Announcement

- Hw3 will be due this Thursday.
Topics

- Shortest paths
 - (Dijkstra’s algorithm)
- Minimum Spanning Tree
 - Prim-Jarnik Algorithm
 - Kruskal Algorithm

Shortest Path Problem

Given a weighted graph and two vertices \(u \) and \(v \), we want to find a path of minimum total weight between \(u \) and \(v \).
- Length of a path is the sum of the weights of its edges.

Example:
- Shortest path between Providence and Honolulu

Applications
- Internet packet routing
- Flight reservations
- Driving directions
Dijkstra's Algorithm

- The distance of a vertex v from a vertex s is the length of a shortest path between s and v.
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex s.
- Assumptions:
 - the graph is connected
 - the edges are undirected
 - the edge weights are nonnegative
- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices.
- We store with each vertex v a label $d(v)$ representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices.
- At each step:
 - We add to the cloud the vertex u outside the cloud with the smallest distance label, $d(u)$.
 - We update the labels of the vertices adjacent to u.

Example
Example (cont.)

Minimum Spanning Tree

- Spanning subgraph
 - Subgraph of a graph G containing all the vertices of G

- Spanning tree
 - Spanning subgraph that is itself a (free) tree

- Minimum spanning tree (MST)
 - Spanning tree of a weighted graph with minimum total edge weight

Applications
- Communications networks
- Transportation networks
Partition Property

Partition Property:
- Consider a partition of the vertices of G into subsets U and V.
- Let e be an edge of minimum weight across the partition.
- There is a minimum spanning tree of G containing edge e.

Proof:
- Let T be an MST of G.
- If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition.
- By the cycle property, weight(f) ≥ weight(e).
- Thus, weight(f) = weight(e).
- We obtain another MST by replacing f with e.

Prim-Jarnik's Algorithm

- Similar to Dijkstra's algorithm (for a connected graph).
- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s.
- We store with each vertex v a label d(v) = the smallest weight of an edge connecting v to a vertex in the cloud.

At each step:
- We add to the cloud the vertex u outside the cloud with the smallest distance label.
- We update the labels of the vertices adjacent to u.
At each step:
- We add to the cloud the vertex not in the cloud with the smallest distance label.
- We update the labels of the vertices adjacent to a.
Kruskal’s Algorithm

- A priority queue stores the edges outside the cloud
 - Key: weight
 - Element: edge
- At the end of the algorithm
 - We are left with one cloud that encompasses the MST
 - A tree T which is our MST

Algorithm $\text{KruskalMST}(G)$

for each vertex v in G do
 define $\text{Cloud}(v)$ of $\in\langle v \rangle$
 let Q be a priority queue, insert all edges into Q using their weights as the key
 $T \subseteq Q$
 while T has fewer than $n-1$ edges do
 edge $e = T.\text{removeMin}()$
 let u, v be the endpoints of e
 if $\text{Cloud}(u) = \text{Cloud}(v)$ then
 T is not a tree
 return T
 else
 Add edge e to T
 Merge Cloud(v) and Cloud(w)
 return T