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Ch. 8: IIR Filters
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◦ Partial fraction expansion
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8.1
Introduction

In the preceding notch filter example we have seen that a system with poles that are not at the origin can be very useful.

Just as in the example that we worked out, such systems always have the property that the output signal value at any timen depends
both on certain input signal valuesas well as some previous output signal values.

These systems are calledrecursive.

The general form for a (finitely-computable, causal, LTI) system that depends on both current and past inputs and past outputs is
the followingdifference equation:

y[n] =

N∑
l=1

aly[n− l] +
M∑
k=0

bkx[n− k] .

Are systems having the above diffeq are causal , linear , and time invariant ?
Yes. Causality is easy to see; LTI is not hard to show.

Thebk’s are calledfeed-forward coefficients.
Theal’s are calledfeedbackcoefficients.

To implement such a system, computing each output signal value requiresN +M + 1 multiplies. However, we usually say that
the system is ofN th order since the number of poles has great influence on the system properties.

When we design a filter, we get to pickN ,M , and thefilter coefficientsa1, . . . , aN andb0, . . . , bM .
Usually we design in the z-plane though and work backwards from the zeros and poles to find these filter coefficients.

The above form is themost generaltype of system that we will consider in 206, and is the bread-and-butter of DSP work.

We consider only the usual case of real filters, so the filter coefficients, theal’s andbk ’s, are real numbers.

Are FIR filters a special case? Yes, just chooseN = 0.

Example. y[n] = 1
2y[n− 1] + x[n] + 3x[n− 1]. Here,N = 1 andM = 1.

(Picture) of block diagrams Direct Form I and Direct Form II.
Two delays combine into one just delay using Direct Form II.

8.2
Impulse response: the hard way

The chapter is called “IIR” so apparently such systems (forN ≥ 1) have an infinitely long impulse response, but that fact may not
be immediately obvious.

Let us work out a concrete example now by “brute force.” This is not the best way to findh[n] for an IIR system in general!

Example. Consider thefirst-order system described byy[n] = ay[n− 1] + 2x[n] , wherea is a real number. Find theimpulse
responseh[n].

Before proceeding, we must make a very important assumption, calledinitial rest conditions.
• We assume the input is zero prior to some starting timen0, i.e., x[n] = 0 for n < n0. These are calledsuddenly appliedinputs.
• We assume the output signal is zero prior to the starting time of the signal,i.e., y[n] = 0 for n < n0. We say that the system is

initially at rest .1

Note thaty[0] = ay[−1] + 2x[0] in this example. If the input signalx[n] is zero forn < 0 (the usual case considered), then we
assumey[−1] = 0 soy[0] = 2x[0] for this example.

We assumeinitial rest conditions hereafter, both for simplicity of analysis and because that is the usual mode of operation of DSP
systems. (All memory buffers are reset to zero when the system is powered up.)

1The word “rest” has its origins in mathematical models for mechanical systems: think of a ball at rest on a flat plane that is subsequently subject to forces such
as a swift kick. The term “at rest” is not so natural for digital systems, but we use it anyway for historical reasons.
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By definition, the impulse response is the system output when the input is the unit impulsex[n] = δ[n].
In other words, the impulse response function satisfies the following recursive relationship:h[n] = ah[n− 1] + 2δ[n] . Because it
is recursive, it isnot a “final answer” forh[n]. However, we can “execute” the recursion to find the impulse response.

Using the initial rest conditions, we have thath[n] = 0 for n < 0 since the unit impulse input is zero forn < 0.

n δ[n] h[n− 1] h[n] = ah[n− 1] + 2δ[n]
< 0 0 0 0
0 1 0 2
1 0 2 2a
2 0 2a 2a2

3 0 2a2 2a3

...
...

...
...

By inspection we see that theimpulse responseis:

h[n] =

{
2an, n ≥ 0
0, otherwise

= 2anu[n] , whereu[n]
4
=

{
1, n ≥ 0
0, otherwise.

We see that the impulse response decays to zero (if|a| < 1) but never reaches zero (fora 6= 0) so this is indeed anIIR filter .

Stability

What happens to h[n] if a > 1 in the preceding example?
The impulse response “blows up” asn→∞.

