Informal Algorithm
What we are going to do is circle groups of “1s” that are rectangles[footnoteRef:1] where each side is a power of 2 in length. The first K-map on this page had a 2x1 and a 1x2 rectangle, the second a 1x4 and the third a 1x2. We never circle a rectangle that is part of a larger legal rectangle. We only circle enough rectangles so that every 1 is circled.
 [1: Recall a square is special case of a rectangle.]

	ab/c
	 00
	 01
	 11
	 10

	0
	0
	0
	1
	1

	1
	0
	1
	1
	0

Notice that in the K-map above there are three rectangles we could circle, but two of them cover all the “1s”.
EECS 270, Fall 2020, Lecture 11 Page 6 of 6

Let’s practice a bit.

	ab/c
	 00
	 01
	 11
	 10

	0
	1
	1
	1
	1

	1
	0
	0
	1
	0

	ab/c
	 00
	 01
	 11
	 10

	0
	1
	0
	0
	1

	1
	0
	1
	1
	1

	ab/c
	 00
	 01
	 11
	 10

	0
	1
	1
	1
	1

	1
	1
	1
	0
	1

[image:]

An interesting example
Circle all rectangles:
	ab/c
	 00
	 01
	 11
	 10

	0
	1
	1
	1
	0

	1
	1
	0
	1
	1

Answer 1
	ab/c
	 00
	 01
	 11
	 10

	0
	1
	1
	1
	0

	1
	1
	0
	1
	1

Answer 2
	ab/c
	 00
	 01
	 11
	 10

	0
	1
	1
	1
	0

	1
	1
	0
	1
	1

Terminology (p308-310)
Notice that we are finding sum-of-products solutions.
· Recall that a minterm is a product term that includes all of the functions variables exactly once.
· The on-set of a function is the set of minterms that define when the function should evaluate to 1 (the minterms that have a 1 in the truth table.)
· The off-set is the set of minterms that evaluate to zero.
· An implicant of a function is a product term that evaluates to 1 only in places that function evaluates to 1. (The on-set of an implicant of a function is a subset of the on-set of the function.)

· Graphically, in a K-map an implicant is: _______________________________________
· An implicant covers those minterms that appears in its on-set.

· What is the on-set of the function F(a,b)=a? _______________________

· What minterms does that function cover? ________________________
· Removing a variable from a term is known as expanding the term. This is the same as expanding the size of a circle on a K-map.

	ab/c
	 00
	 01
	 11
	 10

	0
	1
	1
	0
	0

	1
	1
	1
	0
	0

	ab/c
	 00
	 01
	 11
	 10

	0
	0
	1
	1
	0

	1
	1
	1
	1
	0

· Prime implicant:__

· Essential one[footnoteRef:2]: ___
 [2: This term isn’t used by our text, they skip from prime implicant directly to essential prime implicant.]

· Essential prime implicant: __

	ab/c
	 00
	 01
	 11
	 10

	0
	
	
	
	

	1
	
	
	
	

[image:]

[image:][image:]

More Formal Algorithm
· Identify all prime implicants
· Identify all essential ones.
· Circle all essential prime implicants
· [image:]Cover the remaining minterms using a minimal number of remaining prime implicants.

Notice that there may be more than one solution. Also notice that the last step is a bit vague

	ab/c
	 00
	 01
	 11
	 10

	0
	1
	1
	1
	0

	1
	1
	0
	0
	1

[bookmark: _GoBack]4-variable
	ab/cd
	 00
	 01
	 11
	 10

	00
	0
	1
	1
	0

	01
	0
	1
	1
	0

	11
	0
	0
	1
	1

	10
	0
	0
	0
	0

And some practice with these:

	ab/cd
	 00
	 01
	 11
	 10

	00
	1
	1
	1
	1

	01
	0
	1
	1
	0

	11
	0
	0
	1
	0

	10
	1
	1
	0
	0

	ab/cd
	 00
	 01
	 11
	 10

	00
	1
	1
	0
	1

	01
	0
	0
	0
	0

	11
	0
	0
	0
	1

	10
	1
	0
	0
	1

	ab/cd
	 00
	 01
	 11
	 10

	00
	0
	1
	0
	0

	01
	1
	1
	1
	0

	11
	0
	1
	1
	1

	10
	0
	1
	0
	0

What’s left?
· Don’t cares
· 5+ variable
· Product-of-sums
· Programmable techniques
· Lots of practice.
· More context. Remember this is only for 2-level logic…

Don’t cares:
Note: I’m leaving the zeros blank to make things more readable!

