

EECS 270 Fall 2014, Lecture 15 Page 1 of 9

Mealy machines (6.3)
A Mealy machine is one where the outputs depend directly on the inputs. That has significantly more implications than you’d think.
· First of all, it means that the outputs will change soon after the inputs change and won’t wait for the next rising edge of the clock. This can be handy (fast response time) and annoying (recall our traffic light example—you really don’t want the light changing from green to yellow to green again).
· Secondly it means that we can sometimes reduce the number of states needed.
· It also means that the outputs need to show up on edges (arcs) of the state diagram rather than in the states. (Why is that?)

Problem:
Using a Moore machine which takes one input X and generates one output Z, design it so that Z goes high iff X has been high for the last two cycles.

Now solve the same problem with a Mealy machine.

Now, let’s look at the timing diagram associated with each machine.

Moore:

CLK
X
State
Z

Mealy:

CLK
X
State
Z

Faster adders (3.4)
Ripple-carry adders are slow.
· How many gate delays do we have for a 4-bit ripple-carry adder (in the worst case)?

· For a 32-bit RCA?

They are however pretty small.
· How many gates total for a 32-bit RCA?

F
A
a3
c
o
s3
b3
F
A
a0
b0
ci
F
A
a2
s2
s1
s0
b2
F
A
a1
b1
a

One other option is that we could “just” write out the truth table for the adder (9 inputs for a 4-bit adder) and write the sum-of-products for the 4-bit adder.
· What would be our gate delay?

· How many gates would there be (this one is hard and we can’t really figure it out easily, but guess).

Pretty clearly 32-bit adders done as sum-of-products would be huge (we’ll discuss how huge later). And if we were limited to 2-input gates, things get crazy quickly.

Start on look-head
In any case, let’s try something smarter. We could add some logic that figures out if there will be a carry in. That in theory could be 2-level logic. But as you can see, computing “c3” involves looking at c0, a0, b0, a1, b1, a2, and b2. Which sounds like our sum-of-products adder. And doing a 32-bit one seems crazy.F
A
a3
c
o
s3
b3
F
A
a0
b0
ci
F
A
a2
s2
s1
s0
b2
F
A
a1
b1
a
F
A
c4
c3
c2
s3
s2
stage 3
stage 2
c1
s1
stage 1
c0
s0
c0
b0
b1
b2
b3
a0
a1
a2
a3
stage 0
c
out
look
ahead
look
ahead
look
ahead
Notice – no rippling of carry

That said, we could just limit ourselves to a 4-bit adder like this and then ripple the 4-bit adders (as shown below). That might be an interesting compromise between size and speed.a3
a2
a1
a0
b3
s3
s2
s1
s0
c
out
c
out
cin
b2
b1
b0
4-bit adder
a3
a2
a1
a0
b3
s3
s2
s1
s0
s11-s8
s15-s12
a15-a12
b15-b12
a11-a8
b11-b8
c
out
cin
b2
b1
b0
4-bit adder
a3
a2
a1
a0
b3
s3
s2
s1
s0
c
out
s7
s6
s5
s4
cin
b2
b1
b0
a7
a6
a5
a4
b7
b6
b5
b4
4-bit adder
a3
a2
a1
a0
b3
s3
s2
s1
s0
s3
s2
s1
s0
c
out
cin
b2
b1
b0
a3
a2
a1
a0
b3
b2
b1
b0
4-bit adder

But we’d like to do better than that. This marginally might speed up things (at the cost of more logic) but it’s only a marginal improvement.

Assume in a RCA each stage takes 1 unit of time. And assume this 4-bit “lookahead” version takes 2 units of time (which is probably reasonable if a bit optimistic). A 16-bit RCA will then take 16 units of time (1 for each of the 16 stages), while this hybrid scheme will take 8 units of time (2 for each of the 4 4-bit stages). So twice as fast. Which is great, but maybe we can do better…

Better Form of Lookahead
· Have each stage compute two terms
· Propagate: P = a xor b
· Generate: G = ab
· Compute lookahead from P and G terms, not from external inputs
· Why P & G? Because the logic comes out much simpler
· Very clever finding; not particularly obvious though
· Why those names?
· G: If a and b are 1, carry-out will be 1 – “generate” a carry-out of 1 in this case
· P: If only one of a or b is 1, then carry-out will equal the carry-in – propagate the carry-in to the carry-out in this case
(
a
)
b3
a3
s3
b2
a2
s2
b1
a1
s1
b0
a0
s0
1
1
0
0
1
carries:
c4 c3 c2 c1 c0
B:
A:
+
+
c
out
cin
1
1
1
1
1
+
0
1
0
1
1
+
1
0
0
1
1
+
c1
c0
b0
a0
if a0
x
or b0 = 1
then c1 = 1 if c0 = 1
(call this P: Propagate)
if a0b0 = 1
then c1 = 1
(call this G:Generate)

