More on minimization, start on datapath
Register-Transfer Level Design (RTL, Chapter 5)
For the most part, we’ve been tackling fairly simple problems. And for large ones, using a state machine seems like it could get very complex quite quickly. So how do we manage complex designs? The answer is a liberal sprinkling of MSI parts and a state machine to control the whole thing.
Controller
Datapath

The Controller is a state machine. The Datapath is a collection of devices (generally MSI devices like adders, registers, etc.) with control points that lets you choose what to do. You could think of your lab 4 as a datapath where the operation (add, subtract, absolute value) might be controlled by a state machine.

Our text argues that the best way to learn this is to consider a problem you want to solve, then figure out a “high-level state machine”. Then design the datapath and controller. See the table below.

EECS 270 Winter 2020, Lecture 12 Page 6 of 6

[image:]

“Simple” example—Fire a laser.Controller
Datapath

Problem specification:
· We want to fire a laser for “x” milliseconds.
Inputs:
· “Fire” button (active high)
· 8-bit binary number (“x” in milliseconds)
· 1 millisecond clock.
Outputs
· Laser control (active high)

[bookmark: _GoBack][image:]

More complex example: multiplier
While that table is the way you want to design these, it’s pretty hard to start there with a more complex problem. So we’re going to design the controller for a multiplier given the datapath. First we’ll need to review just what it means to multiply numbers (and binary numbers at that).

 1001
* 1011
======

First, note we could build a combinational device which does the multiplication. We could brute force it and just build the truth table (for a 4-bit device we’d get ________ rows and _______ output columns). But that wouldn’t scale very well. We could certainly come up with something trickier (like we did for N-bit adders). But it’s not obvious what that would be. So let’s build a sequential device (that takes multiple clock ticks to solve the problem).

Say our multiplier is going to take some time (clock ticks) to solve the problem. In that case, we’re going to want a signal to tell it to start and one to tell us when it’s done. In addition we need the two inputs (each N bits say) and one output ___________ bits wide.

[image:]

Let’s say we use the following datapath:

Now we need a state machine to control this…

[image:]

[image:]
[image:][image:]CLK
Go
X
Y
Z
Bob
RA
RB
RS

[image:][image:][image:]
image2.png
“Simple” example—Fire a laser.
Problem specification:

© We want to fire a laser for “x” milliseconds.

Inputs:
o “Fire” button (active high)
o 8-bit binary number (“” in milliseconds)
o imillisecond clock
Outputs
o Laser control (active high)

!

Controller

il

Datapath

image3.gif
AED

4o W

Xw s .

image4.gif
o b s
N
N N 4

N

J N Sate)
M

7 W

& ol Azser

image5.png
Gis Go
Zis Zero

0000 A[3:0] B[3:0]
4 14 4 5t
1 >Load
X —{ RA: 8bit register RB: 4-bit register f— Y §3§Z;Zf§,"’
0000000 {g
8 RB=zero?
NG T/ RB[0
—1 8 zero
8-bitAdder Shift Registers shift

8
out[7:0]

A0 into the “open” spot.

ForRs

z 0>Load
1 Clear
23 Hold
3> ShiftLeft

Go A[3:0] B[3:0]
Y.
State Data
Machine Path
ero
Done out[7:0]

Multiplier

image6.png
Gis Go
Zis Zero

0000 A[3:0] B[3:0]
4 14 4 G5Taanee
1 2 Load
x —{RA:8bitregister | [RB: abitregister |— ¥ 27 ShitRight

0000000

i —

{l RB[O]

8-bit Adder

Bob

8
out[7:0]

Shift Registers shift
AO into the “open” spot.

z

EorRS
0-Load

1 Clear
2 Hold
33 Shit Left

Go AB0] B[30]
Y.
State Data
Machine Path
e
Done ou7:0]

Multiplier

image7.png
Gis Go
Zis Zero

0000 A[3:0] B[3.0]
Go A0l B[30]
4 4 4 0> Hold
1Load
x —{RA8bitregister | [RB: 4bit register |— ¥ ity
0000000 .
. Multiplier
{ RB[O] State Data
_1 Machine Path
ero
8-bit Adder Shift Registers shift
ADinto the “open” spot
Bob {8
ForRs
RS: 8-bit register z 0>Losd
1Clear b
2 Hold
fout7:0] shten one our:0]

image8.png

image1.wmf