A system is calledbounded-input bounded-output (BIB) stableif all bounded input signals (inputs where|x[n]| ≤ c1 for some
constantc1 <∞) produce output signals that are also bounded:|y[n]| ≤ c2 for somec2 <∞.

Is the unit impulse a bounded signal? Yes, withc1 = 1.
In our example system, if|a| > 1 then the (bounded) unit impulse input produces an unbounded outputan, so that system would
not be BIBO stable.

What if a = 1? Would the system be stable in that case?

To show that the answer is “no” all we need is to find one bounded input signal that produces an unbounded output signal.
For this example, the step function inputx[n] = u[n] suffices.

n u[n] y[n− 1] y[n] = y[n− 1] + 2x[n]
< 0 0 0 0
0 1 0 2
1 1 2 4
2 1 4 6
3 1 6 8
...

...
...

...
By inspection we see that thestep responseis:

y[n] = 2(n+ 1)u[n] .

Is this bounded? No, so the system is unstable if|a| = 1 as well as if|a| > 1.

One can show that the system is stable if|a| < 1; we will return to that later when we discuss poles and zeros.

Numerically finding the impulse and step response

The above brute-force method only works for simple cases. For more complicated cases one can either use thepartial-fraction
expansion methoddescribed later, if an analytical solution is needed, or simply use MATLAB ’s filter function if a numerical
solution is adequate.

Usingfilter can be convenient for checking your analytical work.
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8.3
System function

Before we can find more general tools for finding the impulse response of IIR filters, we must examine the system function.
Taking thez-transform of both sides of the general difference equation yields

Y (z) =

N∑
l=1

alz
−lY (z) +

M∑
k=0

bkz
−kX(z)

or equivalently

Y (z)

[
1−

N∑
l=1

alz
−l

]
=

[
M∑
k=0

bkz
−k

]
X(z) .

Thus thesystem functionis

H(z) =
Y (z)

X(z)
=

∑M
k=0 bkz

−k

1−
∑N
l=1 alz

−l
=
zN

zM

∑M
k=0 bkz

M−k

zN −
∑N
l=1 alz

N−l
=
zN

zM
b0z
M + b1z

M−1 + · · ·+ bM
zN − a1zN−1 − a2zN−2 · · · − aN−1z − aN

.

This is a ratio of polynomials so it is arational system function.

Note that thenegativesof the feed-forward coefficients appear in the denominator polynomial!
• If b0 6= 0, then the numerator polynomial isM th order and will haveM roots calledzeros.

If b0 = 0 andb1 6= 0, then the numerator polynomial is of orderM − 1, so there will beM − 1 zeros.
• Because of the leading termzN , the denominator polynomial isalwaysN th order so it will haveN roots calledpoles.
• There can also be additional poles or zeros at the origin due to thezN/zM term. These roots do not affect the magnitude

response so are less important.
• If b0 6= 0, then the number of poles and zeros need not be identical.

In the usual case whereb0 6= 0, thefactored form of the system function is:

H(z) =
B(z)

A(z)
= b0

zN

zM

∏M
i=1(z − zi)∏N
j=1(z − pj)

= b0
zN

zM
(z − z1)(z − z2) · · · (z − zM )

(z − p1)(z − p2) · · · (z − pN )
.

Again we represent the system function graphically by itspole-zero plot.
Again, the relation betweenfrequency responseandsystem functionis:

H(ω̂) = H(z)
∣∣∣
z=e ω̂

= H
(
e ω̂
)

Example. Fory[n] = ay[n− 1] + 2x[n] we haveM = 0, b0 = 2,N = 1, a1 = a, and the block diagram is(Picture) .

To find the system function, it is usually easier to return to first principles as follows:

y[n] = ay[n− 1] + 2x[n] ⇒ Y (z) = az−1Y (z) + 2X(z) ⇒ (1− az−1)Y (z) = 2X(z) ,

so the system function is (notice howb0 becomes the gain):

H(z) =
Y (z)

X(z)
=

2

1− az−1
= 2

z

z − a
.

