Search/Insert

- Retrieval of a particular piece of information from large volumes of previously stored data
- Purpose is typically to access information within the item (not just the key)
- Recall that arrays, linked lists are worst case $O(N)$ for either searching or inserting

Need data structure with optimal efficiency for searching and inserting

Properties of BSTs

- Best case (balanced): about $\log N$ nodes between root and each external node/leaf
- Worst case (unbalanced): about N nodes between root and each external node/leaf
- With random data:
 - trees are likely to be well-balanced on average
AVL Tree

defined for Adelson, Velskii, and Landis

- Change worst case search/insert to $O(\lg N)$
- Height Balance Property
 - for every internal node v of T, the heights of the children of v differ by at most 1
 - note recursive definition

Search (same as BST)

- To search for a key k, we trace a downward path starting at the root
- The next node visited depends on the outcome of the comparison of k with the key of the current node
- If we reach a non-matching leaf, the key is not found and we return a null position
- Example: search(4, root)

Sort (same as BST)

Inorder Traversal

Algorithm inorder(T,v)
 for left child w of v do
 inorder(T,w)
 visit node v
 for right child x of v do
 inorder(T,x)

simply stated, sorting an AVL tree is an inorder traversal of the AVL tree
Inserting into AVL Trees

- Each node records its height
- Can compute a node’s balance factor:
 \(\text{bal}(n) = \text{height}(n\text{ left}) - \text{height}(n\text{ right}) \)
- A node that is AVL-balanced:
 - \(\text{bal}(n) = 0 \): both subtrees equal
 - \(\text{bal}(n) = +1 \): left taller by one
 - \(\text{bal}(n) = -1 \): right taller by one
- \(|\text{bal}(n)| > 1 \): node is out of balance

Balance Factors

| bal(n) | | bal(n) |
|--------|----------------------|
| -2 | |
| -1 | |
| 0 | |
| +1 | |

Insertion (begins like BST)

- To perform operation `insert(k, e)`, we search for key `k`.
- Assume `k` is not already in the tree, and let `w` be the leaf reached by the search.
- We insert `k` at node `w` and expand `w` into an internal node.
- Example: `insert(5, e)`
Insertion (con’t)
- Check for ‘balance’ after insertion, where balance:
 - node v of T is balanced if
 \[\Delta |\text{height(children(v))}| \leq 1 \]
- If balanced after insertion, then done
- Else, rotate to re-balance

Pop Quiz
- AVL-balance the following two trees:
 (hint: think rotations)

Insertion (con’t)
Four Cases (page 431)
- single left rotation (case a)
 – RL(a)
- single right rotation (case b)
 – RR(c)
- double rotation (case c)
 – RR(c)
 – RL(a)
- double rotation (case d)
 – RL(a)
 – RR(c)
Checking and Balancing

checkAndBal(node *n)
 if bal(n) > +1
 if bal(n->left) < 0
 rotL(n->left)
 rotR(n)
 else if bal(n) < -1
 if bal(n->right) > 0
 rotR(n->right)
 rotL(n)

- Outermost if: is node out of balance?
 > +1: left too big
 < -1: right too big
- Inner ifs: do we need a double rotation? only if signs disagree

Summary: AVL Trees

- Binary Search Tree
 - worst case insertion/search is O(N)
- AVL Tree
 - worst case insertion/search is O(lg N)
 - must guarantee height balance property
- Operations
 - search: same as BST, but O(lg N)
 - sort: same as BST, with O(N)
 - insert: may have to rebalance
 - delete: may have to rebalance