Informal Definition: Tree

Mathematical abstraction that plays a central role in the design and analysis of algorithms
- build and use explicit data structures that are concrete realizations of trees
- describe the dynamic properties of algorithms

Formal Definition: Tree

Tree: set of nodes storing elements in a parent-child relationship with the following properties:
- \(T \) has a special node \(r \), called the root of \(T \), with no parent node;
- Each node \(v \) of \(T \), such that \(v \neq r \), has a unique parent node \(u \)

Note a tree cannot be empty (must have root)
- Just a convention
Formal Definition (Alternative)

Tree: Nonempty collection of nodes (vertices) and edges (links) in which there exists exactly one path connecting any two nodes.

Some Tree Terminology

- **Root**: "top-most" vertex in the tree
 - the initial call
- **Parent/Child**: direct links in tree
- **Siblings**: children of the same parent
- **Ancestor**: predecessor in tree
 - closer to root along path
- **Descendent**: successor in tree
 - further from root along path

Some Tree Terminology

- **Internal node**: a node with children
- **Leaf/External node**: a node without children
- **Ordered Tree**: linear ordering for the children of each node
- **Binary Tree**: ordered tree in which every node has at most two children
- **Proper Binary Tree**: binary tree in which every node has exactly zero or two children
Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

Subtree: tree consisting of a node and its descendants

Properties of Binary Trees

- Level 0 has 1 node (the root)
- Level 1 has at most 2 nodes
- Level 2 has at most 4 nodes
- ...
- Level d has at most 2^d nodes

Properties of Binary Trees

Let T be a (proper) binary tree with n nodes, and let h denote the height of T:

1. The number of external nodes in T is at least $h+1$ and at most 2^h.
2. The number of internal nodes in T is at least h and at most $2^h - 1$.
3. The total number of nodes in T is at least $2h+1$ and at most $2^h - 1$.
4. The height of T is at least $\log(n+1) - 1$ and at most $(n-1)/2$, that is $\log(n+1) - 1 \leq h \leq (n-1)/2$.

Tree ADT: Functions

Query Functions
- `isInternal(v)`, `isExternal(v)`, `isRoot(v)`: test whether tree is ..., return Boolean

Generic Functions
- `size()`: return number of nodes in tree
- `elements()`, `positions()`: iterate on elements/positions of tree
- `swapElements(v, w)`: swap elements stored at nodes v and w
- `replaceElement(v, e)`: replace element stored at node v with e

Trees: Data Structures

Vector Implementation
- root at index 1
- left child of node i at 2*i
- right child of node i at 2*i + 1
- some indices may be skipped
- can be space prohibitive for sparse trees

Trees: Data Structures

List Implementation

```c
struct node
{
    Item item;
    node *left, *right, *parent;
};
```
- if node is root, then *parent is null
- if node is external, then *left and *right are null
Translating General Trees into Binary Trees

T: General tree
T': Binary tree

Intuition:
- take set of siblings \(v_1, v_2, \ldots, v_k \) in \(T \) that are children of \(v \)
- \(v_1 \) becomes left child of \(v \) in \(T' \)
- \(v_2, \ldots, v_k \) become chain of right children of \(v_1 \) in \(T' \)
- recurse

Translating General Trees into Binary Trees

Algorithm
1) \(u \in T \Rightarrow u' \in T' \)
2) ??
3) if \(u \in T \) is internal, and \(v \) is leftmost child of \(u \), then \(v' \) is left child of \(u' \in T' \)
4) if \(v \) has sibling \(w \), then \(w' \) is right child of \(v' \in T' \)

An Example

![Diagram of tree transformation]
Summary

- Trees have intuitive definitions
 - think family tree
- Tree ADTs have specific functions
 - root(), children(v), isExternal(v), swap(v,w),…
- Trees can be implemented
 - as array (vector)
 - as linked structure
- General trees can be converted to binary trees