So the pole-zero diagram is as follows. Re(z)

Im(z)

a
gain = 2
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The frequency response of this filter is

H(ω̂) = H
(
e ω̂
)
=

2

1− ae− ω̂
,

so the magnitude response is

|H(ω̂)| =
2√

(1− ae− ω̂)(1− ae ω̂)
=

2√
1 + a2 − 2a cos(ω̂)

.

It is difficult to visualize the frequency response from the formula forH(ω̂), particularly for IIR filters.

However, we can easily enough make a rough sketch of the magnitude response using the relationship derived previously:

|H(ω̂)| = |b0|

∣∣e ω̂ − z1∣∣ · · · · · ∣∣e ω̂ − zM ∣∣
|e ω̂ − p1| · · · · · |e ω̂ − pN |

.

For a precise plot, we turn tofreqz .
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As expected from our previous analyses, frequencies that correspond to positions along the unit circle that are closer to the pole
have a larger magnitude response.

Positioning the pole closer to the unit circle induces a more “peaked” magnitude response.

What happens to the magnitude response as we position the pole closer and closer to the center of the unit circle?
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Impulse response revisited

Given the system functionH(z) = 2
1−az−1 for this example, can we work backwards to find theimpulse responseh[n]?

Recall the geometric series formula given in the lecture notes:

∞∑
n=0

bn =
1

1− b
, if |b| < 1.

Identify b = az−1 in this example and we have

H(z) =
2

1− az−1
= 2

[
∞∑
n=0

(az−1)n

]
=

∞∑
n=0

2anz−n.

Since in general
H(z) =

∑
n

h[n] z−n

we see immediately that

h[n] =

{
2an, n ≥ 0
0, otherwise

= 2anu[n] .

This is valid only if |b| =
∣∣az−1∣∣ < 1, i.e., |z| > |a|. This is called theregion of convergenceof the z-transform, an important

topic discussed in detail in EECS 451 but not in 206.

Of course we already knew this particular impulse response from the brute-force method used earlier, but using the z-transform
will be more general.

However, the specificseries expansionapproach used above is convenient only in special cases. We still need to find a more
general approach.

Nevertheless, we have established a particularly important z-transform pair that should be memorized:

anu[n]⇐⇒
1

1− az−1
, |z| > |a|
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Example. The preceding filter was a fairly poor lowpass filter.

Where would we move the zero to improve this lowpass filter? To z = −1.

Re(z)

Im(z)

a
gain = 1 (for simplicity)

Now let us analyze everything about this filter. As always, the starting point is the system function.

H(z) =
z + 1

z − a
=
1 + z−1

1− az−1

SinceH(z) = Y (z) /X(z), cross multiplying yields

Y (z)− az−1Y (z) = X(z) + z−1X(z) ⇒ y[n] = ay[n− 1] + x[n] + x[n− 1] .

SoN = 1 andM = 1. This illustrates the easiest way to find thedifference equationgiven the system function.

We now find the impulse response in two different ways.

Method 1.

H(z) =
1 + z−1

1− az−1
=

1

1− az−1
+ z−1

1

1− az−1
⇒ h[n] = anu[n] + an−1u[n− 1]︸ ︷︷ ︸

shift property

,

using linearity.

Method 2.

H(z) =
1 + z−1

1− az−1
=
1− az−1 + az−1 + z−1

1− az−1
= 1+ (a+ 1)z−1

1

1− az−1
⇒ h[n] = δ[n] + (a+ 1)an−1u[n− 1] .

This answer is a bit easier to visualize, but the two answers are mathematically equal.

To show that they are equal, recall thatδ[n] = u[n]− u[n− 1].
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Inversez-transform by partial fraction expansion

In the preceding first-order examples, we found the impulse responseh[n] from the system functionH(z) by simply using the
following approach to the inversez-transform:
• “table lookup” of the pairanu[n]⇐⇒ 1

1−az−1 ,
• linearity,
• shift property.

For higher order systems (more than 1 pole), we need a more general approach, since most higher order cases are not in tables. The
partial fraction expansion method is the systematic approach, and is illustrated in the following example.

Example. Consider the system with the following pole-zero plot.

