Binary Search Trees

Search

- Retrieval of a particular piece of information from large volumes of previously stored data
- Purpose is typically to access information within the item (not just the key)
- Recall that arrays, linked lists are worst case O(N) for either searching or inserting

Need data structure with optimal efficiency for searching and inserting

Symbol Table

Defn: abstract data structure of items with keys that supports two basic operations: *insert* a new item, and *return* an item with a given key
Symbol Table: ADT

- **Insert** a new item
- **Search** for an item (items) having a given key
- **Remove** a specified item
- **Sort** the symbol table
- **Select** the kth largest item in a symbol table
- **Join** two symbol tables

Also may want construct, test if empty, destroy, copy...

Binary Search Tree

Def'n: a binary tree that has a key associated with each of its internal nodes, with the additional property that the key in any node is \geq keys in all nodes of left subtree and \leq keys in all nodes in right subtree

Essential property of BST is that **insert** is as easy to implement as **search**

A Word on Binary Search Trees

- A binary tree node is proper iff it has
 - exactly zero children
 - OR exactly two children
- What happens with tree of two items?
- **Answer:** we count NULLs as external nodes
 - each “bottom node” actually points to two NULLS
 - each “half node” actually points to one node and one NULL
- This means all elements are “internal nodes”
Node: Concrete Implementation

Node in Binary Tree

```c
struct node
    {Item item; node *left, *right};
typedef node *link;
```

- A node contains some information, and points to its left child node and right child node
- Efficient for moving down a tree from parent to child

Search (§9.1.1)

- To search for a key k, we trace a downward path starting at the root
- The next node visited depends on the outcome of the comparison of k with the key of the current node
- If we reach a non-matching leaf, the key is not found and we return a null position
- Example: search(4, root)

```c
Algorithm search(k, v)
if T.isExternal(v) // not found
    return Position(null)
if k < key(v)
    return search(k, T.leftChild(v))
else if k = key(v)
    return Position(v)
else // k > key(v)
    return search(k, T.rightChild(v))
```

Insertion (§9.1.2)

- To perform operation insert(k, e), we search for key k
- Assume k is not already in the tree, and let let w be the leaf reached by the search
- We insert k at node w and expand w into an internal node
- Example: insert(5, e)
Sort: Binary Search Tree

Inorder Traversal

Algorithm inorder(T,v)
 for left child w of v do
 inorder(T,w)
 visit node v
 for right child x of v do
 inorder(T,x)

simply stated, sorting a binary search tree is inorder traversal of the tree

Properties of BSTs

- Best case (balanced): about lg N nodes between root and each external node/leaf
- Worst case (unbalanced): about N nodes between root and each external node/leaf
- With random data:
 - trees are likely to be well-balanced on average
 - same reason that quicksort likely to partition adequately on average

Modifications to a Theme

- What if we want to remove an internal node from the tree?
- What if we want to make a particular node the root?
- What if we want to insert at the root, rather than a leaf?
- What if we want to combine two BSTs?
- What if pigs could fly?

Common feature: working with internal nodes (and flying pigs)
Deletion: Binary Search Tree

- First, search for the node to remove
 - if you don’t find it, do nothing
- If you find it, examine its children
 - if no children, trivial to remove
 - if one child, remove node and replace with child
 - if two, replace with a “combined” tree of both
- Key observation
 - all in LHS subtree <= all in RHS subtree
 - partition RHS so that its smallest node is its root
 - must be some such node, since RHS is not empty
 - new root has a right child, but no left child
 - make new root’s left child the LHS subtree

Joining Two Children, Illustrated

Rotations

- Right Rotation: RR(P)
- Left Rotation: LR(P)
Common Technique: Rotations

- **Rotation:**
 - interchange the role of a parent and one of its children in a tree...
 - while still preserving the BST ordering among the keys in the nodes
- **The second part is tricky**
 - right rotation: copy the right link of the left child to be the left link of the old parent
 - left rotation: copy the left link of the right child to be the right link of the old parent

Rotation is a local change involving only three links and two nodes

Summary: Binary Search Trees

- **Linear structures (arrays & linked lists)**
 - either insertion, search, or both are $O(N)$
- **Tree structures**
 - each node points to two others (left, right)
 - all nodes are ordered: left <= root <= right
 - modification of nodes
 - external is easy
 - internal require rotations
 - in general, operations on BSTs are:
 - $O(\log N)$ average
 - $O(N)$ worst case
 - worst case is easy to generate