EECS 270, Fall 2020, Lecture 20 Page 6 of 6

Today:
· Course changes due to Covid and other announcements
· More Quine-McCluskey
· Start on a computer
Course changes due to Covid and other announcements
· Labs will be remote starting Wednesday
· Exam should be back tomorrow by noon[image:]
More Quine-McCluskey
Let’s do F(A,B,C,D)=(2,4,10,11,12,13,15)
Steps are:

1. Generate Prime Implicants
2. Construct Prime Implicant Table
3. Reduce Prime Implicant Table (iterate until done…)
a. Remove Essential Prime Implicants
b. Row Dominance
c. Column Dominance
4. Solve Prime Implicant Table

Step 1: Generate Prime Implicants
List minterms by their “Hamming weight”—that is the # of 1s in them. Then do a pair-wise check to see which terms can be combined with the grouping in front of them. Put a check next to each minterm that can be combined with another minterm.

Construct a prime implicant table
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	2
	
	
	
	
	
	

	4
	
	
	
	
	
	

	10
	
	
	
	
	
	

	11
	
	
	
	
	
	

	12
	
	
	
	
	
	

	13
	
	
	
	
	
	

	15
	
	
	
	
	
	

Would do further steps, but…

Now let’s say we have this one: Let’s do F(A,B,C,D)=(0,4,5,9,10,11,13). Create the Prime implicant table using the Kmap.
1 1
 1 1 1
 1
 1

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	0
	
	
	
	
	
	

	4
	
	
	
	
	
	

	5
	
	
	
	
	
	

	9
	
	
	
	
	
	

	10
	
	
	
	
	
	

	11
	
	
	
	
	
	

	13
	
	
	
	
	
	

3. Reduce Prime Implicant Table (iterate until done…)
a. Remove Essential Prime Implicants
b. Row Dominance
c. Column Dominance

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Start on a computer
Instruction set:
	Instruction name
	Opcode
	Effect

	halt
	0
	PC = PC+4
stop executing instructions

	add
	1
	PC = PC+4
memory[addr0] = memory[addr1] + memory[addr2]

	sub
	2
	PC = PC+4
memory[addr0] = memory[addr1] - memory[addr2]

	mult
	3
	PC = PC+4
memory[addr0] = memory[addr1] * memory[addr2]

	div
	4
	PC = PC+4
memory[addr0] = memory[addr1] / memory[addr2]

	cp
	5
	PC = PC+4
memory[addr0] = memory[addr1]

	and
	6
	PC = PC+4
memory[addr0] = memory[addr1] & memory[addr2]

	or
	7
	PC = PC+4
memory[addr0] = memory[addr1] | memory[addr2]

	not
	8
	PC = PC+4
memory[addr0] = ~memory[addr1]

	be
	9
	if (memory[addr1] == memory[addr2]) {
 PC = addr0
} else {
 PC = PC+4
}

	bne
	10
	if (memory[addr1] != memory[addr2]) {
 PC = addr0
} else {
 PC = PC+4
}

	blt
	11
	if (memory[addr1] < memory[addr2]) {
 PC = addr0
} else {
 PC = PC+4
}

Comparisons take into account the sign of the
number. E.g., 16'hffff (-1) is less than 16'h0000 (0).

Instructions are spread out over 4 addresses. Opcode, addr0, addr1, addr2.
	Location
	Data

	0
	1

	1
	10

	2
	20

	3
	30

	4
	0

	5
	0

	6
	0

	7
	[bookmark: _GoBack]0

For example if memory holds the data on the right, then what is the instruction supposed to do?

Write a short program that performs A=B+C+D where A is location 50, B is location 51, C is location 52 and D is location 52.
	Location
	Data

	0
	

	1
	

	2
	

	3
	

	4
	

	5
	

	6
	

	7
	

	8
	

	9
	

	10
	

	11
	

	12
	

Let’s look at a datapath that can do these instructions. We’ll only look at add in class, but it gives the idea.

[image:]Maddr

Control points:
PC_drive, plus1_drive, ALU_drive, addr0_drive, addr1_drive, addr2_drive, memory_drive.
PC_en, op1_en, op2_en, opcode_en, addr0_en, addr1_en, addr2_en, Maddr_en, memwrite_en
Draw a state machine for add. What part would be in common with the other instructions?

image1.png
AB/CD 00 01 11 10
oofp [2 B
o1l [|z P
1p 7 5
1w0p [@ [0

image2.png
AB/CD 00 01 11 10
oofp [2 B
o1l [|z P
1p 7 5
1w0p [@ [0

image3.emf