Re(z)

Im(z)

-2/3 3/4

gain = 1

H(z) =
z

(z + 2/3)(z − 3/4)
=

A1

z + 2/3
+

A2

z − 3/4

where the coefficients are given by :

A1 = (z + 2/3)H(z)
∣∣∣
z=−2/3

=
z

z − 3/4

∣∣∣∣
z=−2/3

=
−2/3

−2/3− 3/4
=
8

17

A2 = (z − 3/4)H(z)
∣∣∣
z=3/4

=
z

z + 2/3

∣∣∣∣
z=3/4

=
3/4

3/4 + 2/3
=
9

17
.

Thus the system function has the followingexpanded form:

H(z) =
8/17

z + 2/3
+
9/17

z − 3/4
= z−1

8/17

1 + 2/3z−1
+ z−1

9/17

1− 3/4z−1
.

(It is a good idea to cross multiply to check the algebra.)
Again using table lookup, linearity, and the shift property, we find that the impulse response by taking the inversez-transform:

h[n] =
8

17
(−2/3)n−1u[n− 1] +

9

17
(3/4)n−1u[n− 1] .

To find the diffeq, note that

H(z) =
z

z2 − (1/12)z − 1/2
=

z−1

1− (1/12)z−1 − 1/2z−2
.

So the diffeq is

y[n] =
1

12
y[n− 1] +

1

2
y[n− 2] + x[n− 1] .

SoN = 2 andM = 1. Sinceb0 6= 0, the number of zeros differs from the number of poles.
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Alternative derivation of impulse response in terms ofz−1.

H(z) =
z−1

(1 + 2/3z−1)(1 − 3/4z−1)
=

C1

1 + 2/3z−1
+

C2

1− 3/4z−1

where

C1 = (1 + 2/3z
−1)H(z)

∣∣∣
z=−2/3

=
z−1

1− 3/4z−1

∣∣∣∣
z=−2/3

=
−3/2

1− 3/4(−3/2)
=
−3/2

1 + 9/8
= −
12

17

C2 = (1− 3/4z
−1)H(z)

∣∣∣
z=3/4

=
z−1

1 + 2/3z−1

∣∣∣∣
z=3/4

=
4/3

1 + 2/3(4/3)
=

4/3

1 + 8/9
=
12

17
.

So the expanded system function is:

H(z) =
z−1

(1 + 2/3z−1)(1− 3/4z−1)
=
−12/17

1 + 2/3z−1
+

12/17

1− 3/4z−1
.

Thus the impulse response is

h[n] = −
12

17
(−2/3)nu[n] +

12

17
(3/4)nu[n] .

The two expressions forh[n] look slightly different, but in fact are identical! In particular, note thath[0] = 0.
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Application: Channel Equalization

The following example illustrates many concepts: cascaded systems, PFE with complex poles, channel equalization.

Example. Assume that the signal received by a mobile phone base station is the sum of the transmitted signal plus an attenuated
and delayed version of the transmitted signal due to reflection off of a building:

yr[n] = x[n] +
1

4
x[n− 2] .

We would like to process the received signalyr[n] to recover the original signalx[n], using a “channel equalizing” filter with
impulse responsehe[n].

x[n]→ channel:hc[n] = δ[n] + 14δ[n− 2]
yr[n]
−→ equalizer:he[n] → x̂[n] ≈ x[n] .

Design the equalizing filter and determine its impulse responsehe[n].

As usual, look in thez domain: we wantHc(z)He(z) = 1, so

Hc(z) = 1 +
1

4
z−2 ⇒ He(z) =

1

Hc(z)
=

1

1 + 14z
−2
=

z2

z2 + 1/4
=

z2

(z −  /2)(z +  /2)
.

Re(z)

Im(z)

2
1
2

− 12

He(z) =
1

(1− 2 z
−1)(1 + 2 z

−1)
=

C1

1− 2 z
−1
+

C2

1 + 2 z
−1

C1 = (1−


2
z−1)He(z)

∣∣∣
z= /2

=
1

1 + 2 z
−1

∣∣∣∣
z= /2

=
1

1 + 1
=
1

2

C2 = (1 +


2
z−1)He(z)

∣∣∣
z=− /2

=
1

1− 2 z
−1

∣∣∣∣
z=− /2

=
1

1 + 1
=
1

2

He(z) =
1/2

1− 2 z
−1
+

1/2

1 + 2 z
−1

Now we can find the impulse response:

he[n] =
1

2
(−


2
)nu[n] +

1

2
(


2
)nu[n] .

