Collision Resolution

Def'n: method to handle case when two keys hash to same address

Methods of Collision Resolution
- Separate Chaining
- Linear Probing
- Quadratic Probing
- Double Hashing

Collision Resolution

Separate Chaining: scheme for collision resolution where we maintain M linked lists, one for each table address
Collision Resolution

Property: Separate chaining reduces the number of comparisons for sequential search by a factor of M (on average), using extra space for M links.

Property: In a separate chaining hash table with M lists (table addresses) and N keys, the probability that the number of keys in each list is within a small constant factor of N/M is extremely close to 1 ($O(1)$) if the hash function is good.

Collision Resolution

- Separate chaining
 - Insert: constant time
 • $O(1)$
 - Search: time proportional to N/M
 • $O(N/M)$
 - Remove: dependent upon Search
 • $O(N/M)$

This is why we choose $M \approx N$: $O(N/M) = O(1)$.

Collision Resolution

Use empty places in the table to resolve collisions (known as open-addressing).

Probe: determination whether given table location is ‘occupied’

Linear Probing: when collision occurs, check the next position in the table.
Possible Probe Outcomes

- **miss**: probe finds empty cell in table, OR
- **hit**: probe finds cell that contains item whose key matches search key, OR
- **full**: probe finds cell has ‘occupant’, but key doesn’t match search key
- **If probe results in full, then probe table at next “higher” cell until hit (search ends successfully) or miss (search ends unsuccessfully)**

Cluster

def:n: contiguous group of occupied table cells

Consider table that is half-full ($M = 2N$)

What is best case/worst case distribution?
- **Best Case:**
- **Worst Case:**

Cluster

def:n: contiguous group of occupied table cells

Consider table that is half-full ($M = 2N$)

What is best case/worst case distribution?
- **Best Case:** every other cell is empty
- **Worst Case:** first half is full, second half is empty
Cluster
Consider table that is half-full ($M = 2N$)

Pop Quiz
- What is the average cost (in terms of N) to obtain a miss (find an empty cell) given the best case distribution?
- What is the average cost (in terms of N) to obtain a miss (find an empty cell) given the worst case distribution?

Linear Probing
- How to delete a key from a table built with linear probing?
 - why is this hard?
- option 1: remove it, re-hash rest of cluster
- option 2: use a “dummy” element
 - not an element, not empty either
 - we’ll call this ‘deleted’

Possible Probe Outcomes (Revisited)
- empty: probe finds cell that has never held item, OR
- deleted: probe finds cell that once held item, but is not currently holding item, OR
- hit: probe finds cell that contains item whose key matches search key, OR
- full: probe finds cell has ‘occupant’, but key doesn’t match search key
Load Factor (\(\alpha \))

- \(\alpha = N/M \), where \(N \) keys are placed in an \(M \)-sized table
- Separate Chaining
 - \(\alpha \) is average number of items per list
 - \(\alpha \) is sometimes larger than 1
- Linear Probing
 - \(\alpha \) is percentage of table positions occupied
 - \(\alpha \) is (must be) less than 1

Collision Resolution

When collisions are resolved with linear probing, the average number of probes required to search in a hash table of size \(M \) that contains \(N = \alpha M \) keys is about

\[
\frac{1}{2} \left(1 + \frac{1}{1 - \alpha} \right) \text{ for hits}
\]

\[
\frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2} \right) \text{ for misses}
\]

Examples
Examples

Collision Resolution

Quadratic Probing
Try buckets at increasing ‘distance’ from hash table location

- \(h(key) \mod M \Rightarrow addr \)
- if bucket \(addr \) is full, then try
 - \((h(key) + j^2) \mod M \) for \(j = 1, 2, \ldots \)

Collision Resolution

Double Hashing
Apply additional hash function if collision occurs

- \(h(key) \mod M \Rightarrow addr \)
- if bucket \(addr \) is full, then try
 - \((h(key) + j \times h'(key)) \mod M \), where
 - \(j = 1, 2, 3, \ldots \) and
 - \(h'(k) = q - (k \mod q) \) for some prime number \(q < M \)
New Topic: Dynamic Hashing

- As number of keys in hash table increases, search performance degrades
- Separate Chaining
 - search time increases gradually
 - double keys means double list length at each of M table locations
- Linear Probing
 - search time increases dramatically as table fills
 - may reach point when no more keys can be inserted

Objective: Dynamic Hashing

Double size of table when it ‘fills up’ (more than half full)
- expensive, but infrequent

Amortized Analysis

Cannot guarantee that each and every operation will be fast, but can guarantee that average cost per operation will be low
- total cost is low, but performance profile is erratic
- most operations are extremely fast, but certain operations require as much time as previous cost of building table
Amortized Analysis: Concept

- Each insert
 - pays (small constant) cost to actually insert
 - deposits other small constant ("balance") in a bank
- First \(M/2 \)-1: build up "balance"
- \((M/2)\)th insertion
 - faced with a big (not small constant) bill
 - finds a big (not small constant) balance
- Net result
 - each insert charged small constant costs
 - some costs deferred

Amortized Analysis: Applied

- Start with table of size \(M \)
- Insert \(M/2 \)-1 keys
- Each insertion in a table <= \(\frac{1}{2} \) full
 - costs avg 2.5 probes (from table)
- Insert \(M/2\)-1 keys
 - \(2.5 \times (M/2)-1) = O(M) \)

Amortized Analysis: Applied

- Insert \((M/2)^{th}\) key
- Build new table, size \(2M \)
 - remove keys from old table, insert in new
 - each insert <= \(\frac{1}{4} \) full, costs avg 1.5 probes (from table)
 - \(1.5 \times M/2 = O(M) \)
- \(O(M) + O(M) = O(M) \)
 - linear time to insert \(M \) keys, but last one is a doozy
Summary: Hashing

- **Collision Resolution**
 - Linear Probing uses empty places in table to resolve collisions

- **Dynamic Hashing**
 - Modify size of hash table when it is x% full

Summary: Hashing

- **Collision Resolution**
 - Separate Chaining creates a linked list for each table address
 - Linear Probing uses empty places in table to resolve collisions
 - Quadratic Probing looks for empty table address at increasing distance from original hash
 - Double Hashing applies additional hash function to original hash