Brute-force Algorithms
Def’n: Solves a problem in the most simple, direct, or obvious way
- Not distinguished by structure or form
- Pros
 - Often simple to implement
- Cons
 - May do more work than necessary
 - May be efficient (but typically is not)

Greedy Algorithms
Def’n: Algorithm that makes sequence of decisions, and never reconsiders decisions that have been made
- Pros
 - May run significantly faster than brute-force
- Cons
 - May not lead to correct/optimal solution
Example: Counting Change

Problem Def’n:
- Cashier has collection of ‘coins’ of various denominations
- Goal is to return a specified sum using the smallest number of coins

Example: Counting Change

Mathematical Def’n:
- n coins: $P = \{p_1, p_2, p_3, \ldots, p_n\}$ with value $D = \{d_1, d_2, d_3, \ldots, d_n\}$
 - can have repetition (two dimes, three pennies)
 - S is a subset of P
 $S \subseteq P$, such that $s_{i} = 1$ if $p_{i} \in S$, $s_{i} = 0$ if $p_{i} \notin S$
- A: sum to be returned
- Goal: minimize $\sum s_{i}$, such that $\sum d_{i} = A$

Brute-force Approach

- Try all subsets of P
 - since there are n coins, there are 2^n possible subsets
 - enumerate all possible subsets
 - check if a subset equals A
 - called ‘feasible solution’ set
 $O(n)$
 - pick subset that minimizes $\sum s_{i}$
 - called ‘objective function’
 $O(n)$
Brute-force Approach

- Best Case
 - $\Omega(n^2)$
- Worst Case
 - $O(n^2)$

Greedy Approach

- Go from largest to smallest denomination
 - Return largest coin p_i from P, such that $d_i \leq A$
 - $A = A - d_i$
 - Find next largest coin …

if money is sorted (by value), then algorithm is $O(n)$

Does Greedy Always Work?

Consider $A = 20$
and $D = \{1, 1, 1, 1, 10, 10, 15\}$

Greedy returns 6 coins
Optimal is 2 coins
Text Processing

- Brute-force Pattern Matching
- Improved Pattern Matching
 - Boyer-Moore Algorithm
 - *not really brute-force*
 - *not really greedy either*

Pattern Matching

- T: text string of length n
- P: pattern string of length m
- Question: Is P a substring of T?
- Answer: starting index of match or indication that P ∉ T

Pattern Matching: Pseudocode

Algorithm BruteForceMatch (T, P)
Input: character string T of length n and character string P of length m
Output: integer -1 if P ∉ T, integer i (start location of P in T) if P ∈ T
for i ← 0 to n-m do
 j ← 0
 while (j < m and T[i+j] = P[j]) do
 j ← j + 1
 if j = m then
 return i
 return -1
Pattern Matching: Complexity

```plaintext
for i <- 0 to n-m do O( )
    j <- 0 O( )
    while (j < m and T[i+j] = P[j]) do O( )
        j <- j + 1 O( )
    if j = m then O( )
        return i O( )
    return -1 O( )

Worst case complexity: O( )
Best case complexity: Ω( )
```

Better Pattern Matching: Boyer Moore Algorithm

Two Improvements:
- Looking Glass Heuristic
 - When testing P against T, begin at P[m-1]
- Character Jump Heuristic
 - Mismatch T[i] = c with P[j]
 - if c ∉ P, then shift P past T[i]
 - else if last(c) to left of P[j] then
 - shift P to align last(c) with T[i]
 - else shift P to right by one

Summary: Brute & Greedy

- Brute-force:
 - solve problem in simplest way
 - generate entire solution set, pick best
 - will give optimal solution with (typically) poor efficiency
- Greedy:
 - make local, best decision, and don’t look back
 - may give optimal solution with (typically) ‘better’ efficiency
 - depends upon ‘greedy-choice property’
 - global optimum found by series of local optimum choices