Homework Goals

- Develop knowledge of Trees and Tree algorithms;
- Develop knowledge of Binary Trees and properties;
- Develop knowledge of Binary Search Trees (in comparison to heaps);
- Develop knowledge of Graphs and Graph algorithms.

Trees: 10/50 points

1. Text, Problem C-6.28, Page 308. For simplicity, assume T is a binary tree. Also assume that you are given a function depth(Tree, node) that returns depth of node in Tree.

 Algorithm LCA(T, v, w)

 Input: tree T, node v, and node w

 Output: node common

 vdepth <- depth(T, v)
 wdepth <- depth(T, w)

 while vdepth > wdepth do
 v <- v.parent
 vdepth <- vdepth - 1
 while wdepth > vdepth do
 w <- w.parent
 wdepth <- wdepth - 1
 while v ≠ w do
 v <- v.parent
 vdepth <- vdepth - 1 //unnecessary unless want to know depth
 w <- w.parent
 wdepth <- wdepth - 1 //unnecessary unless want to know depth
 common <- v
 return common

 O(n)

2. The following questions refer to Figure 6.2, page 255 in the text.

 where: ERU is Electronics R·Us; S is Sales; P is Purchasing; M is Manufacturing; D is Domestic; I is International; T is Tuner; C is Canada; SA is S. America; O is Overseas; Af is Africa; E is Europe; As is Asia; and Au is Australia.

 a) List the nodes, given a preorder traversal of the tree.
ERU, R&D, S, D, I, C, SA, O, Af, E, As, Au, P, M, TV, CD, T

b) List the nodes, given a postorder traversal of the tree.

R&D, D, C, SA, Af, E, As, Au, O, I, S, P, TV, CD, T, M, ERU

c) List the nodes, given a level order traversal of the tree.

ERU, R&D, S, P, M, D, I, TV, CD, T, C, SA, O, Af, E, As, Au

d) The tree in Figure 6.2 is a general tree. Convert the general tree into a binary tree as shown in class. Draw the converted binary tree below. List the nodes, given an inorder traversal of the converted binary tree.
Inorder traversal: R&D, D, C, SA, Af, E, A, Au, O, I, S, P, TV, CD, T, M, ERU
Binary Trees: 10/50 points

3. Draw a proper binary tree with a *height* of 4 and a maximum number of leaf nodes.

![Binary Tree Diagram](image)

Note that for the questions below (4a – 4d), the binary tree is not necessarily proper.

4a) What is the minimum number of *leaf* nodes in a binary tree with height *h*?

Answer: 1

4b) What is the maximum number of *leaf* nodes in a binary tree with height *h*?

Answer: 2^h

4c) What is the minimum number of nodes in a binary tree with height *h*?

Answer: $h + 1$

4d) What is the maximum number of nodes in a binary tree with height *h*?

Answer: $2^{h+1} - 1$

Min Heaps and Binary Search Trees: 10/50 points

5. Briefly describe (1-2 sentences) the binary search tree property.

Binary Search Tree: As described in the book, a node is \geq its left child and \leq its right child. In shorthand, we will call this BST form (\geq, \leq). Note in class we discussed similar implementations for duplicates in the form $(>, \leq)$ and $(\geq,<)$. All are correct.

6. Briefly describe (1-2 sentences) the *min*-heap property.

Min Heap: A binary tree represented as an array in which each node is \leq the keys of all the node’s children

7. Draw a binary search tree containing the following keys: 12, 2, 5, 9, 11, 7, 1. Assume that the keys are inserted into the binary search tree in the order given.
8. Draw a min-heap as a tree containing the following keys: 12, 2, 5, 9, 11, 7, 1. Assume that the keys are inserted into the heap in the order given.

9. Can the binary search tree property be used to print the keys of an n-node binary search tree in sorted order in O(n) time? If so, describe the algorithm. If not, explain why not.

Yes. Inorder traversal gives output of a BST in linear time.

10. Can the min-heap property be used to print the keys of an n-node min-heap in sorted order in O(n) time? If so, give the algorithm. If not, explain why not.

No. There is not particular property of a min-heap that allows sorting in O(n) time. One would have to sort the data, possibly using a heapsort, in O(n lg n) time.
Graphs: 10/50 points
In a directed graph, the out-degree of a vertex is the number of edges leaving it, and the in-degree of a vertex is the number of edges entering it.

11. Given an adjacency matrix representation of a directed graph of V vertices and E edges, how long does it take to compute the out-degree of all vertices in terms of big-oh? Briefly explain.

$O(V)$ for single node, by examining row for individual node
$O(V^2)$ for entire graph, by examining v-length row for each of v nodes

12. Given an adjacency matrix representation of a directed graph of V vertices and E edges, how long does it take to compute the in-degree of all vertices in terms of big-oh? Briefly explain.

$O(V)$ for single node, by examining column for individual node
$O(V^2)$ for entire graph, by examining v-length column for each of v nodes

13. Given an adjacency list representation of a directed graph of V vertices and E edges, how long does it take to compute the out-degree of all vertices in terms of big-oh? Briefly explain.

$O(1 + E/V)$ for single node, by examining adjlist for individual node
$O(V + E)$ for entire graph, by examining adjlist for each of V nodes

14. Given an adjacency list representation of a directed graph of V vertices and E edges, how long does it take to compute the in-degree of all vertices in terms of big-oh? Briefly explain.

$O(V + E)$ for single node, must examine adjlist for entire graph

With additional array of size V, can be done in $O(V+E)$ for entire graph. That is, cycle through all edges and increment counter when vertex is discovered in associated linked list

Without additional array, can be done in $O(V^2 + VE)$. For each node in V, cycle through all adjacency lists (i.e., all V+E edges) looking for membership and increment when found

Graph Algorithms: 10/50 points
You are given the graph shown below:

![Graph Diagram]
15. Show each iteration of Prim’s algorithm on the graph with node B as the starting node. The first iteration is provided for you.

<table>
<thead>
<tr>
<th>Iteration 1</th>
<th>Iteration 2</th>
<th>Iteration 3</th>
<th>Iteration 4</th>
<th>Iteration 5</th>
<th>Iteration 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>d</td>
<td>p</td>
<td>k</td>
<td>d</td>
<td>p</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>3</td>
<td>B</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>0</td>
<td>-</td>
<td>B</td>
<td>T</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>6</td>
<td>B</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>8</td>
<td>B</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>-</td>
<td>-</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

16. Draw the resulting minimal spanning tree. Include edge weights in your drawing.

```
A
  3
  |
B
  

C

  4

D
  2

E

  1

F
```