Discussion #1 Outline

1. Introductions
2. Announcements
 a. Your Office Hours
 i. Times
 ii. Place – MU3NE
 b. Website
 i. http://www.eecs.umich.edu/courses/f04/index.html
 c. Homework/Project assignment and due dates
 i. Homework 1 – Assigned Tues. Sept 14, Due Tues. Sept 28 in dropbox – need cover sheet from website
3. Pseudocode
 a. What is pseudocode? Why do we need it?
 b. Specifics of Pseudocode
 c. C++ to Pseudocode example (as class)
 d. Pseudocode to C++ example (in small groups, 2-3)
 e. Opportunity for Questions and Clarifications
4. Big-O Fallacies
 a. 6 big-O fallacies
 b. Opportunity for Questions and Clarifications
5. Open Question Time
 a. Take questions about lectures, homework assignment, project assignment, etc.
Purpose of Pseudocode:
- Writing for human, not computer
- High-level description of an algorithm
- More structured than prose, less detailed than C++
- Preferred notation for describing algorithms
- Hides program design issues

Pseudocode Details:
- Method declaration
 Algorithm method (arg [, arg...])
 Input ...
 Output ...
- Control flow
 if ... then ... [else ...]
 while ... do ...
 repeat ... until ...
 for ... do ...
 Indentation replaces braces
- Array indexing
 A[i] is ith cell in array A
 A is from A[0] to A[n-1]
- Method/Function call
 method (arg [, arg...])
- Return value
 return expression
- Expressions
 ← Assignment
 (like = in C++)
 ← Equality testing
 (like == in C++)
 n^2 Superscripts and other math formatting allowed
Example 1: C++ to Pseudocode

```c
int arrayMax(int A[ ], int n)
{
    int currentMax = A[0];
    for (int i = 1; i < n; i++)
        if (currentMax < A[i])
            currentMax = A[i];
    return currentMax;
}
```

Algorithm arrayMax(A, n)
Input: array A of n ints
Output: max element of A

$\text{currentMax} \leftarrow A[0]$
for $i \leftarrow 1$ to $n - 1$ do
 if $A[i] > \text{currentMax}$ then
 $\text{currentMax} \leftarrow A[i]$
return currentMax
Example 2: Pseudocode to C++

In groups of 2 or 3, turn this Pseudocode into C++ code that compiles…

Algorithm arrayFind(x, A, n)
 Input: An element x and an n-element array, A.
 Output: The index I such that x=A[i] or -1 if no element of A is equal to x.
 for i ← 0 to n-1 do
 if x=A[i] then
 return i
 return -1

Answer:

int arrayFind(int x, int A[], n) {
 for(int i=0; i<n; i++) {
 if(x==A[i])
 return i;
 }
 return -1;
}
Big-O Fallacies

Fallacy 0:
If \(f(n) = O(g(n)) \) \(\Rightarrow f(n) = g(n) \)

Fallacy 1:
Let \(f_1(n) = h(n^2) \) and \(f_2(n) = h(n^2) \) \(\Rightarrow f_1(n) = f_2(n) \)
Therefore
\(f_1(n) = O(n^2) \) and \(f_2(n) = O(n^2) \) \(\Rightarrow f_1(n) = f_2(n) \)

Fallacy 2:
\(f(n) = O(g(n)) \) \(\Rightarrow g(n) = O^{-1}(f(n)) \)
(There is no such thing as \(O^{-1}() \) function.)

Fallacy 3:
Let \(f(n) = g_1(n) \times g_2(n) \).
If \(f(n) \leq C \times g_1(n) \) for all integers \(n \geq 0 \) and \(C = g_2(n) \), then \(f(n) = O(g_1(n)) \)

Fallacy 4:
Let \(f_1(n) = O(g_1(n)) \) and \(f_2(n) = O(g_2(n)) \) for non-negative functions and \(n \geq 0 \).
If \(g_1(n) < g_2(n) \), then \(f_1(n) < f_2(n) \).

Fallacy 5:
Let \(f_1(n) = O(g_1(n)) \) and \(f_2(n) = O(g_2(n)) \) for non-negative functions and \(n \geq 0 \).
If \(g_1(n) < g_2(n) \), is there an integer \(n_0 > 0 \) for which \(f_1(n_0) < f_2(n_0) \).