture) Analysis:

so by synthesis:

(-1)" N y[n] = %7—[(0) + H(m) % cos(mn + LH(m)) =1+ %cos(wn) =4/3,2/3,...

DN | =

1
:z:[n] =—-+ ™= §+

Examplel’. Suddenly applied sinusoid. Udé(z).

1 1
z[n] = cos(won)uln] = 567“°”u[n] + §e_Jw°"u[n]
1 1
— 5 (ero)n u[n] 4 5 (e—]wo)n u[n]
1 1 1 1
— X = = =
(=) 21— w1 21— sws1
1 1—elwoz=l 41— elwoyl
21— etwoz1)(1 —e~awoz~1)
B 1 —coswpz ™t
T 1—2coswpz— 4 22
_ B 1 — coswpz ! 1 _ C4 Cy C3
V() = X(2) H(z) = (1—elwoz1)(1 —edwoz—1) 1— 1271 11— 1271 * 1 —eiwoz—1 + 1—eJwoy—l

1 1 —2coswy
C = 1 - a5 -1 Y = — -
' ( 22 Y () =1 5 — 4 coswyp
1 — coswpe? “° 1 1 1 1
— _ aJwo,—1 _ 0 _1 1
Cy; = (1 e z )Y(Z) el @0 1—eJ2wo 1 _ %e_on 21— %e—on 27‘[(&)0) .
So the output signal is:
1-2 1 1
y[n] = 5_47222(:2(1/2)”11,[71] + 57‘[(&)0) eronu[n] + 57‘[*(010) efjwonu[n]
1 —2coswy

= 5_47(1/2)117«&[71] + [H(wo)| cos(won + £LH(wo))u[n] .
cos wy

: steady-state response
transient response
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Discrete-time systems described by difference equatiofBIR and IIR)
Difference equation:
N M
yln] =Y ayln — 1)+ ) braln — K]
=1 k=0
System function (in expanded polynomial and in factored polynomial forms):
Y(z) _ Salebez ™™ botbiz et bae™ 0 T (2 — )
H(Z) = = N = = e =z bONi
X(z) 1= a2t l—aizt—--—ayz [y (z — pr)
Relationships:
Difference Equation
~ N
N ~—
~ X
< ~N ‘%2/
X @ S,
2 8 @
O
r <&
< inverse Z, PFE
Block Diagram System Functiorl () Impulse Response
H(2)=Y(2)/X(z)
VT T
N o]
| = iy
s U= 1 5 DTFT (EECS 451)
s o
T I
Q
| \ / |

e\ Y

Pole-Zero Plot Frequency Response

A S

Filter Design