· Use d cells to make prime implicants as large as possible.
· No PI should include only d’s
· Only 1-cells should be considered when finding the minimal cover set.

5-variable
[image:]

Product of Sums:
Let F be: Then F’ is:
	ab/cd
	 00
	 01
	 11
	 10

	00
	
	1
	1
	1

	01
	1
	1
	1
	1

	11
	1
	1
	
	

	10
	1
	1
	
	

[image:]
FF’

Find minimal SoP for F’.
Use deMorgans.

Programmable techniques
· Later in the semester, time allowing.
More context
Basically, just remember that this doesn’t find the “minimal” solution. If finds the minimal sum-of-products. It’s not even clear how we would measure “minimal” over all. Least delay? Least number of gates? Least “gate inputs”? Recall we did a “least delay” solution for GA1. This would have helped find a nice starting point, but wouldn’t have solved the problem.
But this technique does let us find the minimal two-level solution (SoP or PoS). Which is pretty cool.
Questions:
1. Why isn’t this a great technique for a computer? Why is it good for people?

	ab/cd
	 00
	 01
	 11
	 10

	00
	
	
	1
	

	01
	1
	1
	1
	

	11
	
	1
	1
	1

	10
	
	1
	
	

2. What might be easier for a computer?

3. Can you define all the terms we’ve seen?
· On-set, Off-set?
· Implicant, prime implicant?
· Essential one, essential prime implicant?
· Cover?

4. Why is the instance to the right tricky?

image2.png
O = input combinations
for which g outputs 1

‘ = input combinations
for which f outputs 1

f covers g
if /=1 whenever g=1

f=g

Space of all 2"input
combinations (minterms)

image3.png
* Removing a literal from any product term (any implicant)
makes it cover twice as many minterms.

— Removing a literal “grows” the term

— ex. 3 variables: ab’c covers 1 minterm
ab’
ac each cover 2 minterms
b’c
ab’c is an implicant of f.
[)
Any way of removing a literal
w makes ab’c no longer imply f.
So ab’c is a prime implicant of .

image4.png
O = input combinations
for which g outputs 1

. = input combinations
for which f outputs 1

O = input combinations
for which h outputs 1

If g is a product term & g<f,
Then g is an implicant of f.

Space of all 2"input
combinations (minterms)

image5.png
Implicant: Any product term that
implies a function F (i.e., if, for — These are only
some input combination, product 1|(1] a few of the

term P =1, then F = 1 for the same 1| |(1)|(1) implicants of
- this function...

input combination) 10 aa
WX
Yz 00 01 11 10
Prime Implicant: An implicant such 00
that if one literal is removed, the 01 ‘TT
resulting product term no longer " Q 7
implies F
10
WX
YZ\ 00 01 11 10
Essential Prime Implicant: A prime 00|
implicant that covers a minterm ol T3
that is not covered by any other =
prime implicants Jl{ CS |
10 '

Theorem: The minimal SOP of a function is a sum of prime implicants and includes all essential prime implicants

image6.wmf
å

+

=

Z

Y

X

W

d

F

,

,

,

)

14

,

13

,

12

,

8

(

)

15

,

11

,

7

,

5

,

1

(

oleObject1.bin

image7.wmf
1

1

d

d

d

00

01

11

10

WX

YZ

d

1

1

1

00

01

11

10

F

oleObject2.bin

1

1

d

d

d

00

01

11

10

WX

YZ

d

1

1

1

00

01

11

10

F

image8.gif

image9.wmf

ab/c

d

00

01

11

10

0

0

1

0

1

11

1

1

10

1

1

image1.png
* K-map “rules”
¢ Only circle adjacent cells (remember edges are adjacent!)

AB
C_00 01 11 10 C

0 m 0
1 m 1

¢ Only circle groups that are powers of 2 (1, 2, 4, 8, ...)

9] 10

AB AB
C_00 01 11 10 c 0 0
0 Fﬂ 0
1] 1
* Only circle 1-cells
AB AB
C_00 01 11 10 c_ o 0

ofﬂ W 0
1] E