Note that there is onemodeassociated with each pole. FIR channel⇒ IIR equalizer!

However, this form is unacceptable; we must manipulate it to put it in a form that is real:

he[n] =
1

2

(
1

2
e− π/2

)n
u[n] +

1

2

(
1

2
e π/2

)n
u[n] =

1

2
(1/2)n

(
e−

π
2 n + e

π
2 n
)
u[n]

=
1

2
(1/2)n

[
2 cos(

π

2
n)
]
u[n] = (1/2)n cos(

π

2
n)u[n] .

In general, a pair of complex-conjugate poles located atre± ω0 yields amode in the impulse response of the formrn cos(ω0n).

To implement this equalization filter, we need its diffeq:

He(z) =
1

1 + 14z
−2
=
X̂(z)

Yr(z)
⇒ X̂(z) +

1

4
z−2X̂(z) = Yr(z) ⇒ x̂[n] = −

1

4
x̂[n− 2] + yr[n] .

This filter would be very difficult to design with only time-domain tools!
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Input signals to output signals examples

Givenx[n] and a filter, how do we find the outputy[n]?
The best approach usually depends on the form of the input signal!
The type of input signal will influence which type of system description will be most useful (h[n],H(ω̂), orH(z)).

We give several examples using the following 1st-order system:

x[n]→ h[n] = (
1

2
)nu[n] → y[n] = h[n] ∗ x[n] ⇒

H(z) =
1

1− 12z
−1

H(ω̂) =
1

1− 12e
− ω̂

⇒ Re(z)

Im(z)

.

Convolution is rarely the best way!

Example1. x[n] is impulses. Useh[n].

x[n] = 3δ[n] + 7δ[n− 4]
T
→ y[n] = 3h[n] + 7h[n− 4] = 3(

1

2
)nu[n] + 7(

1

2
)n−4u[n− 4] .

Example2. x[n] has a rationalz-transform. UseH(z).

x[n] = anu[n]
T
→ Y (z) = H(z)X(z) =

1

(1 − 12z
−1)(1 − az−1)

=
C1

1− 12z
−1
+

C2

1− az−1

C1 = (1−
1

2
z−1)H(z)

∣∣∣∣
z=1/2

=
1

1− az−1

∣∣∣∣
z=1/2

=
1

1− 2a

C2 = (1− az−1)H(z)
∣∣∣
z=a
=

1

1− 12z
−1

∣∣∣∣
z=a

=
−2a

1− 2a

So

y[n] =
1

1− 2a
(
1

2
)nu[n]︸ ︷︷ ︸

natural response

+
−2a

1− 2a
anu[n]︸ ︷︷ ︸

forced response

.

Example3. Eternal sinusoid. UseH(ω̂).

x[n] = cos(πn)
T
→ y[n] = |H(π)| cos(πn+ \H(π)), H(π) = H(−1) = 2/3. ⇒ y[n] =

2

3
cos(πn).

Example4. Suddenly applied sinusoid.
• UseH(ω̂) if only the steady-state response is needed.
• UseX(z) andH(z) otherwise.

x[n] = cos(πn)u[n] = (−1)nu[n]
T
→ y[n] =

1

3
(
1

2
)nu[n]︸ ︷︷ ︸

transient response

+
2

3
(−1)nu[n]︸ ︷︷ ︸

steady-state response

,

where we used Example2 witha = −1.

For a sinusoid of frequencyω0, in general we have two terms, one ate ω0n = (e ω0)n and one at its conjugate. So Example2
covers suddenly applied complex exponential signals too, and hence, using linearity, sinusoids.

In general:

x[n] = A cos(ω0n+ φ)u[n]→ H(ω̂) → y[n] = ytransient[n] + |H(ω0)|A cos(ω0n+ \H(ω0)).
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So the “sine in / sine out” property holds asymptotically asn→∞ (i.e., in steady state) for IIR systems, assuming all of the poles
are within the unit circle so the transient response decays towards zero.

