Introduction

Definitions

Data Structure: collections of variables, possibly of different data types, connected in various ways

Algorithms: methods for solving problems that are suited for computer applications

Algorithm-centric View

“Data structures exist as the byproduct of algorithms”
- Algorithms that use time and space as efficiently as possible
- Programs can be made millions of times faster by a well-designed algorithm
Running Times for Search

<table>
<thead>
<tr>
<th>Population</th>
<th>Linear</th>
<th>Logarithmic</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECS 281</td>
<td>12 ms</td>
<td>0.5 ms</td>
</tr>
<tr>
<td>U M</td>
<td>3 sec</td>
<td>1.4 ms</td>
</tr>
<tr>
<td>County</td>
<td>35 sec</td>
<td>18 ms</td>
</tr>
<tr>
<td>Michigan</td>
<td>17 min</td>
<td>23 ms</td>
</tr>
<tr>
<td>USA</td>
<td>8 hours</td>
<td>28 ms</td>
</tr>
<tr>
<td>World</td>
<td>7 days</td>
<td>32 ms</td>
</tr>
<tr>
<td>EECS 281: 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA: 276 million</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Which Means

- There are many ways to solve an algorithmic problem
- Goal of 281 is to solve problems using most efficient method
 - where ‘efficient’ is defined in terms of time and space
- Key to 281 is ability to successfully analyze different methods/algorithms

Typical Approach to Algorithm Selection

- Define problem to be solved
- Manage (understand) its complexity
- Decompose into smaller subtasks
 - Often, choice of one such subtask is critical to overall efficiency
- Refine solution based on expected usage

Note that effort to make algorithm efficient may not be worthwhile unless domain is large or algorithm is to be reused often
Analysis ‘Lite’

Key to 281 is ability to successfully analyze different algorithms

- Let’s analyze an informal problem
 - knowing that a more rigorous analysis could potentially lead to better solutions
- Such analyses will be shown later in our course

Example: Dinner at My House

- After dinner, the table must be cleared
 - there are m people sitting at the table
 - there are n unique items in each place setting
 - plate, glass, fork, knife,
 - Analyze the following three methods of clearing the table in terms of m and n

Method 1: Dinner at My House

- Who: an adult
- How: takes half of all of the original items on the table on each trip from the table to the sink
Method 2: Dinner at My House

- Who: the oldest child
- How: moves exactly half of one place setting on each trip from the table to the sink

Method 3: Dinner at My House

- Who: the youngest daughter and oldest son
- How:
 - daughter takes an individual trip from the table to the sink for each item on the table in front of each person at the table
 - However, she is not allowed to move any knives, because she is too young
 - brother moves all knives from the table to the sink in one trip

Running Times for Search

<table>
<thead>
<tr>
<th>Population</th>
<th>Linear</th>
<th>Logarithmic</th>
</tr>
</thead>
<tbody>
<tr>
<td>EECS 281</td>
<td>12 ms</td>
<td>0.5 ms</td>
</tr>
<tr>
<td>U M</td>
<td>3 seconds</td>
<td>1.4 ms</td>
</tr>
<tr>
<td>County</td>
<td>35 seconds</td>
<td>18 ms</td>
</tr>
<tr>
<td>Michigan</td>
<td>17 minutes</td>
<td>23 ms</td>
</tr>
<tr>
<td>USA</td>
<td>8 hours</td>
<td>28 ms</td>
</tr>
<tr>
<td>World</td>
<td>7 days</td>
<td>32 ms</td>
</tr>
</tbody>
</table>

EECS 281: 120 USA: 276 million
Search Revisited

- Cost of algorithm is defined by cost of operations in algorithm
- In search, the following are important:
 - search for name
 - insert new name
 - delete old name

Search Revisited

Logarithmic (aka binary) Search

In search, the following are important:
- search for name:
 - about \(\log n \) operations
- insert new name:
 - to find correct location: about \(\log n \) operations
 - to insert: about \(n/2 \) operations (moves of names)
- delete old name
 - to find correct location: about \(\log n \) operations
 - to delete: about \(n/2 \) operations (moves of names)

Search Revisited

Linear Search

In search, the following are important:
- search for name:
 - about \(n/2 \) operations
- insert new name:
 - 1 operation (always put at beginning/end)
- delete old name
 - to find correct location: about \(n/2 \) operations
 - to delete: about \(n/2 \) operations (moves of names) (about 1 operation if clever!!)
Summary

- Define problem to be solved
- Manage (understand) its complexity
- Decompose into smaller subtasks
 - Often, choice of one such subtask is critical to overall efficiency
- Refine solution based on expected usage

Note that effort to make algorithm efficient may not be worthwhile unless domain is large or algorithm is to be reused often