“Bad” lookahead
F
A
c4
c3
c2
s3
s2
stage 3
stage 2
c1
s1
stage 1
c0
s0
c0
b0
b1
b2
b3
a0
a1
a2
a3
stage 0
look
ahead
look
ahead
look
ahead
c
out
Better Form of Lookahead
· With P & G, the carry lookahead equations are much simpler
· Equations before plugging in
· c1 = G0 + P0c0
· c2 = G1 + P1c1
· c3 = G2 + P2c2
· cout = G3 + P3c3
After plugging in:
c1 = G0 + P0c0
c2 = G1 + P1c1 = G1 + P1(G0 + P0c0)
c2 = G1 + P1G0 + P1P0c0
c3 = G2 + P2c2 = G2 + P2(G1 + P1G0 + P1P0c0)
c3 = G2 + P2G1 + P2P1G0 + P2P1P0c0
cout = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0c0
Much simpler than the “bad” lookahead
a
a
C
a
r
r
y
-loo
k
ahead lo
g
ic
G3
a3
b3
P3
c3
c
out
s3
G2
a2
b2
P2
c2
s2
G1
a1
b1
P1
c1
s1
G0
a0
b0
cin
P0
c0
s0
(
b
)
Half-adder
Half-adder
Half-adder
Half-adder

Analysis of our 4-bit CLA compared to a RCA
Performing a fair comparison between two architectures can be surprisingly difficult. The difficulty lies in what assumptions we make. Let’s go through two models.
#1 Gates-are-gates model
Here we’ll charge just as much for a 20-input gate as a 2-input gate. This is of course very unrealistic, but has the advantage of being easy. So let’s count total number of gates in both and worst-case delay (again, assuming all gates are equal).
	Adder type (4-bit)
	RCA
	CLA

	Gate count
	
	

	Gate delays
	
	

#2 “Reasonable” gate scaling
Here for count we’ll charge each gate an amount equal to the number of inputs it has. So a 3-input OR gate costs 3 and a 2-input XOR gate costs 2. But for delay we’ll charge log2(inputs). So 1 input is free, 2-inputs costs 1, 3 inputs is 1.5 (okay, 1.58 but let it go), 4 inputs is 2, 5 inputs is 2.25 (2.3) and 6 inputs is 2.5 (2.6).
	Adder type (4-bit)
	RCA
	CLA

	Gate-input count
	
	

	Log2(gate-input) delays
	
	

What is your conclusion about these two schemes?

Bigger than 4 bits?
OK, it seems that this will start to get ugly past 4 bits. How could we build a 16-bit adder? 4-bit adder

Ripple-carry (again)
One obvious way is to just ripple the carry. What is the delay and count for each of the two schemes?
[image:]

	Adder type (16-bit)
	RCA
	CLA

	Gate count
	
	

	Gate delays
	
	

	Adder type (16-bit)
	RCA
	CLA

	Gate-input count
	
	

	Log2(gate-input) delays
	
	

Carry-lookahead (again)
[image:]Or we could try to get tricky. Obviously (?), we could use the lookahead logic again.

	Adder type (16-bit)
	CLA

	Gate count
	

	Gate delays
	

	Adder type (16-bit)
	CLA

	Gate-input count
	

	Log2(gate-input) delays
	

Of course, we have another option: 2-level logic
[image:]
It turns out counting the number of gates for the 2-level adder is pretty hard. But here’s a graph (figure 4.24 from the text) that shows the number of transistors needed. It’s a case of exponential growth, so a 32-bit adder needs something like 200-billion transistors (a modern CPU has about 1 billion)... In any case, or 4-bit 2-level adder needs about 100 gates.
What do you estimate delay will be for a 4-input adder using our log model for delay? ____________________________

image3.emf

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.png
a15-a12 b15-b12 al1-a8 b11-b8 a7ababa4 b7b6b5bd a3a2ala0 b3b2b1b0
1 1 e I I Y I I O A N
a3a2ala0 b3b2b1b0 a3a2ala0 b3b2b1b0 a3a2ala0 b3b2b1b0 a3a2ala0 b3b2b1b0
4-bit adder cin 4-bit adder cin 4-bit adder cin 4-bit adder cin
cout s3s2s1s0 cout s3s2s1s0 cout s3s2s1s0 cout s3s2s1s0
[TTT1 [TT1 [T [TT1
cout $15-s12 s11-s8 s7s6s5s4 s3s2s1s0

image16.png
These use carry-lookahead internally

at5-a12 b15 b‘IZ M b8 \ZaGaSa 7b6b5b4 a3a2a1a0 b3b2b1b0
L1111 L1
a.

a3a2alal b3b2bp()«

a3a2alal l/b3b2b‘| bO

a‘IaO b3b2b1bb‘\\§;3a2a1a0 b3b2b1b0

4-bit adder cin 4-bit adder cin 4-bit adder cin 4-bit adder cin
P G cout s3s2s1s0||[P G cout s3s2s1sO||[P G cout s3s2s1s0|| P G cout s$3s2s1s0
P3G3 c3P2G2 c2P1G1 c1P0OGO
P G cout 4-bit(carry-lookahead logic
* * + $15-s12 s7-s4 $3-s0

s11-s18
Second level of

carry-lookahead

image17.png
10000

800
600

400

200

image1.emf

image2.emf