Example2’. Step response. UseH(z) sinceu[n]⇐⇒ 1
1−z−1 .

x[n] = u[n]
T
→ y[n] = −(1/2)nu[n] + 2u[n] ,

usinga = 1 in Example2. Note thatH(0) = H(1) = 2.

Again we see a transient + steady-state response.

For steady-state response only, useH(0).

Example6. Periodic input signal. Use DFT andH(ω̂).

x[n] = 1, 0, 1, 0, . . . (Picture) Analysis:

X [k] =
1

2

1∑
n=0

x[n] e−
2π
2 kn =

1

2
,

so by synthesis:

x[n] =
1

2
+
1

2
e πn =

1

2
+
1

2
(−1)n

T
→ y[n] =

1

2
H(0) +H(π)

1

2
cos(πn+ \H(π)) = 1 +

1

3
cos(πn) = 4/3, 2/3, . . .

Example4’. Suddenly applied sinusoid. UseH(z).

x[n] = cos(ω0n)u[n] =
1

2
e ω0nu[n] +

1

2
e− ω0nu[n]

=
1

2
(e ω0)n u[n] +

1

2

(
e− ω0

)n
u[n]

⇐⇒ X(z) =
1

2

1

1− e ω0z−1
+
1

2

1

1− e− ω0z−1

=
1

2

1− e ω0z−1 + 1− e ω0z−1

(1− e ω0z−1)(1 − e− ω0z−1)

=
1− cosω0z−1

1− 2 cosω0z−1 + z−2

Y (z) = X(z)H(z) =
1− cosω0z−1

(1− e ω0z−1)(1− e− ω0z−1)
·

1

1− 12z
−1
=

C1

1− 12z
−1
+

C2

1− e ω0z−1
+

C?2
1− e− ω0z−1

C1 = (1−
1

2
z−1)Y (z)

∣∣∣∣
z= 12

=
1− 2 cosω0
5− 4 cosω0

C2 = (1− e ω0z−1)Y (z)
∣∣∣
z=e ω0

=
1− cosω0e ω0

1− e− 2ω0
1

1− 12e
− ω0

=
1

2

1

1− 12e
− ω0

=
1

2
H(ω0) .

So the output signal is:

y[n] =
1− 2 cosω0
5− 4 cosω0

(1/2)nu[n] +
1

2
H(ω0) e

 ω0nu[n] +
1

2
H∗(ω0) e

− ω0nu[n]

=
1− 2 cosω0
5− 4 cosω0

(1/2)nu[n]︸ ︷︷ ︸
transient response

+ |H(ω0)| cos(ω0n+ \H(ω0))u[n]︸ ︷︷ ︸
steady-state response

.
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Discrete-time systems described by difference equations(FIR and IIR)

Difference equation:

y[n] =

N∑
l=1

aly[n− l] +
M∑
k=0

bkx[n− k]

System function (in expanded polynomial and in factored polynomial forms):

H(z) =
Y (z)

X(z)
=

∑M
k=0 bkz

−k

1−
∑N
l=1 alz

−l
=
b0 + b1z

−1 + · · ·+ bMz−M

1− a1z−1 − · · · − aMz−N
= zN−Mb0

∏M
k=1(z − zk)∏N
k=1(z − pk)

Relationships:
Difference Equation

Block Diagram

Pole-Zero Plot

Impulse Response

inverse Z, PFE

Z

Filter Design

Geometry

Frequency Response

H
(z

)=
B

(z
)/

A
(z

)

A
(z

)Y
(z

)=
B

(z
)X

(z
)

H(z)=Y(z)/X(z)

Dire
ct

 F
or

m
 I,

II

In
sp

ec
tio

n?

z,
p

=r
o

o
ts

{b
,a

}

z = e ω̂

x[n] =
δ[n] ⇒

y[n] =
h[n]

b
k =
h[k] if FIR

System FunctionH(z)

DTFT (EECS 451)

H
(z
)
=
g

∏ M k=
1
(z
−
z k
)

∏ N k=
1
(z
−
p
k
)


